JPS59108325A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59108325A
JPS59108325A JP21901582A JP21901582A JPS59108325A JP S59108325 A JPS59108325 A JP S59108325A JP 21901582 A JP21901582 A JP 21901582A JP 21901582 A JP21901582 A JP 21901582A JP S59108325 A JPS59108325 A JP S59108325A
Authority
JP
Japan
Prior art keywords
layer
groove
semiconductor layer
film
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21901582A
Other languages
Japanese (ja)
Inventor
Toshio Kurahashi
倉橋 敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21901582A priority Critical patent/JPS59108325A/en
Publication of JPS59108325A publication Critical patent/JPS59108325A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To omit processes, and to remove stress due to the interposition of a silicon dioxide film by forming a groove reaching to a substrate, depositing one conduction type polycrystalline semiconductor layer in the groove and oxidizing the surface to form an insulating film. CONSTITUTION:A U-shaped groove 16 is formed through dry etching while using the double films of a silicon dioxide film 14 and a silicon nitride film 15 as a mask. The vertical etching groove penetrates an N type semiconductor layer 13 and an N<+> type semiconductor layer 12, and reaches to the P type semiconductor substrate 11. The P type polycrystalline silicon layer 17 containing B is laminated, the polycrystalline silicon layer 17 on the silicon nitride film 15 is removed, and an upper section in the U-shaped groove 16 is also removed slightly through etching to form a recessed section. The silicon dioxide film 18 is formed on the polycrstalline silicon layer 17 through thermal oxidation, the silicon nitride film 15 is removed through etching, and an element isolation region is completed.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は半導体装置の製造方法にかかり、特に素子分離
領域の改善された形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to an improved method of forming an element isolation region.

山) 従来技術と問題点 半導体集積回路(IC)においては、半導体基板上に多
数の回路素子が設けられており、これらの回路素子をお
互いに電気的に絶縁するために素子間を分離する素子分
離領域の形成が必要である。
Prior Art and Problems In a semiconductor integrated circuit (IC), a large number of circuit elements are provided on a semiconductor substrate, and in order to electrically insulate these circuit elements from each other, an element is used to separate the elements. Formation of isolation regions is necessary.

このような素子分離領域の形成方法には色々の方法があ
るが、最近広く用いられている方法に■OP   (I
solation  with    0xide  
and  Po1ysilicon)法がある。それは
エツチングして溝を形成し、その溝内に二酸化シリコン
(SiO2) 1111’を介して多結晶シリコン膜を
堆積し、その上面に二酸化シリコン膜を形成する方法で
、第1図にその断面構造例を示している。図において、
■はP型半導体基板、2はN+型半導体M(これはバイ
ポーラ形半導体装置を形成する場合にコレクタ抵抗を減
少させる埋没層となるものである)、3はN型半導体層
、4は二酸化シリコン膜、5は多結晶シリコン膜である
There are various methods for forming such element isolation regions, but one method that has been widely used recently is OP (I
Solation with Oxide
and Polysilicon) method. In this method, a trench is formed by etching, a polycrystalline silicon film is deposited in the trench via silicon dioxide (SiO2) 1111', and a silicon dioxide film is formed on the top surface. An example is shown. In the figure,
2 is a P-type semiconductor substrate, 2 is an N+-type semiconductor M (this is a buried layer that reduces collector resistance when forming a bipolar semiconductor device), 3 is an N-type semiconductor layer, and 4 is silicon dioxide. The film 5 is a polycrystalline silicon film.

このような■OP法において、初期にはエツチングの結
晶方位性を利用してウェットエツチングによりV形の溝
を形成する所謂V溝分離領域の形成法が採られていた。
In the OP method, a so-called V-groove isolation region formation method was initially adopted in which a V-shaped groove is formed by wet etching using the crystal orientation of etching.

ところが、最近ドライエツチング法の発展と共に、ドラ
イエツチングでU形の溝を形成する所fitrU溝分離
領域の形成法が汎用化されている。それは、U形溝がV
形溝よりも−屓小さく形成できてICの高築積化に極め
て有効であるからで、第1図はそのUm溝の断面構造図
例である。
However, with the recent development of the dry etching method, a method for forming a fitrU groove isolation region, in which a U-shaped groove is formed by dry etching, has become widely used. It is because the U-shaped groove is V
This is because it can be formed to be smaller than a Um groove and is extremely effective in increasing the stacking capacity of ICs. FIG. 1 is an example of the cross-sectional structure of the Um groove.

しかしながら、このようなIOP法による素子分離領域
はU形溝、V形溝のいづれにしても二酸化シリコン膜4
を介在させるため、電位がかかると分離領域直下の半導
体基板にチャネルが生じやすい。また、第1図に示すよ
うにN+型型半体体層2形成する場合、これは高濃度層
であるから次工程でN型半導体層3を高温度で成長する
際に、P型半導体基板1にN型不純物が拡散して、半導
体基板1まで達する一定深さのU形溝を形成してもなお
その部分の半導体基板1はN型化していてチャネルがで
きており、素子間分離がなされない場合がある。一方、
そのために十分深くまでエツチング溝を形成することは
難しく、またその溝内を埋没させることも難しい。従っ
て、従来は予め溝部分の直下に半導体基板と同一導電型
不純物イオンを注入して高濃度不純物1ii6(第1図
参照)を形成し、チャネルカットをおこなっている。し
かし、このチャネルカット用高濃度不純物層6の形成は
それだけ余分の工程を必要とするするものである。また
、このような二酸化シリコンll1i4を半導体結晶層
内に介在させれば、結晶内に大きなストレスが生じて結
晶欠陥を誘発しやすく、半導体装置の電気的特性に悪影
響を与える。
However, the element isolation region formed by such an IOP method is formed using a silicon dioxide film 4 regardless of whether it is a U-shaped groove or a V-shaped groove.
Because of the intervening structure, a channel is likely to be formed in the semiconductor substrate directly under the isolation region when a potential is applied. In addition, when forming the N+ type half layer 2 as shown in FIG. 1, since this is a high concentration layer, when the N type semiconductor layer 3 is grown at high temperature in the next step, the P type semiconductor layer 2 is formed. Even if an N-type impurity is diffused into the semiconductor substrate 1 to form a U-shaped groove of a certain depth that reaches the semiconductor substrate 1, the semiconductor substrate 1 in that part is still N-type, forming a channel, and the isolation between elements is reduced. It may not be done. on the other hand,
Therefore, it is difficult to form an etching groove deep enough, and it is also difficult to bury the inside of the groove. Therefore, conventionally, impurity ions of the same conductivity type as the semiconductor substrate are implanted directly under the groove portion to form a high concentration impurity 1ii6 (see FIG. 1) to cut the channel. However, the formation of this high concentration impurity layer 6 for channel cutting requires an extra process. Further, if such silicon dioxide ll1i4 is interposed in a semiconductor crystal layer, a large stress is generated in the crystal, which tends to induce crystal defects, which adversely affects the electrical characteristics of the semiconductor device.

fcl  発明の目的 本発明はこのような問題点を除去し、素子分離領域の形
成方法において二酸化シリコン膜を設けない分離領域の
形成方法をIに案するものである。
fcl OBJECT OF THE INVENTION The present invention eliminates these problems and proposes a method for forming an isolation region in which no silicon dioxide film is provided in the method for forming an element isolation region.

(d)発明の構成 その目的は、−導電型半導体基板上に設けた反対導電型
半導体層に素子分離領域を形成する方法において、該半
導体層面に上記半導体基板に達する溝を形成し、該溝内
に一導電型多結晶半導体層を堆積して、更に該多結晶半
導体層の表面を酸化して絶縁膜を形成する工程が含まれ
る半導体装置の製造方法によって達成させることができ
る。
(d) Structure of the Invention The object of the invention is to form a groove reaching the semiconductor substrate in a surface of the semiconductor layer in a method for forming an element isolation region in a semiconductor layer of an opposite conductivity type provided on a semiconductor substrate of a -conductivity type; This can be achieved by a method for manufacturing a semiconductor device that includes the steps of depositing a polycrystalline semiconductor layer of one conductivity type within the semiconductor layer, and further oxidizing the surface of the polycrystalline semiconductor layer to form an insulating film.

(8)発明の実施例 以下1図面を参照して実施例によって詳細に説明する。(8) Examples of the invention An embodiment will be described in detail below with reference to one drawing.

第2図ないし第6図は本発明による形成工程順断面図を
示しており、まず第2図に示すようにP型半導体基板1
1上に膜厚0.5μmのN+型型溝導体層12膜厚1μ
mのN型半導体層13をエピタキシャル成長した後、そ
の上に膜厚数100人の二酸化シリコン膜14と膜厚1
000人の窒化シリコン膜15との二重膜を選択的に形
成する。
2 to 6 show sequential cross-sectional views of the formation process according to the present invention. First, as shown in FIG.
N+ type groove conductor layer 12 with a thickness of 0.5 μm on top of the layer 1 with a thickness of 1 μm
After epitaxially growing an N-type semiconductor layer 13 with a thickness of 1.0 m, a silicon dioxide film 14 with a thickness of several 100 layers and a silicon dioxide film 14 with a thickness of 1.
A double film with a silicon nitride film 15 of 1,000 yen is selectively formed.

次いで、第3図に示すように上記二重膜をマスクにして
ドライエツチングによって深さ2〜3μm9幅2μmの
U形溝16を形成する。このドライエンチングはトリフ
ロロメタン(CHFa)と酸素(02)との混合ガスを
用いたりアクティブイオンエツチング方法で、そのため
垂直なエツチング溝が形成される。また、溝の深さ2〜
3μmは膜厚1μmのN型半導体層13と膜厚0.5μ
mのN+型型溝導体層12この半導体層12は前記した
ように更に下層に拡散して厚さが1μm程度まで拡がる
ことが多い)とを突き抜けて、P型半導体基板11に達
するに十分な深さである。
Next, as shown in FIG. 3, a U-shaped groove 16 having a depth of 2 to 3 .mu.m and a width of 2 .mu.m is formed by dry etching using the double film as a mask. This dry etching uses a mixed gas of trifluoromethane (CHFa) and oxygen (02) or is an active ion etching method, thereby forming vertical etching grooves. Also, the depth of the groove is 2~
3 μm is an N-type semiconductor layer 13 with a thickness of 1 μm and a thickness of 0.5 μm.
m N+ type groove conductor layer 12 (as described above, this semiconductor layer 12 diffuses further into the lower layer and often expands to a thickness of about 1 μm) and reaches the P type semiconductor substrate 11. It's depth.

次いで、第4図に示すようにその上面に減圧気相成長法
によって硼素(T’()を含んだ(P型)多結晶シリコ
ン屑17を約2pmの厚さに積層する。
Next, as shown in FIG. 4, (P-type) polycrystalline silicon chips 17 containing boron (T'()) are deposited to a thickness of about 2 pm on the upper surface by low pressure vapor phase growth.

そうすると、U形溝16内はこの多結晶シリコン層17
で埋められる。次いで、第5図に示すように研磨または
エツチングによって窒化シリコン膜15上の多結晶シリ
コンM11を除去し、更にU形溝16内の上部をも少し
エツチング除去して凹部を形成する。
Then, inside the U-shaped groove 16 is this polycrystalline silicon layer 17.
It is filled with Next, as shown in FIG. 5, the polycrystalline silicon M11 on the silicon nitride film 15 is removed by polishing or etching, and the upper part of the U-shaped groove 16 is also slightly etched away to form a recess.

次いで、温度900〜1000℃のウェット酸素中、ま
たは高圧酸化性雰囲気中で熱酸化して多結晶シリコン層
17上に数1000人の二酸化シリコンI!gi!18
を形成し、ME1多に膜厚1000人の窒化シリコン膜
15をエツチング除去して、第6図に示すように素子分
離領域が完成する。この際、多結晶シリコン膜17が酸
化すれば、熱l!111!シて二酸化シリコン膜18に
なるから上記の凹部はなくなって表面が平坦化される。
Next, several thousand silicon dioxide layers are formed on the polycrystalline silicon layer 17 by thermal oxidation in wet oxygen at a temperature of 900 to 1000° C. or in a high-pressure oxidizing atmosphere. Gi! 18
The silicon nitride film 15 having a thickness of 1,000 wafers is removed by etching on the ME1 layer, thereby completing an element isolation region as shown in FIG. At this time, if the polycrystalline silicon film 17 is oxidized, the heat l! 111! Since the silicon dioxide film 18 is formed, the above-mentioned recesses are eliminated and the surface is flattened.

このようにして形成すれば、溝内に二酸化シリコン膜が
存在しないため溝内のP型多結晶シリコン膜17から半
導体基板11に硼素(P型不純物)が拡散して、素子分
離領域下でのチャネル領域の発生が防止される。更に、
このようにすればエツチング溝の形成後、酸化して二酸
化シリコン膜4 (第1図参照)を形成する工程がなく
なるため、バーズビークの発生も小さくて高集積化に極
めて好都合となる。
If formed in this manner, boron (P-type impurity) is diffused from the P-type polycrystalline silicon film 17 in the trench to the semiconductor substrate 11 because there is no silicon dioxide film in the trench, and the silicon dioxide film is not present in the trench. The generation of channel regions is prevented. Furthermore,
This eliminates the step of oxidizing and forming the silicon dioxide film 4 (see FIG. 1) after forming the etching grooves, so the occurrence of bird's beaks is also reduced, which is extremely convenient for high integration.

(fl  発明の効果 以上の説明から明らかなように、本発明によればチャネ
ルカット用高濃度不純物層のイオン注入工程と、二酸化
シリコン膜の酸化工程とを省くことができ、且つ二酸化
シリコン膜の介在によるストレスを取り除くことができ
るため、IC等の半導体装置の高性能、高品質化に°著
しく貢献するものである。
(fl Effects of the Invention As is clear from the above explanation, according to the present invention, the ion implantation process of the high concentration impurity layer for channel cut and the oxidation process of the silicon dioxide film can be omitted, and the process of oxidizing the silicon dioxide film can be omitted. Since it is possible to remove the stress caused by interposition, it significantly contributes to improving the performance and quality of semiconductor devices such as ICs.

なお、本発明は上記例のU形溝のみならず、■形溝から
なる素子分離領域の形成にも適用できることは言うまで
もない。
It goes without saying that the present invention can be applied not only to the U-shaped groove in the above example, but also to the formation of an element isolation region consisting of a ■-shaped groove.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の素子分離領域の構造断面図例。 第2図ないし第6図は本発明にかかる素子分離領域の形
成工程順断面図である。 図中、1.11はP型半導体基板、2.12はN+型半
導体層、3.13はN型半導体層、  4. 14゜1
8は二酸化シリコン賎、5は多結晶シリコン膜。 6は高濃度不純物層、15は窒化シリコン膜。
FIG. 1 is an example of a structural cross-sectional view of a conventional element isolation region. FIGS. 2 to 6 are cross-sectional views in the order of steps for forming an element isolation region according to the present invention. In the figure, 1.11 is a P-type semiconductor substrate, 2.12 is an N+ type semiconductor layer, 3.13 is an N-type semiconductor layer, 4. 14°1
8 is a silicon dioxide layer, and 5 is a polycrystalline silicon film. 6 is a high concentration impurity layer, and 15 is a silicon nitride film.

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板上に設けた反対導電型半導体層に素
子分離領域を形成する方法において、該半導体層面に上
記半導体基板に達する溝を形成し、該溝内に一導電型多
結晶半導体層を堆積して、更に該多結晶半導体層の表面
を酸化して絶縁膜を形成する工程が含まれていることを
特徴とする半導体装置の製造方法。
In a method for forming an element isolation region in a semiconductor layer of an opposite conductivity type provided on a semiconductor substrate of one conductivity type, a groove reaching the semiconductor substrate is formed in the surface of the semiconductor layer, and a polycrystalline semiconductor layer of one conductivity type is formed in the groove. A method for manufacturing a semiconductor device, comprising the steps of depositing the polycrystalline semiconductor layer and further oxidizing the surface of the polycrystalline semiconductor layer to form an insulating film.
JP21901582A 1982-12-13 1982-12-13 Manufacture of semiconductor device Pending JPS59108325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21901582A JPS59108325A (en) 1982-12-13 1982-12-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21901582A JPS59108325A (en) 1982-12-13 1982-12-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59108325A true JPS59108325A (en) 1984-06-22

Family

ID=16728913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21901582A Pending JPS59108325A (en) 1982-12-13 1982-12-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59108325A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767722A (en) * 1986-03-24 1988-08-30 Siliconix Incorporated Method for making planar vertical channel DMOS structures
US4873203A (en) * 1987-07-27 1989-10-10 Hitachi, Ltd. Method for formation of insulation film on silicon buried in trench
US5034785A (en) * 1986-03-24 1991-07-23 Siliconix Incorporated Planar vertical channel DMOS structure
US5106777A (en) * 1989-09-27 1992-04-21 Texas Instruments Incorporated Trench isolation process with reduced topography
US5290396A (en) * 1991-06-06 1994-03-01 Lsi Logic Corporation Trench planarization techniques
US5312770A (en) * 1991-06-06 1994-05-17 Lsi Logic Corporation Techniques for forming isolation structures
US5354706A (en) * 1993-03-02 1994-10-11 Lsi Logic Corporation Formation of uniform dimension conductive lines on a semiconductor wafer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767722A (en) * 1986-03-24 1988-08-30 Siliconix Incorporated Method for making planar vertical channel DMOS structures
US5034785A (en) * 1986-03-24 1991-07-23 Siliconix Incorporated Planar vertical channel DMOS structure
US4873203A (en) * 1987-07-27 1989-10-10 Hitachi, Ltd. Method for formation of insulation film on silicon buried in trench
US5106777A (en) * 1989-09-27 1992-04-21 Texas Instruments Incorporated Trench isolation process with reduced topography
US5290396A (en) * 1991-06-06 1994-03-01 Lsi Logic Corporation Trench planarization techniques
US5312770A (en) * 1991-06-06 1994-05-17 Lsi Logic Corporation Techniques for forming isolation structures
US5354706A (en) * 1993-03-02 1994-10-11 Lsi Logic Corporation Formation of uniform dimension conductive lines on a semiconductor wafer

Similar Documents

Publication Publication Date Title
KR20000076855A (en) Semiconductor device and method of fabricating the same
US5856700A (en) Semiconductor device with doped semiconductor and dielectric trench sidewall layers
US5872044A (en) Late process method for trench isolation
US5488002A (en) Method for manufacturing self-aligned bipolar transistors using double diffusion
JP2002083876A (en) Production method for semiconductor integrated circuit device
JPS59108325A (en) Manufacture of semiconductor device
JPH10326793A (en) Manufacture of semiconductor device
US5763931A (en) Semiconductor device with SOI structure and fabrication method thereof
JPS6324672A (en) Manufacture of semiconductor device
US4546537A (en) Method for producing a semiconductor device utilizing V-groove etching and thermal oxidation
JPS6095969A (en) Manufacture of semiconductor integrated circuit
JP2652995B2 (en) Semiconductor device and manufacturing method thereof
JPH0234179B2 (en)
JPS58159348A (en) Separation of semiconductor device
JPS61135136A (en) Manufacture of semiconductor device
KR0140734B1 (en) Method of semiconductor device
JPS6322065B2 (en)
JP2002083877A (en) Semiconductor integrated circuit device and production method therefor
JPS58200553A (en) Semiconductor device
JPS60244036A (en) Semiconductor device and manufacture thereof
JPS6016441A (en) Dielectric isolation of semiconductor substrate surface
JPH0240921A (en) Manufacture of bipolar transistor
JPH02174139A (en) Manufacture of semiconductor device
JPS60123040A (en) Manufacture of semiconductor device
JPH01214166A (en) Semiconductor integrated circuit device with bipolar transistor