JPS59107983A - Heat resistant formed body - Google Patents

Heat resistant formed body

Info

Publication number
JPS59107983A
JPS59107983A JP57216898A JP21689882A JPS59107983A JP S59107983 A JPS59107983 A JP S59107983A JP 57216898 A JP57216898 A JP 57216898A JP 21689882 A JP21689882 A JP 21689882A JP S59107983 A JPS59107983 A JP S59107983A
Authority
JP
Japan
Prior art keywords
heat
fine particles
resistant
aluminum
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57216898A
Other languages
Japanese (ja)
Other versions
JPS6158434B2 (en
Inventor
皆木 敏宏
康一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP57216898A priority Critical patent/JPS59107983A/en
Publication of JPS59107983A publication Critical patent/JPS59107983A/en
Publication of JPS6158434B2 publication Critical patent/JPS6158434B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、゛約1800°Cの高温域まで使用可能な、
高度の耐熱性を有する無機質成形体に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a device that can be used up to a high temperature range of about 1800°C.
This invention relates to an inorganic molded body having a high degree of heat resistance.

常用温度が1ooo’cをこえる各種加熱炉の断熱材と
しては古くから耐火レンガが使われているが、近年、こ
れにかわるものとして、セラミ・ツク繊維を主原料とす
る耐熱性成形本が使われるようになった。レンガと比べ
た場合のセラミック繊維質耐熱性成形体の特長は、軽量
で熱容量および熱伝導率が小さく、これを使うことによ
る省エネルギー効果が顕著なことである。しかしなが呟
従来もっとも普通に使われているものはセラミック#&
維として非晶質のアルミ/シリケート質繊維を使用して
いるか呟 1000°C以上の高温域では同繊維の結晶
化にともなう収縮が大きく、約1300°Cか使用限界
温度である。最近になって、更に苛酷な温度条件でも使
用可能なものとして、アルミ7シリケート質vl椎に多
結晶質セラミックH&維を混用したもの、あるいは多結
晶質セラミンク繊維のみを用いたものなどが生産される
ようになったが、これらのものの耐熱性も1.用いられ
た多結晶質セラミック繊維の熱収縮開始温度に支配され
、約1600’C以下でしか使用できない。
Refractory bricks have been used for a long time as insulation materials for various heating furnaces whose normal temperature exceeds 100'C, but in recent years, heat-resistant molded bricks made of ceramic fibers have been used as an alternative. It started to get worse. Compared to bricks, ceramic fiber heat-resistant molded bodies have the advantage of being lightweight and having low heat capacity and thermal conductivity, and their use has a remarkable energy-saving effect. However, the most commonly used material is ceramic #&
Are amorphous aluminum/silicate fibers used as fibers? In the high temperature range of 1000°C or higher, the fibers shrink significantly due to crystallization, and the temperature is approximately 1300°C, which is the limit temperature for use. Recently, products that use polycrystalline ceramic H&fiber mixed with aluminum 7-silicate VL vertebrae, or products that use only polycrystalline ceramic fiber have been produced as products that can be used under even harsher temperature conditions. However, the heat resistance of these products is also 1. It is controlled by the thermal shrinkage onset temperature of the polycrystalline ceramic fiber used, and can only be used at temperatures below about 1600'C.

前記セラミック繊維質成形体の特長は、使用温度が高い
はど顕著な効果をもたらすから、マグネシアやアルミナ
などの耐火物焼成炉のように1600°C以上で操業さ
れる炉にも使用可能なものの出現が強く望まれていた。
The feature of the ceramic fibrous molded body is that it has a remarkable effect when used at high temperatures, so it can be used in furnaces that operate at temperatures of 1600°C or higher, such as furnaces for firing refractories such as magnesia and alumina. His appearance was strongly desired.

本発明は、上述のような現状を背景に、1600°Cを
こえる高温域でも使用可能なセラミック繊維質成形体を
提供することを目的として行われた研究の結果、完成さ
れたものである。
The present invention was completed as a result of research conducted for the purpose of providing a ceramic fibrous molded body that can be used even in a high temperature range exceeding 1600°C against the background of the above-mentioned current situation.

本発明による耐熱性成形体は、Al2O,/5102(
重量比)が0.65〜1.80の範囲にあり且つAl2
O3+5i02が95重量%以上である組成のアルミノ
シリケート系ガラス質物質の微粒子(以下、ガラス質微
粒子という)および多結晶高アルミナ質#&維の混合物
が耐熱性無機質結合剤で結合され且つ成形されてなるも
のである。
The heat-resistant molded article according to the present invention has Al2O,/5102(
weight ratio) is in the range of 0.65 to 1.80 and Al2
Fine particles of aluminosilicate glassy material having a composition of 95% by weight or more of O3+5i02 (hereinafter referred to as glassy fine particles) and a mixture of polycrystalline high alumina #&fiber are bonded with a heat-resistant inorganic binder and shaped. It is what it is.

この成形体は、1600〜1800°Cの高温において
も実質的に収縮を起こさず、物性の劣化も少ないか呟上
記温度領域において、断熱材または構造材として使用す
ることができる。多結晶高アルミナ質WL維が約160
0°C以上で徐々に収縮するにもかかわらずこれを用い
た本発明の成形体が同温度領域でも安定な理由は、まだ
完全に解明されたわけではないが、次のように考えられ
る。すなわち、高温においてはガラ人質微粒子からシリ
カが遊離し、4れか多結晶高アルミナ質繊維のほうへ拡
散移動して同繊維中のアルミナと反応する。
This molded product does not substantially shrink even at high temperatures of 1,600 to 1,800°C, and can be used as a heat insulating material or a structural material in the above temperature range with little deterioration of physical properties. Approximately 160 polycrystalline high alumina WL fibers
Although the reason why the molded product of the present invention using this molded product is stable even in the same temperature range even though it gradually shrinks at temperatures above 0°C is not completely elucidated yet, it is thought to be as follows. That is, at high temperatures, silica is liberated from the glass hostage particles, diffuses toward the polycrystalline high alumina fibers, and reacts with the alumina in the fibers.

この反応により、繊維のアルミナは一部がムライト化す
るが、ムライトはアルミナ結晶よりも密度が小さいか呟
上記反応は体積膨張を伴うことになり、これか多結晶高
アルミナ質繊維の熱(こよる収縮を相殺する。
As a result of this reaction, some of the alumina in the fibers turns into mullite, but mullite has a lower density than alumina crystals.The above reaction is accompanied by volumetric expansion; offset the shrinkage caused by

以下、本発明の成形体について、その製法を示して詳細
に説明する。
Hereinafter, the molded article of the present invention will be explained in detail by showing its manufacturing method.

まず原料(こついて述べると、多結晶高アルミナ質繊維
としてはAl2O,を72重量%以上、望ましくは90
重量%以上含み、かつ平均繊維径力弓〜10μm程度の
ものを用いることかできる。
First, the raw material (to be more specific, the polycrystalline high alumina fiber should contain 72% by weight or more of Al2O, preferably 90% by weight)
It is possible to use one containing at least % by weight and having an average fiber diameter of about 10 μm.

またガラス質微粒子としては、前記ML歳のものを用い
るが、特に好ましいのは、Al2O,/5i02比が0
.85〜1.40のものである。Al2O,/5102
比は成形体の耐熱性に密接な関係があり、この値が1.
80より大ぎいか0.65より小さいと、目的とする水
準の耐熱性を備えたものは得られない。
Further, as the glassy fine particles, the above-mentioned ML-year-old particles are used, but it is particularly preferable that the Al2O,/5i02 ratio is 0.
.. 85 to 1.40. Al2O,/5102
The ratio is closely related to the heat resistance of the molded product, and this value is 1.
If it is greater than 80 or less than 0.65, it will not be possible to obtain the desired level of heat resistance.

これは、Al2O,/ S i○2が1.80をこえる
ものの場合、反応性Sin、の量が少ないため、前記機
構によるムライトの生成が十分に行われないことによる
ものであ;)、またAt203/ S i O2比が0
.65よりも小さいものの場合、ムライトの生成に関与
しない過剰の5in2が成形体の耐熱性に悪影響を及ぼ
すことによるものと思われる。またガラス質微粒子は、
望ましくは平均粒径(粒子が球状でない場合は径の最大
値についての平均値)が1,000μm以下、特に望ま
しくは200μIfl以下の、なるべく微細なものを用
い、それによりガラス質微粒子が多結晶高アルミナ質繊
維の表面のなるべく多くの部分と接触できるようにする
ことが望ましい。なおこのようなガラス質微粒子は、所
望の組成になるような比率でケイ酸原料およびアルミナ
原料を混合して電気炉等で加熱し、得られ午一体を急冷
してガラス質の塊状物とし、これを微粉砕することに1
1)製造すればよく、上記融体をwjl、維状に成形し
てから微粉砕してもよい。
This is because when Al2O,/S i○2 exceeds 1.80, the amount of reactive Sin is small, so mullite is not sufficiently produced by the above mechanism;), and At203/S i O2 ratio is 0
.. In the case of smaller than 65, it is thought that the excess 5in2, which does not participate in the formation of mullite, adversely affects the heat resistance of the molded article. In addition, glassy fine particles are
Preferably, the average particle size (if the particles are not spherical, the average value of the maximum diameter) is 1,000 μm or less, particularly preferably 200 μIfl or less, and as fine as possible is used, so that the glassy fine particles have a polycrystalline height. It is desirable to be able to contact as much of the surface of the alumina fiber as possible. Incidentally, such glassy fine particles are obtained by mixing silicic acid raw materials and alumina raw materials in a ratio to obtain a desired composition, heating the mixture in an electric furnace, etc., and rapidly cooling the resulting particles to form glassy lumps. To finely crush this
1) The above melt may be formed into a fiber shape and then finely pulverized.

耐熱性無機質結合剤としては、1600〜1800℃の
高温においても安定で、上記二種類の原料を強固に結合
し得る結合剤が用いられ、そのような結合剤の好ましい
例としては、コロイダルシリカおよびコロイグルアルミ
ナがある。
As the heat-resistant inorganic binder, a binder that is stable even at high temperatures of 1,600 to 1,800°C and can firmly bind the above two types of raw materials is used. Preferred examples of such binders include colloidal silica and colloidal silica. There is Coroiglualumina.

成形に当り上記諸原料を配合する際は、ガラス質微粒子
と多結晶高アルミナ質繊維との比率(重量比)を50 
: 50ないし10 : 90とし、無機質結合剤の使
用量を全原料固形分あたり5〜20重量%とすることが
望ましい。またこれらのほかに、凝集剤(例えば硫酸ア
ルミニウム)、有機質結合剤、界面活性剤、充填剤など
の少量を添加し混合してもよい。
When blending the above raw materials for molding, the ratio (weight ratio) of glassy fine particles to polycrystalline high alumina fibers is 50.
: 50 to 10 : 90, and the amount of the inorganic binder used is preferably 5 to 20% by weight based on the total solid content of the raw materials. In addition to these, a small amount of a flocculant (for example, aluminum sulfate), an organic binder, a surfactant, a filler, etc. may be added and mixed.

成形は、全原料を水と共によく混合してから、真空成形
、脱水プレス成形なと任意の方法により成形すればよい
。成形形状は特に制限されるものではなく、レンガ状、
板状、管状その他の特殊形状等、任意である。成形後、
100〜200°Cの熱風で乾燥するか、S 00 ”
C以上でj&歳すれば、本発明の成形体か得られる。
For molding, all raw materials may be thoroughly mixed with water, and then molded by any method such as vacuum molding or dehydration press molding. The molding shape is not particularly limited, and may be brick-shaped,
Any special shape such as a plate shape, a tubular shape, etc. is possible. After molding,
Dry with hot air at 100-200°C or
If J& years is carried out at C or higher, the molded article of the present invention can be obtained.

本発明1こよる耐熱性成形体は、前述のような高度の耐
熱性とセラミンク繊維質耐熱性成形体特有の軽量性に基
つく有利な性質とを兼備し、機械的な強度もすぐれたも
のであるから、マグネシア、アルミナ等の耐火物焼成炉
のような高温炉の構築材料として特に好適のものである
The heat-resistant molded product according to the present invention has both the above-mentioned high heat resistance and the advantageous properties based on the light weight characteristic of the ceramic fiber heat-resistant molded product, and also has excellent mechanical strength. Therefore, it is particularly suitable as a construction material for high-temperature furnaces such as furnaces for firing refractories such as magnesia and alumina.

以下実施例および比較例を示して本発明を説明する。The present invention will be explained below with reference to Examples and Comparative Examples.

実施例および比較例 多結晶高アルミナ質繊維(A120395重量%、5i
n25重量%、ha径約3μm)、ガラス質微粒子、コ
ロイダルシリカ・スノーテックス30 (Si02含有
率30重量%;日産化学工業株式会社製品)および硫酸
アルミニウムを、表1に示した重量比で水と共に混合し
た。なお用いたガラス質微粒子は、Al2O,/5i0
2重量比=1.08、Al2O:+ +5102=99
.7重量%、平均粒径的200μmのものである(但し
、比較例5.6および7に用いたものはAl20z/S
i○2比がそれぞれ0.8.0.3および2.0である
点で、また比較例4に用いたものは平均粒径が約1,3
00μmnである点で、いずれも実施例に用いたものと
異なる。)。
Examples and Comparative Examples Polycrystalline high alumina fiber (A120395% by weight, 5i
n25 wt%, ha diameter about 3 μm), glassy fine particles, colloidal silica Snowtex 30 (Si02 content 30 wt%; product of Nissan Chemical Industries, Ltd.) and aluminum sulfate were mixed with water at the weight ratio shown in Table 1. Mixed. The glassy fine particles used were Al2O,/5i0
2 weight ratio = 1.08, Al2O: + +5102 = 99
.. 7% by weight, with an average particle diameter of 200 μm (However, those used in Comparative Examples 5.6 and 7 were Al20z/S
The i○2 ratio is 0.8, 0.3 and 2.0, respectively, and the average particle size of the one used in Comparative Example 4 is about 1.3.
Both are different from those used in the examples in that the diameter is 00 μmn. ).

上記原料混合物を厚さ25111111の板状に成形し
、150°Cで乾燥した。得られた板状成形体について
、高温加熱試験(加熱時間24時間)を行なった結果を
表1に示す。
The above raw material mixture was formed into a plate shape with a thickness of 2,511,111 mm, and dried at 150°C. Table 1 shows the results of a high-temperature heating test (heating time 24 hours) performed on the obtained plate-shaped molded body.

手続補正書 昭和58年2月17日 特許庁長官 若杉和夫 殿 1、事件の表示 昭和57年特許願第216898号 2、発明の名称 耐熱性成形体 3、補正をする者 事件との関係  特許出願人 ニチアス株式会社 4、代理人 〒107東京都港区北青山3 6 186、補正の対象 明細書の発明の詳細な説明の欄。Procedural amendment February 17, 1982 Mr. Kazuo Wakasugi, Commissioner of the Patent Office 1.Display of the incident 1981 Patent Application No. 216898 2. Name of the invention Heat resistant molded body 3. Person who makes corrections Relationship to the case Patent applicant NICHIAS Co., Ltd. 4. Agent 36-186 Kita-Aoyama, Minato-ku, Tokyo 107, subject to correction Detailed description of the invention in the specification.

7、補正の内容 第7頁第5〜6行の 「比較例5.6および7に用いたものはAl2O:l/
5102比がそれぞれ0.8.0.3および2.0であ
る点で、また」を [比較例5に用いたものはA120− 十S + 02
が80重量%である点で、また比較例6および比較例7
に用いたものはAl2O,/SiO2比MそhぞFLo
、3 およl/’ 2.0 テある点で、さらに] と訂正する。
7. Correction details page 7, lines 5-6: “The material used in Comparative Examples 5.6 and 7 was Al2O:l/
5102 ratio is 0.8.
is 80% by weight, and Comparative Example 6 and Comparative Example 7
The one used was Al2O, /SiO2 ratio M so FLo
, 3 and l/' 2.0 At a certain point, further] is corrected.

Claims (4)

【特許請求の範囲】[Claims] (1)AL○、/5102(重量比) カ0.65−1
.80ノ範囲にあり且つAl2O:l +S i O2
が95重量%以上である組成のアルミ7シリケート系ガ
ラス質物質の微粒子および多結晶高アルミナ質繊維の混
合物が耐熱性無機質結合剤で結合され且つ成形されてな
る耐熱性無機質成形体。
(1) AL○, /5102 (weight ratio) force 0.65-1
.. in the range of 80 and Al2O:l +S i O2
1. A heat-resistant inorganic molded article obtained by bonding a mixture of fine particles of an aluminum-7-silicate glassy material and polycrystalline high alumina fibers with a composition of 95% by weight or more with a heat-resistant inorganic binder and molding the mixture.
(2)アルミ7シリケート系ガラス質物質の微粒子が平
均粒径1+0007z+n以下のものである特許請求の
範囲第1項記載の耐熱性無機質成形体。
(2) The heat-resistant inorganic molded article according to claim 1, wherein the fine particles of the aluminum 7-silicate glassy substance have an average particle size of 1+0007z+n or less.
(3)耐熱性無(佐賀結合剤がコロイダルシリカまたは
コロイタルアルミナである特許請求の範囲第1項記載の
耐熱性無(幾質成形体。
(3) A heat-resistant geometric molded body according to claim 1, wherein the heat-resistant Saga binder is colloidal silica or colloidal alumina.
(4)アルミ7シリケート系ガラス質物質の微粒子と多
結晶高アルミナ質繊維との混合比(重量比)が50 :
 50ないし10 : 90である特許請求の範囲第1
項記載の耐熱性無(佐賀成形体。
(4) The mixing ratio (weight ratio) of fine particles of aluminum 7-silicate glassy material and polycrystalline high alumina fiber is 50:
Claim 1 which is 50 to 10:90
No heat resistance as described in section (Saga molded body).
JP57216898A 1982-12-13 1982-12-13 Heat resistant formed body Granted JPS59107983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57216898A JPS59107983A (en) 1982-12-13 1982-12-13 Heat resistant formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57216898A JPS59107983A (en) 1982-12-13 1982-12-13 Heat resistant formed body

Publications (2)

Publication Number Publication Date
JPS59107983A true JPS59107983A (en) 1984-06-22
JPS6158434B2 JPS6158434B2 (en) 1986-12-11

Family

ID=16695637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57216898A Granted JPS59107983A (en) 1982-12-13 1982-12-13 Heat resistant formed body

Country Status (1)

Country Link
JP (1) JPS59107983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361356A1 (en) * 1988-09-26 1990-04-04 Nichias Corporation Heat-resistant and inorganic shaped article
JPH0676626A (en) * 1992-08-31 1994-03-18 Toshiba Corp Insulating joint material and mhd power generator using it

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3175789B2 (en) * 1992-02-10 2001-06-11 学校法人東海大学 Surface modification method of acrylic resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361356A1 (en) * 1988-09-26 1990-04-04 Nichias Corporation Heat-resistant and inorganic shaped article
JPH0676626A (en) * 1992-08-31 1994-03-18 Toshiba Corp Insulating joint material and mhd power generator using it

Also Published As

Publication number Publication date
JPS6158434B2 (en) 1986-12-11

Similar Documents

Publication Publication Date Title
JPH0228546B2 (en)
JP4612415B2 (en) Silicone composition
CN107954700A (en) Corrosion-resistant corundum refractory brick and preparation method thereof
JPH0288452A (en) Heat-resistant inorganic compact
JPH04338132A (en) Glass-ceramic bonded ceramic composite material
JPS59107983A (en) Heat resistant formed body
CN110317049A (en) A kind of siliceous prefabricated component of low-porosity and preparation method
JP4056669B2 (en) Insulating material and manufacturing method thereof
US4751205A (en) Thermally bonded fibrous product
JPH10212158A (en) Refractory for glass fusion furnace
JPH0794347B2 (en) Insulation
JPH01192761A (en) Ingot azs refractory composition
JP2001278676A (en) Inorganic fiber reinforced article
JPH06172010A (en) Heat insulating material and its production
JP3280017B2 (en) Calcium silicate sintered body
JPS61111961A (en) Manufacture of hydration-resistant high fineness magnesia sintered body
ITMI980414A1 (en) SINTERED GLASS CERAMIC MATERIAL PARTICULARLY SUITABLE AS A COATING AND SUPPORT SYSTEM
JP3017829B2 (en) Calcium silicate sintered body and method for producing the same
JPS6215510B2 (en)
JPH01138174A (en) Production of sintered aluminum nitride
Kim et al. Sol-Ge] ale—25 serial use] a sign an 51}; see new as?
JPH0365554A (en) Mullite-based sintered material and production thereof
JPH01148765A (en) Lightweight refractory and its manufacture
JPS647028B2 (en)
JPH0651595B2 (en) Method for manufacturing fireproof insulation board