JPH01148765A - Lightweight refractory and its manufacture - Google Patents

Lightweight refractory and its manufacture

Info

Publication number
JPH01148765A
JPH01148765A JP62307453A JP30745387A JPH01148765A JP H01148765 A JPH01148765 A JP H01148765A JP 62307453 A JP62307453 A JP 62307453A JP 30745387 A JP30745387 A JP 30745387A JP H01148765 A JPH01148765 A JP H01148765A
Authority
JP
Japan
Prior art keywords
alumina
refractory
mixture
short fiber
short fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62307453A
Other languages
Japanese (ja)
Other versions
JPH0518781B2 (en
Inventor
Kenichi Shibata
研一 柴田
Koichi Kimura
康一 木村
Yuji Kanamori
金森 雄二
Tomohiko Hara
智彦 原
Tatsuo Takagi
達雄 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP62307453A priority Critical patent/JPH01148765A/en
Publication of JPH01148765A publication Critical patent/JPH01148765A/en
Publication of JPH0518781B2 publication Critical patent/JPH0518781B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title refractory having low density as well as high heat resistance and durability by constituting it with a high alumina short fiber or a mixture of the short fiber and alumina refractory powder is mutually bonded by an alumina binder. CONSTITUTION:The lightweight refractory is the porous molded body having 0.5-1.5 bulk density in which the alumina short fiber having <=2000mu length or the mixture of the short fiber and alumina refractory powder is mutually bonded by an alumina binder and contains no free silica. The lightweight refractory can be obtd. by the following method: 2-30wt.% alumina binder is added to the polycrystal alumina short fiber having 20-2000mu length or the mixture of the fiber and the alumina refractory powder of its equivalent amt. or below. The wholly mixture is molded and then sintered at 1400-1600 deg.C till the presence of free silica caused by the polycrystal alumina short fiber is made nonrecognized.

Description

【発明の詳細な説明】 C産業上の利用分野〕 本発明は、高度の耐熱性を有する軽量耐火物に関するも
のであり、さらにくわしくは、各種セラミックス製品た
とえばセラミックス系電子部品(セラミックコンデンサ
、アルミナ基板、7エライト素子、サーミスタ、バリス
タ等)、セラミックス系摺動材料、一般用陶磁器等を製
造するに当り焼成工程で被焼成物を支持させるために使
用する匣鉢、敷台等の焼成補助具や、各種窯炉における
遮熱板、発熱体支持具、壁面構成材等に適した、繰返し
加熱冷却に耐える軽量耐火物に関するものである。
[Detailed Description of the Invention] C. Industrial Application Field] The present invention relates to a lightweight refractory having a high degree of heat resistance. , 7-elite elements, thermistors, varistors, etc.), ceramic sliding materials, general ceramics, etc., and firing aids such as saggers and platforms used to support the object to be fired during the firing process. The present invention relates to a lightweight refractory that can withstand repeated heating and cooling and is suitable for heat shield plates, heating element supports, wall construction materials, etc. in various furnaces.

〔従来の技術〕[Conventional technology]

上述の焼成補助具や窯炉構成材は、高温加熱と冷却の繰
返しに耐える高度の耐熱性と用途に応じた機械的強度を
備えていなければならないが、一方では、炉側用時にお
いてそれらが消費する熱エネルギーを少なくするととも
に昇温と冷却に要する時間を短くし、それによりエネル
ギーコストの低減と生産性の向上をはかるため、なるべ
く比熱の小さい軽量のものであることが望まれる。特に
焼成補助具の場合は、搬送その他の取扱を容易にするた
めにも、軽量であることが強く望まれる。
The above-mentioned firing aids and kiln constituent materials must have a high degree of heat resistance that can withstand repeated high-temperature heating and cooling, as well as mechanical strength appropriate to the intended use. In order to reduce the thermal energy consumed and shorten the time required for heating and cooling, thereby reducing energy costs and improving productivity, it is desirable that the device be lightweight and have as low a specific heat as possible. In particular, in the case of baking aids, it is strongly desired that they be lightweight in order to facilitate transportation and other handling.

このような要望に答えるための軽量耐火物の一つとして
、特開昭59−88378号公報には、アルミナ質、ム
ライト質等の耐火材原料粉末90〜50vL%及びアル
ミナ質、ムライト質等の耐火材繊維10〜5゜W【%か
らなる骨材100重量部に対して無定形シリカを0.5
〜10重量部添加したものを成形し、次いで1450〜
1600°Cで焼成することにより得られる耐火物が記
載されている。しかしながら、この耐火物は、シリカ分
が多いため、シリカと反応しやすいセラミックス半製品
の焼成補助具として使用すると化学反応を起こし、セラ
ミックス製品を融着させたり変性させたりするばかりか
、耐火物自体も、強度や耐久性の劣化が避けられない。
As one of the lightweight refractories to meet such demands, Japanese Patent Application Laid-Open No. 59-88378 discloses 90 to 50 vL% powder of refractory materials such as alumina and mullite; 0.5 parts by weight of amorphous silica per 100 parts by weight of aggregate consisting of refractory fibers of 10-5°W
〜10 parts by weight was added, and then 1450〜
A refractory obtained by firing at 1600°C is described. However, since this refractory has a high silica content, when used as a firing aid for semi-finished ceramic products that tend to react with silica, it causes a chemical reaction that not only fuses or denatures the ceramic product, but also causes the refractory itself to react with silica. However, deterioration in strength and durability is unavoidable.

また、高温の還元性雰囲気や不活性雰囲気で使用すると
シリカが揮発し易く、それによる強度低下が著しい。さ
らに、シリカは通常クリストバライトの形で残るが、こ
れが200℃付近で急激な体積変化を起こすので、これ
を含む製品は耐スポーリング性(急熱・急冷に対する耐
久性)の点でも改良の余地がある。
Furthermore, when used in a high-temperature reducing atmosphere or inert atmosphere, silica tends to volatilize, resulting in a significant decrease in strength. Furthermore, silica usually remains in the form of cristobalite, which undergoes rapid volume changes at around 200°C, so there is room for improvement in products containing this in terms of spalling resistance (durability against rapid heating and cooling). be.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上述のような欠点のない軽量耐火物、
すなわちいかなる使用条件においても化学的に不活性で
あり、しかも高度の耐熱性と耐久性を示す軽量耐火物、
およびその製造法を提供することにある。
The object of the present invention is to provide a lightweight refractory without the drawbacks mentioned above;
In other words, it is a lightweight refractory that is chemically inert under any usage conditions and exhibits a high degree of heat resistance and durability.
and its manufacturing method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明が提供する軽量耐火物は、長さが2000μ以下
の高アルミナ質短繊維または該短繊維とアルミナ質耐火
性粉末との混合物がアルミナ質結合剤により相互に結合
されてカサ比重0.5〜1.5の多孔質成形体を形成し
てなり、遊離のシリカを実質的に含まないものである。
The lightweight refractories provided by the present invention are made of high alumina short fibers with a length of 2000μ or less or a mixture of the short fibers and alumina refractory powder, which are bonded to each other by an alumina binder and have a bulk specific gravity of 0.5. ~1.5 to form a porous molded body, and substantially does not contain free silica.

本発明はまた、上記本発明の軽量耐火物の特に有利な製
造法、すなわち長さが20〜2000μの多結晶質アル
ミナ質短繊維または該短繊維に等1以下のアルミナ質耐
火性粉末を加えた混合物に2〜30重量%のアルミナ質
結合剤を加えて混合し、得られた混合物を成形し、次い
で多結晶質アルミナ質短繊維に由来する遊離のシリカの
存在が認められなくなるまで1400〜1600°Cで
焼成することを特徴とする製造法を提供するものである
The present invention also provides a particularly advantageous method for producing the lightweight refractories of the present invention, namely polycrystalline alumina short fibers having a length of 20 to 2000 microns or adding to the short fibers at most 1 or more alumina refractory powder. 2 to 30% by weight of an alumina binder is added to the mixture, the resulting mixture is molded, and then heated for 1400 to 300 minutes until the presence of free silica derived from polycrystalline alumina staple fibers is no longer observed. The present invention provides a manufacturing method characterized by firing at 1600°C.

最初に上記製造法について説明すると、前述の従来法と
比較した場合、この製造法の特色は、多結晶質アルミナ
質繊維を微細に切断し、粉体に近いものにしてこれを主
原料としたこと、および、ケイ酸質の原料をまったく用
いず、多結晶質アルミナ質繊維に由来する少量のシリカ
分以外にはシリカが入り込まないようにしたことである
First, to explain the above manufacturing method, when compared with the conventional method mentioned above, the feature of this manufacturing method is that polycrystalline alumina fibers are cut into fine pieces, made into something close to powder, and this is used as the main raw material. Another advantage is that no silicic acid raw material is used at all, and no silica other than a small amount of silica derived from polycrystalline alumina fibers is contained.

主原料である2000μ以下の多結晶質アルミナ質短繊
維は、多結晶質アルミナ質繊維を湿式または乾式の適当
な粉砕機等を用いて切断することにより調製する。粉体
に近い性質を示すこの繊維は、きわめて容易に他の粉体
原料と均一に混じり合う。2000μをこえる繊維長の
ものは、特に繊維径が小さい場合、原料混合工程におい
てもつれ易く、その中に耐火性粉末や結合剤が入り難い
。そのため、強度や耐久性の点で劣るものとなり易い。
Polycrystalline alumina short fibers of 2000 μm or less, which are the main raw material, are prepared by cutting polycrystalline alumina fibers using a suitable wet or dry grinder. This fiber, which exhibits powder-like properties, can be mixed very easily and uniformly with other powder raw materials. Fibers with a fiber length exceeding 2000μ, especially when the fiber diameter is small, tend to become tangled during the raw material mixing process, making it difficult for the refractory powder and binder to enter therein. Therefore, it tends to be inferior in terms of strength and durability.

ただし、繊維長があまり小さいと、低比重でしかも強度
や耐久性に優れている製品を得ることは難しくなるので
、約20μを下限とすることが望ましい。特に好ましい
繊維長は約50〜500μ、平均約200μである。繊
維の太さは特に制限されるものではないが、約1〜5μ
の範囲にあることが望ましい。
However, if the fiber length is too small, it will be difficult to obtain a product with low specific gravity and excellent strength and durability, so it is desirable to set the lower limit to about 20μ. A particularly preferred fiber length is about 50 to 500 microns, with an average of about 200 microns. The thickness of the fiber is not particularly limited, but is approximately 1 to 5 μm.
It is desirable that it be within the range of .

アルミナ質耐火性粉末としては、焼成アルミナ粉末、電
融アルミナ粉末、水酸化アルミニウムなどの、高純度ア
ルミナ粉末を用いることが望ましい。アルミナ質粉末の
使用量は、多くてもアルミナ繊維と等量とする。
As the alumina refractory powder, it is desirable to use high-purity alumina powder such as calcined alumina powder, fused alumina powder, and aluminum hydroxide. The amount of alumina powder used is at most the same amount as the alumina fiber.

過剰量の使用は製品を緻密にし、断熱性および耐久性の
悪いものにする。
Use of excessive amounts will make the product dense and have poor insulation and durability.

アルミナ質結合剤として適当なものには、コロイダルア
ルミナ、アルミスラッジ(アルマイト地理で生成する水
酸化アルミニウムゲル)、硫酸アルミニウムにアルカリ
を作用させて得られる水酸化アルミニウムゲルなどがあ
る。この結合剤の使用量(AI□03換算量)は、アル
ミナ繊維および耐火性粉末の混合物に対して2〜30重
量%とすることが望ましく、過剰量の使用は耐火性粉末
の過剰使用と同様の弊害がある。
Suitable alumina binders include colloidal alumina, aluminum sludge (aluminum hydroxide gel produced by alumite formation), and aluminum hydroxide gel obtained by reacting aluminum sulfate with an alkali. The amount of this binder used (AI□03 equivalent amount) is preferably 2 to 30% by weight based on the mixture of alumina fiber and refractory powder, and using an excessive amount is the same as using an excessive amount of refractory powder. There are negative effects.

これらの原料を上述の比率で混合し、さらに混合の前後
において適量の水を加えて、全体を湿潤状態ないしスラ
リー状にする。次いで原料混合物を脱水成形の常法によ
り成形するが、成形は、最終製品のカサ比重が約0.5
〜1.5になるような条件で行うことが望ましい。得ら
れた成形体を乾燥したのち、約1400〜1600°C
で、遊離のシリカが実質的に認められなくなるまで焼成
して結合剤を硬化させる。この過程で、アルミナ質短繊
維は、その中に少量(通常1〜5重量%程度)含まれて
いるシリカが周囲のアルミナと反応してムライト化する
が、残りのアルミナ部分はコランダムの状態で安定化し
、繊維状形態に実質的な変化を起こすことなく製品中に
残る。焼成が不充分で遊離のシリカをクリストバライト
の形で残したものは、前述のようなシリカ含有量の欠点
を示す。遊離のシリカの消失は、通常の粉末X線回折法
により確認することができる。
These raw materials are mixed in the above-mentioned ratio, and an appropriate amount of water is added before and after mixing to make the whole into a wet state or a slurry state. Next, the raw material mixture is molded by a conventional method of dehydration molding.
It is desirable to conduct the test under conditions such that the ratio is 1.5 to 1.5. After drying the obtained molded body, the temperature is about 1400 to 1600°C.
The binder is cured by firing until substantially no free silica is observed. In this process, the silica contained in the alumina short fibers (usually around 1 to 5% by weight) reacts with the surrounding alumina and turns into mullite, but the remaining alumina remains in the state of corundum. It is stabilized and remains in the product without substantial change in fibrous morphology. Insufficient calcinations that leave free silica in the form of cristobalite exhibit the silica content drawbacks described above. Disappearance of free silica can be confirmed by conventional powder X-ray diffraction method.

上述のようにして得られる本発明の軽量耐火物では、短
いとはいえ繊維形状を有する2000μ以下のコランダ
ム質繊維が(またはこれとアルミナ質耐火性粉末とが)
、それらの接点においてアルミナにより結合されており
、多量の微細空隙部を持つ。標準的かつ好ましい気孔率
は約50〜80%であり、それによりこの耐火物は0.
5〜1.5のカサ比重を有し、単位体積当りでは緻密質
アルミナ系耐火物の約1/3の熱容量を示す。
In the lightweight refractory of the present invention obtained as described above, corundum fibers (or corundum fibers and alumina refractory powder) having a fiber shape of 2000μ or less, although short, are used.
, are bonded by alumina at their contact points and have a large amount of microporosity. Typical and preferred porosity is about 50-80%, so that the refractory has a porosity of 0.
It has a bulk specific gravity of 5 to 1.5, and exhibits about 1/3 the heat capacity per unit volume of dense alumina-based refractories.

本発明の軽量耐火物は、そのまま、あるいは必要に応じ
て切削加工や耐熱性表面コーティング(たとえばジルコ
ニアコーティング)を施して、前述のような焼成補助具
や窯炉構成材として利用することができる。
The lightweight refractory of the present invention can be used as it is, or after being subjected to cutting or heat-resistant surface coating (for example, zirconia coating) as necessary, as a firing aid or a kiln constituent material as described above.

〔発明の効果〕〔Effect of the invention〕

本発明による軽量耐火物は、反応性や揮発性を有する点
で好ましくない遊離のシリカを実質的に含まないことに
より、また、きわめて微細に切断されたアルミナ質繊維
を特徴とする特殊な構成により、従来のシリカ含有アル
ミナ質軽量耐火物よりも使用可能範囲が広く、シかもす
ぐれた高温耐久性を示す。そしてカサ比重が約1.0以
下でも実用上充分な強度を示すものが容易に得られ、切
削加工も容易であるという特長がある。
The lightweight refractory according to the present invention substantially does not contain free silica, which is undesirable due to its reactivity and volatility, and also because of its special composition characterized by extremely finely cut alumina fibers. It has a wider usable range than conventional silica-containing alumina lightweight refractories, and also exhibits excellent high-temperature durability. Moreover, even if the bulk specific gravity is about 1.0 or less, it is easy to obtain a material showing sufficient strength for practical use, and it is also easy to cut.

〔実施例〕〔Example〕

以下、実施例および比較例を示して本発明を説明する。 The present invention will be described below with reference to Examples and Comparative Examples.

なお、各側において用いた原料は次のとおりである。The raw materials used on each side are as follows.

多結晶質アルミナ質繊維 無処理品:繊維径3μ、平均繊維長約50mmA1□0
395%、Si0.5%のもの。
Polycrystalline alumina fiber untreated product: fiber diameter 3μ, average fiber length approximately 50mmA1□0
395%, Si0.5%.

極短小化品二上記無処理品をパルパーで開繊および切断
して約50〜500μの繊維長にしたもの。
Ultra-shortened product 2 The above-mentioned untreated product is opened and cut using a pulper to obtain a fiber length of about 50 to 500μ.

耐火性粉末:焼結アルミナ 結合剤:コロイダルアルミナ ただし比較例4.5においてはコロイダルシリカを用い
た。
Refractory powder: Sintered alumina Binder: Colloidal alumina However, in Comparative Example 4.5, colloidal silica was used.

以上の原料のうち、まずアルミナ質繊維および耐火性粉
末を水に分散させ、次いで結合剤を加えて攪拌したのち
、吸引脱水成形する。得られた成形体を、熱風で乾燥後
、1300〜1500°Cで3時間焼成する。
Of the above raw materials, alumina fibers and refractory powder are first dispersed in water, then a binder is added and stirred, followed by suction dehydration molding. The obtained molded body is dried with hot air and then fired at 1300 to 1500°C for 3 hours.

上記製法において原料配合比率および処理条件を種々変
更して行なった実験の結果を、第1表に示した。
Table 1 shows the results of experiments conducted by variously changing the mixing ratio of raw materials and processing conditions in the above manufacturing method.

なお、表中に示した特性値の試験法は次のとおりである
The test method for the characteristic values shown in the table is as follows.

曲げ強さ:厚さ6 mm、幅25mm、長さ75mmの
試験片について、スパン50mm、荷重速度0 、2 
mm/ min。
Bending strength: For a test piece of thickness 6 mm, width 25 mm, and length 75 mm, span 50 mm, loading rate 0, 2
mm/min.

常温で測定。Measured at room temperature.

平均クラック発生温度: 100mmX 100mmX
 4mmの板状に切り出した試験片を用意する。その5
枚を、板間の四隅にスペーサーとして1辺6mmの立方
体状アルミナ焼結体を置きながら積み重ね、その上下に
さらに、試験片と同様の板(ダミー)を同様にして1枚
ずつ配置する。上述のように組み合わせた試験片を30
0 ’Oの電気炉に入れ、40分間加熱する。
Average crack generation temperature: 100mmX 100mmX
A test piece cut into a 4 mm plate is prepared. Part 5
The test pieces were stacked with cubic alumina sintered bodies each 6 mm on a side being placed as spacers at the four corners between the plates, and one plate (dummy) similar to the test piece was placed above and below the same. Thirty test pieces were assembled as described above.
Place in an electric furnace at 0'O and heat for 40 minutes.

その後、炉から取り出し、放冷後、クラック発生の有無
を目視により検査する。電気炉の温度を50°C高くし
て、再度同様の試験を行う。全試験片にクランクが発生
するまで、50°Cずつ温度を高くしながらこれを繰り
返し、次式により平均クラック発生温度T、、(’O)
を求める。
Thereafter, it is taken out from the furnace, allowed to cool, and then visually inspected for the presence or absence of cracks. The temperature of the electric furnace was increased by 50°C and the same test was performed again. Repeat this process while increasing the temperature by 50°C until all specimens crack, and calculate the average cracking temperature T, ('O) using the following formula:
seek.

51°0 ここでX、は温度T +℃(300+ 501)におい
てクランクが発生した試験片の数、nは全数タラソ夕が
発生するまでの加熱繰り返し数である。
51°0 Here, X is the number of test pieces in which cranking occurred at a temperature of T+°C (300+501), and n is the number of heating repetitions until all cracks occurred.

また、実施例1および比較例4の製品の結晶構造を示す
X線回折チャートを第1図および第2図に示した。
Further, X-ray diffraction charts showing the crystal structures of the products of Example 1 and Comparative Example 4 are shown in FIGS. 1 and 2.

さらに、実施例1および比較例4の各製品について、還
元性雰囲気(水素75%十窒素25%)で1500°C
に5時間加熱する試験を行なった。加熱後の物性は次の
とおりであった。
Furthermore, each product of Example 1 and Comparative Example 4 was heated at 1500°C in a reducing atmosphere (75% hydrogen and 25% ten nitrogen).
A test was conducted in which the sample was heated for 5 hours. The physical properties after heating were as follows.

実施例1  比較例4 かさ比重       1,05   1.12曲げ強
さ(kgf/cm2)   102    45
Example 1 Comparative example 4 Bulk specific gravity 1.05 1.12 Bending strength (kgf/cm2) 102 45

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:実施例1による耐火物の結晶構造を示すX線回
折チャート 第2図:比較例4による耐火物の結晶構造を示すX線回
折チャート
Figure 1: X-ray diffraction chart showing the crystal structure of the refractory according to Example 1 Figure 2: X-ray diffraction chart showing the crystal structure of the refractory according to Comparative Example 4

Claims (3)

【特許請求の範囲】[Claims] (1)長さが2000μ以下の高アルミナ質短繊維また
は該短繊維とアルミナ質耐火性粉末との混合物が、アル
ミナ質結合剤により相互に結合され、カサ比重0.5〜
1.5の多孔質成形体を形成してなり、遊離のシリカを
含まないことを特徴とする軽量耐火物。
(1) High alumina short fibers with a length of 2000μ or less or a mixture of the short fibers and alumina refractory powder are mutually bonded with an alumina binder, and the bulk specific gravity is 0.5 to
1.5 A lightweight refractory, characterized in that it forms a porous molded body and does not contain free silica.
(2)アルミナ質耐火性粉末の含有率が高アルミナ質短
繊維の含有率より高くはない特許請求の範囲第1項記載
の軽量耐火物。
(2) The lightweight refractory according to claim 1, wherein the content of the alumina refractory powder is not higher than the content of the high alumina short fibers.
(3)長さが20〜2000μの多結晶質アルミナ質短
繊維または上記短繊維に等量以下のアルミナ質耐火性粉
末を加えた混合物に2〜30重量%のアルミナ質結合剤
を加えて混合し、得られた混合物を成形し、次いで多結
晶質アルミナ質短繊維に由来する遊離のシリカの存在が
認められなくなるまで、1400〜1600℃で焼成す
ることを特徴とする軽量耐火物の製造法。
(3) Add 2 to 30% by weight of an alumina binder to a mixture of polycrystalline alumina short fibers with a length of 20 to 2000μ or the above short fibers and an equal amount or less of alumina refractory powder, and mix. A method for producing a lightweight refractory, characterized in that the resulting mixture is molded and then fired at 1400 to 1600°C until the presence of free silica derived from polycrystalline alumina short fibers is no longer recognized. .
JP62307453A 1987-12-07 1987-12-07 Lightweight refractory and its manufacture Granted JPH01148765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62307453A JPH01148765A (en) 1987-12-07 1987-12-07 Lightweight refractory and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62307453A JPH01148765A (en) 1987-12-07 1987-12-07 Lightweight refractory and its manufacture

Publications (2)

Publication Number Publication Date
JPH01148765A true JPH01148765A (en) 1989-06-12
JPH0518781B2 JPH0518781B2 (en) 1993-03-12

Family

ID=17969245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62307453A Granted JPH01148765A (en) 1987-12-07 1987-12-07 Lightweight refractory and its manufacture

Country Status (1)

Country Link
JP (1) JPH01148765A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0363911A2 (en) * 1988-10-11 1990-04-18 Nichias Corporation Refractories for use in firing ceramics
JP2023071717A (en) * 2019-09-06 2023-05-23 三菱ケミカルインフラテック株式会社 Quick setting admixture, quick setting admixture solution, chemical solution for soil stabilization, manufacturing method of chemical solution thereof, and ground stabilization method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186452A (en) * 1984-03-01 1985-09-21 イビデン株式会社 Refractory fiber moldings
JPS60215582A (en) * 1984-04-10 1985-10-28 吉沢 正男 Sintered refractory moldings and manufacture
JPS62143883A (en) * 1985-12-13 1987-06-27 イソライト・バプコツク耐火株式会社 Manufacture of inorganic fiber extrusion molded product
JPS62153175A (en) * 1985-12-27 1987-07-08 ニチアス株式会社 Heat resistant honeycomb structure and manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186452A (en) * 1984-03-01 1985-09-21 イビデン株式会社 Refractory fiber moldings
JPS60215582A (en) * 1984-04-10 1985-10-28 吉沢 正男 Sintered refractory moldings and manufacture
JPS62143883A (en) * 1985-12-13 1987-06-27 イソライト・バプコツク耐火株式会社 Manufacture of inorganic fiber extrusion molded product
JPS62153175A (en) * 1985-12-27 1987-07-08 ニチアス株式会社 Heat resistant honeycomb structure and manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0363911A2 (en) * 1988-10-11 1990-04-18 Nichias Corporation Refractories for use in firing ceramics
JP2023071717A (en) * 2019-09-06 2023-05-23 三菱ケミカルインフラテック株式会社 Quick setting admixture, quick setting admixture solution, chemical solution for soil stabilization, manufacturing method of chemical solution thereof, and ground stabilization method

Also Published As

Publication number Publication date
JPH0518781B2 (en) 1993-03-12

Similar Documents

Publication Publication Date Title
JPH0465030B2 (en)
JPH07277814A (en) Alumina-based ceramic sintered compact
CN106220224A (en) A kind of heat-resistant light adiabator with double-hole structure and preparation method thereof
KR940011452B1 (en) Silicon carbide refractories having modified silicon nitride bond
JP2021134092A (en) Light-weight kiln tool and manufacturing method thereof
CN114031297B (en) Cordierite-based porous glass ceramic and preparation method thereof
CN111533571A (en) High-toughness mullite ceramic with whisker frame and preparation method thereof
CN109293379B (en) Chromium oxide brick and preparation method thereof
JPH0572341B2 (en)
JPS5913470B2 (en) Silica brick manufacturing method
JPH01148765A (en) Lightweight refractory and its manufacture
JP2006514912A (en) Silicon carbide ceramic member having an oxide layer
JP2001220259A (en) Alumina-mullite porous refractory sheet and method for producing the same
JP2002137962A (en) Component for heat treatment consisting of mullite-based sintered compact
JP3368960B2 (en) SiC refractory
JP6166854B1 (en) Silicic refractory brick and manufacturing method thereof
JPH0794347B2 (en) Insulation
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JPH0518780B2 (en)
JP2508511B2 (en) Alumina composite
JP2818945B2 (en) Fibrous molded body for jig for ceramics production
KR102405558B1 (en) Crucible for firing secondary battery material and process for preparing the same
JPS61286264A (en) Furnace center pipe for heating furnace and manufacture
JPH07108818B2 (en) Method for manufacturing ceramic sintered body
Al-Taie et al. Characterizations of semi-silica refractory bricks produced from local Iraqi materials

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 15