JPS59107074A - Temperature control device for vacuum device - Google Patents

Temperature control device for vacuum device

Info

Publication number
JPS59107074A
JPS59107074A JP21665982A JP21665982A JPS59107074A JP S59107074 A JPS59107074 A JP S59107074A JP 21665982 A JP21665982 A JP 21665982A JP 21665982 A JP21665982 A JP 21665982A JP S59107074 A JPS59107074 A JP S59107074A
Authority
JP
Japan
Prior art keywords
heat medium
medium
mandrel
heat
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21665982A
Other languages
Japanese (ja)
Inventor
Ryohei Shintani
新谷 量平
Shinichi Miura
真一 三浦
Rikio Aozuka
青塚 力夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP21665982A priority Critical patent/JPS59107074A/en
Priority to GB08323002A priority patent/GB2129018B/en
Priority to KR1019830004041A priority patent/KR910000978B1/en
Priority to US06/527,662 priority patent/US4534312A/en
Publication of JPS59107074A publication Critical patent/JPS59107074A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Abstract

PURPOSE:To control the temp. in a hermetic vessel and to cool efficiently an object to be subjected to vapor deposition in a short time by providing a circulation path for the 2nd heat medium in the space contg. the 1st heat medium in the hermetic vessel disposed in a vacuum vessel and subjecting the same to a heat exchange. CONSTITUTION:The 1st heat medium 11 having a high b.p. is sealed in a mandrel 3 in a vacuum vessel 2, and the medium 11 is evaporated by the sealed heating element 13 dispoed in a hermetic space 3A, whereby the surface of the mandrel 3 is uniformly heated. An object 5 to be subjected to vapor deposition is also uniformly heated, and a material 14 to be deposited by evaporation is deposited uniformly by evaporation on the object 5. A pipe-like vessel 15 kept airtight is provided in the space 3A and the 2nd heat medium 12, such as water, is run in the pipe 16 therein and is injected through a hole 16A to the inside wall of the vessel 15. A heat exchange is effected between the 1st medium 11 and the 2nd medium 12 by the water sprayed in such a way, whereby the object 5 including the mandrel 3 is efficiently cooled.

Description

【発明の詳細な説明】 (技術分野) 本発明は、真空装置の温度制御装置に関し、より詳細に
は、真空蒸着装置等に適用し得る真空装置の温度制御装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a temperature control device for a vacuum device, and more particularly to a temperature control device for a vacuum device that can be applied to a vacuum evaporation device or the like.

(従来技術) 複写機等に用いられる感光体の表面は、例えば、真空蒸
治法によって感光材料が蒸着形成されるようになってい
る。このような蒸雁を行なう真空装着装置は、例えば、
真空槽を形成するベルンセーや、このベルンヤー内を回
転用能に設けられ、感光体等の被蒸着体を取り付ける密
封容器としてのマンドレルや、ペルジャー内の下位に配
設される蒸着ルツボ等から主に構成されていて、密封容
器内に被凝縮性ガスを取り除いた状態で封入された、ジ
フェニール等の熱媒体を昇温気化させることによシ、密
封容器をブrして、被蒸着体を均一に加熱し、この状態
で、蒸着ルツボから蒸発させた感光材料を被蒸着付表面
に蒸着させるものである。
(Prior Art) A photosensitive material is deposited on the surface of a photoreceptor used in a copying machine or the like by, for example, a vacuum evaporation method. A vacuum mounting device that performs such steaming is, for example,
Mainly from the bell jar that forms a vacuum chamber, the mandrel that is rotatable inside the bell jar and serves as a sealed container for attaching the object to be deposited such as a photoreceptor, and the evaporation crucible that is placed lower in the pellet jar. By heating and vaporizing a heating medium such as diphenyl sealed in a sealed container with the condensable gas removed, the sealed container is blown and the object to be deposited is uniformly coated. In this state, the photosensitive material evaporated from the deposition crucible is deposited on the surface to be deposited.

ところで、このような真空装N装置においては、蒸着后
蒸N層の均質化を図ることや、次の蒸着に備えるために
、マンドレルを冷却することが行なわれており、このよ
うな冷却手段を含む真空蒸着装置が、従来、例えば、実
願昭57−129802号において提案されている。
By the way, in such a vacuum N apparatus, the mandrel is cooled in order to homogenize the evaporated N layer after evaporation and to prepare for the next evaporation. A vacuum evaporation apparatus including the above has been proposed in the prior art, for example, in Japanese Utility Model Application No. 57-129802.

この−従来例は、マンドレルに導管をプrして冷却筒を
連接し/ヒ上、この冷却筒をベルツヤ−外部に露呈せし
め、この冷却筒を直接、水冷または空冷するようにした
ものであり、マンドレルおよび被蒸着体の冷却は、冷却
筒からの熱伝導によって行なわれている。
In this conventional example, a conduit is connected to a mandrel to connect a cooling cylinder, and this cooling cylinder is exposed to the outside of the belt so that this cooling cylinder can be directly cooled by water or air. , the mandrel and the object to be deposited are cooled by heat conduction from the cooling cylinder.

しかし乍ら、この方式では、マンドレルや被蒸着体を効
果的に冷却することは理論的にはできるようKなってい
るが、実用上は熱伝導による熱移!v1−litが、マ
ンドレル等の部分の熱蓄積量と比較して相対的に少ない
ため、さほどの冷却効果を期待することができないもの
となっている。
However, although theoretically it is possible to effectively cool the mandrel and the object to be deposited using this method, in practice, heat transfer due to conduction is required. Since v1-lit is relatively small compared to the amount of heat accumulated in parts such as the mandrel, no significant cooling effect can be expected.

従って、このような従来例のものでは、冷却に長い時間
を必要することになり、このため、蒸着を行なうだめの
段取9作業に多くの時間を必要とすることで、生産性が
低下したり、あるいは、蒸着層を均質化することが困難
であるなどの問題があった。
Therefore, in such a conventional method, a long time is required for cooling, and as a result, a large amount of time is required for the 9 setup operations for vapor deposition, resulting in a decrease in productivity. There were other problems, such as difficulty in homogenizing the deposited layer.

(発明の目的) 本発明は、斜上の点に鑑みなされた、冷却効果にすぐれ
た機能を発揮する、真空装置の温度制御装置を提供する
ことを目的とする。
(Objective of the Invention) An object of the present invention is to provide a temperature control device for a vacuum apparatus that is designed in consideration of the oblique point and exhibits an excellent cooling effect.

(発明の構成) 本発明の構成について、以下、1実施例に基づいて説明
する。
(Configuration of the Invention) The configuration of the present invention will be described below based on one embodiment.

第1図は、本発明1実施例装置を示していて、符号1は
真空槽2を形成するペルジャーを、3は真空槽2内にお
いて気密保持された密封容器としてのマンドレルを、4
は真空槽2内の下位に配設された蒸着ルツボをそれぞれ
示すものである。
FIG. 1 shows an apparatus according to a first embodiment of the present invention, in which reference numeral 1 denotes a Pel jar forming a vacuum chamber 2, 3 a mandrel as a hermetically sealed container kept airtight in the vacuum chamber 2, and 4
1 and 2 respectively show vapor deposition crucibles disposed in the lower part of the vacuum chamber 2.

こCで、マンドレル3に所定の間隙をもって貫挿された
筒状の被蒸着体5への蒸着物の蒸着は、次のようにして
行なわれるようになっている。
Here, the deposition of the vapor onto the cylindrical vapor deposition object 5 inserted through the mandrel 3 with a predetermined gap is performed in the following manner.

マンドレル3は、これと一体連接された筒状回転軸6と
共に、駆動ギア7により、軸受8,8に支持されて回転
駆動されるよう[なっている。fRJち、マンドレル3
は被蒸着体5と共に真空槽2内を回転する。
The mandrel 3 is supported by bearings 8, 8 and rotationally driven by a drive gear 7 together with a cylindrical rotating shaft 6 integrally connected thereto. fRJ Chi, Mandrel 3
rotates in the vacuum chamber 2 together with the object to be deposited 5.

マンドレル3内には、7フエニール等の第1の熱媒体1
1が空気等の非凝縮性ガスを取除いた状態で封入されて
いる。また、マンドレル3の、駆10熱媒体]】(i′
−含む密封空間3Aには、この空間に対し気密保持きれ
た密封発熱体13が第2図に示す如く円周方向に4箇、
配設されている。そして、この密封発熱体J3はヒータ
13Aと、これを被うヒータ保護管13Bとから構成さ
れている。
Inside the mandrel 3, a first heat medium 1 such as 7 phenyl is placed.
1 is sealed with non-condensable gas such as air removed. In addition, the heating medium of the mandrel 3]](i'
- In the sealed space 3A, there are four sealed heating elements 13 arranged in the circumferential direction as shown in FIG.
It is arranged. This sealed heating element J3 is composed of a heater 13A and a heater protection tube 13B that covers the heater 13A.

密封発熱体13から熱供給を受けた第]の熱媒体11は
、脱気されたマンドレル3内で気化して、所謂、ヒート
ポンプ作用により、低温部から高温部へと移動し、マン
ドレル30表面を各所均一に加熱する。
The heat medium 11 that has received heat from the sealed heating element 13 is vaporized in the deaerated mandrel 3 and moves from the low temperature section to the high temperature section due to the so-called heat pump action, and the surface of the mandrel 30 is heated. Heat evenly in all areas.

これにより、被蒸着体5も均一に加熱され、こノ状?に
て、蒸着ルツボ4から蒸発した感光材料等の蒸着物14
は被蒸着体5にむらなく蒸着し、この被蒸着体5は例え
ば複写機等の感光体ドラムとして構成される。
As a result, the object to be deposited 5 is also heated uniformly, so that it is shaped like this? , the vapor deposit 14 of photosensitive material etc. evaporated from the vapor deposition crucible 4.
is evenly deposited on a deposition target 5, and the deposition target 5 is configured as, for example, a photosensitive drum of a copying machine or the like.

とCろで、このような真空蒸着装置において、晶温で蒸
着を完了した被蒸着体5を、マンドレル3と共に、蒸着
層を冷却することや、次の蒸着に備えることを目的とし
て、冷却する必要がある。
In such a vacuum evaporation apparatus, the object to be evaporated 5, which has been evaporated at the crystal temperature, is cooled together with the mandrel 3 for the purpose of cooling the evaporation layer and preparing for the next evaporation. There is a need.

ここで、第1図において、マンドレル3の、第1の熱媒
体11を含む密封空間3Aには、この空間3AV!#1
し気密保持づれたパイズ状の容器15が設けられ、この
容器15と、この内部に設けたパイプJ6とで、次に述
べるような冷却用循環路を構成している。
Here, in FIG. 1, the sealed space 3A of the mandrel 3 containing the first heat medium 11 has this space 3AV! #1
A piez-shaped container 15 which is kept airtight is provided, and this container 15 and a pipe J6 provided inside the container constitute a cooling circulation path as described below.

即ち、容器15はパイプ16と共に、右方のロータリー
ジヨイント17に連接されていて、先ず、バルブ18お
よびロータリージヨイント】7を介して、第2の熱媒体
の一例である水12(第2図参照)がパイプ状容器へ流
入し、かつ、この流入した水は、孔16Aを弁して、パ
イプ状容器15の内壁へ回けて水流として噴射されるよ
うになっている。
That is, the container 15 is connected to the right rotary joint 17 together with the pipe 16, and water 12 (a second (see figure) flows into the pipe-shaped container, and the water that has flowed in is directed to the inner wall of the pipe-shaped container 15 by valving the hole 16A and is sprayed as a water stream.

このような水流噴射は、冷媒としての水が気化する際の
潜熱を奪う機能を達成することにな9、効率良く、大容
量の熱移動を行なわせることができる。即ち、第jの熱
媒体月の系と、第2の熱媒体12(第2図参照)の系と
の間で相互に熱交換が行なわれ、マンドレル3を含む被
蒸治体5を、効率良く、短時間に冷却せしめることがで
きる。従って、蒸着のだめの段取り時間は短縮化きれ、
生産性も向上することになる。
Such water jetting achieves the function of removing latent heat when water as a refrigerant evaporates9, and can efficiently transfer a large amount of heat. That is, heat exchange is performed between the system of the j-th heating medium and the system of the second heating medium 12 (see FIG. 2), and the object to be evaporated 5 including the mandrel 3 is heated efficiently. Good and can be cooled in a short time. Therefore, the setup time for the deposition tank can be shortened,
Productivity will also improve.

なお、気化後の蒸気および残留熱媒体は、パイプ状谷器
15内′ff曲り、排出パイプ19を経て外部へ放出さ
れる。このように、容器15やパイプ】6は第2の熱媒
体流人出用の冷却用循環路を構成するのである。
Note that the steam and residual heat medium after vaporization are discharged to the outside through the bend in the pipe-shaped valley vessel 15 and the discharge pipe 19. In this way, the container 15 and the pipe 6 constitute a cooling circulation path for the second heat medium flow.

なお、パイプ〕6からの水噴流は、できるだけ噴霧状態
とする方が好ましく、冷却効星は富くなる。
Note that it is preferable that the water jet from the pipe [6] be in a spray state as much as possible, and the cooling effect will be enriched.

また、噴流を作るノスルロ径16Aとしては、径が小さ
く、また、その数が多し)いオ呈、7令去P咬刀果は高
められる。しかし乍ら、ノスルロ径を小さくすると、噴
出時、あるいは、管内流動時、液体の移動抵抗が大きく
なるため、この点に対処すべく、パイプ16へ流入する
液体に所定の圧力を印加するようにしでもよい。
In addition, since the diameter of the nosullo (16A) that creates the jet is small and the number of them is large, the bite effect of the 7th instar can be enhanced. However, if the nosullo diameter is made smaller, the resistance to the movement of the liquid increases when it is ejected or flows inside the pipe.To deal with this, a predetermined pressure is applied to the liquid flowing into the pipe 16. But that's fine.

高圧で効率良く水等を送り込めば、冷却のりδ熱移!i
lI量が大となるため、素早く被蒸着体を冷却すること
ができ、また、水等の給送を低圧にするか、あるいは、
断続的にすれば、冷却を緩やかな速度で行なうことがで
きる。つまり、冷却の遅速を制御できることになシ、冷
却速度栄件によって決定される、例えばセレン系感光体
等の感度を適正なものに設定することができる。
If water, etc. is sent efficiently at high pressure, the cooling paste δ heat transfer! i
Since the amount of lI is large, the object to be evaporated can be quickly cooled, and the supply of water etc. can be made at a low pressure, or
If the cooling is done intermittently, the cooling can be done at a slow rate. In other words, since the cooling speed can be controlled, the sensitivity of, for example, a selenium-based photoreceptor, which is determined by cooling speed requirements, can be set to an appropriate value.

なお、第2の熱媒体として、水道水を用いてこnを実験
に供したところ、水道水の水圧程度で、かつ、ノスルロ
径を5%程度として、水の粘性抵抗および管摩擦抵抗を
考慮しても、充分、水蒸気化による急速冷却効果を確認
することができた。
In addition, when this was subjected to an experiment using tap water as the second heat medium, the water pressure was about the same as that of tap water, and the Nosullo diameter was set to about 5%, taking into account the viscous resistance of water and the pipe friction resistance. However, we were able to confirm the rapid cooling effect of water vaporization.

第3図は、本発明装置の別の実施例を示していて、密封
容器としてのマンドレル21内には、第1の熱媒体11
が封入せられ、この熱媒体11は、ヒータ22を内装し
た密閉発熱体23により、昇温せしめられるようになっ
ている。
FIG. 3 shows another embodiment of the device of the present invention, in which a mandrel 21 serving as a sealed container contains a first heat medium 11.
The heating medium 11 is heated by a sealed heating element 23 having a heater 22 installed therein.

一方、マンドレル21内の密封空間には、この空間に対
し気密保持きれた外バイブ24が設けられていて、さら
に、この内部には内バイブ25が設けられている。なお
、図に示す装置は、前の実施例と同様に、真空槽内を回
転し得るようVCなっていて、かつ、マンドレル21に
は筒状の被蒸着体が貫挿されるようになっている。
On the other hand, an outer vibrator 24 is provided in a sealed space within the mandrel 21, which is airtight with respect to the space, and an inner vibe 25 is further provided inside this space. Note that the apparatus shown in the figure is a VC so that it can rotate in a vacuum chamber, as in the previous embodiment, and a cylindrical evaporation target is inserted into the mandrel 21. .

この実施例は、前記実施例の噴流式とは違って、水等の
第2の熱媒体が内パイプ25へ流入し、かつ、この流入
した熱媒体が外パイプ24を曲して外部へ流出する方式
となっている。
In this embodiment, unlike the jet type of the previous embodiment, the second heat medium such as water flows into the inner pipe 25, and this flowed heat medium bends the outer pipe 24 and flows out to the outside. The method is to do so.

この実施例の場合も、外バイブ24と内パイプ25とで
、第2の熱媒体が流入出する冷却用循環路を構成し、前
記実施例と同様に、マンドレル21を被蒸着体もろとも
、短時間に冷却することができる。
In the case of this embodiment as well, the outer vibe 24 and the inner pipe 25 constitute a cooling circulation path through which the second heat medium flows in and out, and as in the previous embodiment, the mandrel 21 and the object to be deposited are It can be cooled down in a short time.

第4図は、冷却すべき被蒸着体の温度低下と、冷却経過
時間との19互の関係を示すものであって、破線は従来
例の熱伝導方式のもの、一点鎖線は第3図に示す実施例
のもの、実線は第1図に示す実施例のものをそれぞれ示
している。
Figure 4 shows the relationship between the temperature drop of the object to be cooled and the elapsed cooling time, where the broken line is for the conventional heat conduction method and the dashed line is for Figure 3. The solid lines indicate the embodiment shown in FIG. 1, respectively.

この図から理解されるように、従来例(破線)のものよ
りは、第3図に示す実施例(一点鎖線)のものの方が冷
却効果にすぐれる。この実施例の場合、熱媒体即ち冷媒
として、できるだけ温度落差の大きいものを流動させる
方式の方が冷却効果にすぐれることになる。
As can be understood from this figure, the embodiment shown in FIG. 3 (dotted chain line) has a better cooling effect than the conventional example (dashed line). In the case of this embodiment, a method in which a heat medium, ie, a refrigerant, having as large a temperature drop as possible is allowed to flow will provide a better cooling effect.

また、この図から理解されるように、単純な冷媒流動方
式(一点鎖線)のものと比して、噴流および蒸気化を利
用する方式(実線)のものの方が冷却効果にすぐれてい
る。
Furthermore, as can be understood from this figure, the method using jet flow and vaporization (solid line) has a better cooling effect than the simple refrigerant flow method (dotted chain line).

本発明者らの実験によれば、被蒸着体を想定して、アル
ミニウムパイプを200 ”G K加熱したあと、水の
噴流をして、パイプ状容器】5(第1図参照)の内壁し
て、噴霧したところ、当該アルミニウムパイプを100
℃近辺まで急速に冷却せしめることができた(第4図参
照)。また、100°Cを過ぎても、冷却速度としては
低下するが、依然として冷却機能を達成するCとができ
た。
According to the experiments conducted by the present inventors, an aluminum pipe was heated to 200" GK, and then a jet of water was applied to the inner wall of a pipe-shaped container (see Figure 1). When the aluminum pipe was sprayed, 100
It was possible to rapidly cool it to around ℃ (see Figure 4). Further, even after 100°C, although the cooling rate decreased, C still achieved the cooling function.

ここで、第2の熱媒体を、高沸点の熱媒体と、低沸点の
熱媒体とに使い分け、前者を第1段階で流入させ、後者
を第2段階で流入させるようにすると、さらに冷却効果
を高めることができる。
Here, if the second heat medium is used separately as a heat medium with a high boiling point and a heat medium with a low boiling point, and the former is made to flow in in the first stage and the latter in the second stage, the cooling effect will be further improved. can be increased.

第1図において、パイプj6へ、例えば、水、油等の高
沸点熱媒体を先ず流入せしめ、この熱媒体の気化熱によ
る熱移動を利用して、第1段階の冷却N能を達成したあ
と、第2段階として低沸点の熱媒体を流入させる。
In Fig. 1, a high boiling point heat medium such as water or oil is first flowed into pipe j6, and after the first stage of cooling N capacity is achieved by utilizing heat transfer due to the heat of vaporization of this heat medium, In the second stage, a low boiling point heat medium is introduced.

すると、低沸点の熱媒体は、高沸点熱媒体の沸、ウリ、
下の温度範囲(水の場合は100℃以V)で気化し、こ
の際の気化熱により、第2段階の冷却機能が達成せられ
、被蒸着体が急速に冷却ばれることになる。
Then, the low boiling point heat medium has the same boiling point as the high boiling point heat medium.
It vaporizes in a lower temperature range (in the case of water, 100° C. or lower), and the heat of vaporization at this time achieves the second-stage cooling function, and the object to be deposited is rapidly cooled.

この場合、低沸点の熱媒体をパイプ]6へ、いきなり導
入することもできるが、このようにすると、気化が激発
的に行なわれることになり、また、低沸点の熱媒体が高
温化にさらされることによってその熱媒体の分解、劣化
を生じることになシ、これらの点を防出する意味からも
、2段気化方法によるものの方が有利である。
In this case, it is also possible to suddenly introduce the low boiling point heat transfer medium into the pipe [6], but if this is done, vaporization will occur rapidly, and the low boiling point heat transfer medium will be exposed to high temperatures. The two-stage vaporization method is more advantageous in terms of preventing decomposition and deterioration of the heat medium due to the heat transfer.

第5図は、2段気化法による、被蒸着体の温度低下と、
冷却経過時間との相互関係を示すものであって、I(は
高沸点熱媒体の沸点を、Lは低沸点熱媒体の沸点をそれ
ぞれ示しておシ、破線で示す」:うに、沸点トI以下で
の急速冷却機能が達成されている。
FIG. 5 shows the temperature reduction of the deposition target by the two-stage vaporization method, and
It shows the correlation with the elapsed cooling time, and I (indicates the boiling point of the high boiling point heat medium and L indicates the boiling point of the low boiling point heat medium, respectively, is shown by a broken line.) Rapid cooling capability has been achieved in:

なお、このような方式において、第1段1@にて高沸点
の熱媒体を噴霧したパイプ状容器J5へ、第2段階とし
て、低沸点の熱媒体を流すようにしてもよいが、この場
合、高沸点の熱媒体と、低沸点の熱媒体とが、配管系内
部で混合することもあり得るので、このような点に対処
すべく、別途に冷却パイプを2本挿入しておき、一方の
パイプに高沸点の熱媒体を、他方のパイプに低沸点の熱
媒体をそれぞれ流入させる」:うにしてもよい。
In addition, in such a system, as a second stage, a low boiling point heat medium may be made to flow into the pipe-shaped container J5 into which a high boiling point heat medium was sprayed in the first stage 1@, but in this case. Since it is possible that a heat medium with a high boiling point and a heat medium with a low boiling point may mix inside the piping system, two cooling pipes are separately inserted to deal with this problem. A heat medium with a high boiling point may be introduced into one pipe, and a heat medium with a low boiling point may be introduced into the other pipe.

なお、高υ七点の熱媒体としては、市販の油状熱媒体や
水などを挙げることができ、また、低沸点の熱媒体とし
ては、フレオン、アルコール、エステル類、エーテル類
および炭化水素系液体などを挙げることができる。この
場合、両者の熱媒体に沸点差を生じるものであれば、パ
イプを腐fE−Gせないもの以外において、どんなもの
でも使用は可能である。これらのうち、コストや取り扱
いの上から、水−フレオン等の組み合わせが実用的な1
例である。
In addition, examples of heat media with a high υ7 point include commercially available oil heat media and water, and examples of heat media with a low boiling point include freon, alcohol, esters, ethers, and hydrocarbon liquids. etc. can be mentioned. In this case, any material can be used as long as it produces a boiling point difference between the two heat media, except for those that cannot cause corrosion of the pipe. Among these, combinations such as water and Freon are the most practical from the viewpoint of cost and handling.
This is an example.

なお、今まで述べた実施例では、真柴蒸層技術を適用し
たものであるが、この他、一般的な真空技術やスパッタ
リングや電子写真技術−や半導体製造技術等の範時にお
いても本発明の適用可能である。
In the embodiments described so far, the Mashiba vapor layer technology is applied, but the present invention can also be applied to general vacuum technology, sputtering, electrophotography technology, semiconductor manufacturing technology, etc. Applicable.

(発明の効果) 以上本発明によれば、従来装置と比して、冷却効果にす
ぐれた機能を発揮する、真空装置の温度制御装置を提供
することができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to provide a temperature control device for a vacuum device that exhibits a function superior in cooling effect compared to conventional devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第」図は本発明一実施例装置の部分断面図、第2図は第
1図におけるA−A線に沿う断面図、第3図は本発明の
別の実施例装置の部分断面図、第4図は被蒸着体の温度
低下と冷却経過時間との相互関係を、従来例と本発明実
施例装置との場合につき、比較した図、第5図は2段気
化法による、被蒸着体の温度低下と冷却経過時間との相
互関係を示す図である。 2・・・真空槽、3,2]・・密封容器、3A  ・密
封空間、】】・・・第1の熱媒体、12・−・第2の熱
媒体、13゜23・・密封発熱体、15. 16. 2
4. 25・・・冷却用循環路。
1 is a partial sectional view of an apparatus according to one embodiment of the present invention, FIG. 2 is a sectional view taken along the line A-A in FIG. 1, and FIG. Figure 4 is a diagram comparing the correlation between the temperature drop of the object to be deposited and the elapsed cooling time between the conventional example and the apparatus according to the present invention. FIG. 3 is a diagram showing the interrelationship between temperature drop and elapsed cooling time. 2... Vacuum chamber, 3,2]... Sealed container, 3A, Sealed space, ]]... First heat medium, 12... Second heat medium, 13° 23... Sealed heating element , 15. 16. 2
4. 25... Cooling circulation path.

Claims (1)

【特許請求の範囲】 1 真空槽内を回転用能に設けられていて、非凝縮性ガ
スを取除いた状態で、第1の熱媒体を封入する密封容器
と、前記第1の熱媒体昇温用の密閉発熱体と、前記密封
容器内の、第1の熱媒体を含む密封空間内に設けられて
いて、この空間に対し気密保持された、第2の熱媒体が
流入出する冷却用循環路とを補え、該循環路内の第2の
熱媒体の系と、?Pl−封容器内容器内の熱媒体の系と
で熱又換を行なわしめて、前記密封容器の臨席を制御す
ることを特徴とする、真空装置の温度制御装置。 24 第2の熱媒体を、纂J段階で流入させるものとし
て高沸点熱媒体とし、第2段階で流入させるものとして
低沸点熱媒体としたことを特徴とする特許請求の範囲m
1項記載の真空装置の温度制御装置。
[Scope of Claims] 1. A sealed container that is rotatable in a vacuum chamber and that encloses a first heating medium with non-condensable gas removed; A sealed heating element for warming, and a cooling device provided in a sealed space containing a first heating medium in the sealed container, and into which a second heating medium flows in and out, the space being kept airtight. A second heating medium system in the circulation path, A temperature control device for a vacuum apparatus, characterized in that the presence of the sealed container is controlled by performing heat exchange between Pl and a heat medium system in the inner container of the sealed container. 24 Claims m characterized in that the second heat medium is a high boiling point heat medium that is introduced in the J stage, and a low boiling point heat medium is introduced in the second stage.
A temperature control device for a vacuum device according to item 1.
JP21665982A 1982-08-30 1982-12-10 Temperature control device for vacuum device Pending JPS59107074A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21665982A JPS59107074A (en) 1982-12-10 1982-12-10 Temperature control device for vacuum device
GB08323002A GB2129018B (en) 1982-08-30 1983-08-26 Vacuum evaporation apparatus
KR1019830004041A KR910000978B1 (en) 1982-08-30 1983-08-30 Vacuum evaporation apparatus
US06/527,662 US4534312A (en) 1982-08-30 1983-08-30 Vacuum evaporation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21665982A JPS59107074A (en) 1982-12-10 1982-12-10 Temperature control device for vacuum device

Publications (1)

Publication Number Publication Date
JPS59107074A true JPS59107074A (en) 1984-06-21

Family

ID=16691914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21665982A Pending JPS59107074A (en) 1982-08-30 1982-12-10 Temperature control device for vacuum device

Country Status (1)

Country Link
JP (1) JPS59107074A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125496A1 (en) * 2008-04-11 2009-10-15 東芝三菱電機産業システム株式会社 Heat equalizer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125496A1 (en) * 2008-04-11 2009-10-15 東芝三菱電機産業システム株式会社 Heat equalizer
JP5226773B2 (en) * 2008-04-11 2013-07-03 東芝三菱電機産業システム株式会社 Soaking equipment
US8724973B2 (en) 2008-04-11 2014-05-13 Toshiba Mitsubishi-Electric Industrial Systems Corporation Heat equalizer
US9428831B2 (en) 2008-04-11 2016-08-30 Toshiba Mitsubishi-Electric Industrial Systems Corporation Heat equalizer
US9428832B2 (en) 2008-04-11 2016-08-30 Toshiba Mitsubishi-Electric Industrial Systems Corporation Heat equalizer

Similar Documents

Publication Publication Date Title
US4534312A (en) Vacuum evaporation apparatus
US4241043A (en) Method for evaporating solvents and reacting components in compound mixtures
US6418942B1 (en) Solvent and aqueous decompression processing system
EP0292123B1 (en) Cooling roller for a coooling machine
KR20000069866A (en) Flash evaporator
US10786750B1 (en) Spray-roto distillation device
US4123677A (en) Self-regulating transport mechanism for super-conductive rotor refrigerant
US4164126A (en) Self-regulating transport mechanism for superconductive rotor refrigerant
JPH0223202B2 (en)
JPS59107074A (en) Temperature control device for vacuum device
JP2004116538A (en) Heat media flowing roller
RU2619768C1 (en) Emission installation for concentration of liquid solutions
US1768777A (en) Apparatus for treating sheet materials
US3578071A (en) Concentric evaporation-condensation, rotary, thin film, heat transfer apparatus
US1900556A (en) Roll for molten glass and the process of cooling the same
US642620A (en) Evaporating apparatus.
JPS59134495A (en) Liquid-extracting device
GB831788A (en) Heat exchange equipment and method
US2578192A (en) Method of separating wax from liquids
RU2761207C1 (en) Film evaporation drum
SU1745280A1 (en) Rotary climbing-film evaporator
JPH08135800A (en) Cooler for cooling mechanical seal
SU1134211A1 (en) Water desalinating plant
SU1678407A1 (en) Centrifugal distiller
JPS60106963A (en) Metal vapor deposition device