JPS59107059A - Heat-resistant ceramic material - Google Patents

Heat-resistant ceramic material

Info

Publication number
JPS59107059A
JPS59107059A JP21594282A JP21594282A JPS59107059A JP S59107059 A JPS59107059 A JP S59107059A JP 21594282 A JP21594282 A JP 21594282A JP 21594282 A JP21594282 A JP 21594282A JP S59107059 A JPS59107059 A JP S59107059A
Authority
JP
Japan
Prior art keywords
heat
ceramic material
skid
resistant
compressive strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21594282A
Other languages
Japanese (ja)
Other versions
JPS631384B2 (en
Inventor
Hisashi Hiraishi
平石 久志
Hisakatsu Nishihara
西原 久「剋」
Yoshiaki Yamagami
山上 喜昭
Mitsuhiko Furukawa
満彦 古川
Hidemoto Takezaki
竹崎 秀資
Takashi Kitahira
北平 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Nippon Tungsten Co Ltd
Original Assignee
Kubota Corp
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Nippon Tungsten Co Ltd filed Critical Kubota Corp
Priority to JP21594282A priority Critical patent/JPS59107059A/en
Publication of JPS59107059A publication Critical patent/JPS59107059A/en
Publication of JPS631384B2 publication Critical patent/JPS631384B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled material with increased compressive strength at high temp. by providing a specified composition prepd. by adding one or more among Mo, W, Ta, Ti, Nb, V, Zr and Hf to chormium carbide as a principal component. CONSTITUTION:This heat-resistant ceramic material with improved compressive strength has a composition consisting of 0.2-10wt% one or more among Mo, W, Ta, Ti, Nb, V, Zr and Hf and the balance chromium carbide. It can be used as the material of a skid rail, etc. in a heating furnace. One or more among Mo, W, Ta, Ti, Nb, V, Zr and Hf are preferably used in a fibrous state because the mechanical strength of the material is considerably improved. Powders of said components are blended so as to provide said composition, and the blend is cold pressed and sintered to obtain the desired ceramic material. It is preferable that the powders have >= about 99% high purity and <= about 10mum grain size. When a fibrous material is used, the diameter is adjusted to about 50mum.

Description

【発明の詳細な説明】 本発明は加熱炉、均熱炉、焼鈍炉などの高温雰囲気で使
用される耐熱用セラミック材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-resistant ceramic material used in high-temperature atmospheres such as heating furnaces, soaking furnaces, and annealing furnaces.

例えば加熱炉に於けるスキッドレール用材料としては従
来から各種耐熱合金が用いられていたが、炉内雰囲気温
度が1300〜1350℃に設定され、スラブ等の金属
片が1250〜1300℃に加熱されるという如く高温
域にさらされるのでスキッドレールに用いられている耐
熱合金にとっても極めて苛酷な使用条件である。従って
一般には第1図に示すように、炉(F)内の下部の架台
(1)に水冷スキッドパイプ(2)を複数本配設すると
ともに、各スキッドパイプの上面にスキッドレール(3
)を敷設して炉床(スキッド)を構成し、パイプ(2)
内を流通する冷却水にてスキレッドレール上1丁 ようにした水冷方式が採られている。しかし、この場合
、スキレッドレール上に載置された金属片TS)は、レ
ールとの接触面から熱を奪われ、局部的に冷却されるた
め、温度むらが生じる。
For example, various heat-resistant alloys have traditionally been used as materials for skid rails in heating furnaces, but the atmosphere temperature inside the furnace is set at 1300 to 1350°C, and metal pieces such as slabs are heated to 1250 to 1300°C. The heat-resistant alloy used in skid rails is exposed to such high temperatures that the conditions of use are extremely harsh. Therefore, generally, as shown in Fig. 1, a plurality of water-cooled skid pipes (2) are installed on the lower frame (1) in the furnace (F), and skid rails (3) are installed on the top surface of each skid pipe.
) to form the hearth (skid) and pipe (2)
A water cooling system is adopted in which the cooling water flowing inside the tank is placed over a skillet rail. However, in this case, the metal piece TS) placed on the skillet rail loses heat from its contact surface with the rail and is locally cooled, resulting in temperature unevenness.

との温度むらは金属片(S)の在炉時間を長時間に設定
することにより緩和することはできるが、その効果は十
分てなく、また加熱炉の効率が著しく悪くなる。
Although the temperature unevenness can be alleviated by setting the metal piece (S) to stay in the furnace for a long time, the effect is not sufficient and the efficiency of the heating furnace deteriorates significantly.

この対策として、スキッドレール(3)にセラミック材
料からなる耐熱台を設け、金属片(S)とレール(3)
との直接々触を防止することが提案され、そのセラミッ
ク材料として、酸化ジルコニウム(Zr%)系、アルミ
ナ +A1203)系、窒化ケイ素 (SすN1)系な
どが試験的に使用されている。ところが、これらセラミ
ック材料は、急速加熱材たる金属片のスケールとの反応
が生じ易いため、長時間の安定した操業を維持すること
は不可能である。
As a countermeasure against this, a heat-resistant stand made of ceramic material is installed on the skid rail (3), and the metal piece (S) and the rail (3)
It has been proposed that ceramic materials such as zirconium oxide (Zr%), alumina +A1203), and silicon nitride (SSN1) be used experimentally as ceramic materials. However, these ceramic materials tend to react with the scale of the metal pieces that are the rapid heating material, making it impossible to maintain stable operation for a long period of time.

ところでセラミック材料の中で他の材料と比較した場合
に特異な性質を示し、とりわけ溶融金属に対して極めて
優れた耐食性を示すものとして炭化クロム系セラミック
材料がある。乙の炭化クロム系セラミック材料として、
従来、炭化クロムを金属コバルトやニッケルで結合焼結
したものが、耐熱材料や耐食材料としては知られている
が、これらは加熱炉内での高温雰囲気では、強度の劣化
と、スケールとの反応が著しく、例えば、1200℃で
は室温時の173以下の強度に激減するので、加熱炉の
炉床のように高温下で動的応力が作用する苛酷な使用環
境にはとうてい耐え得ず、結局スキッドレール耐熱台用
材料としては適用することができない。
By the way, among ceramic materials, there is a chromium carbide ceramic material that exhibits unique properties when compared with other materials, and in particular exhibits extremely excellent corrosion resistance against molten metal. As the chromium carbide ceramic material of
Conventionally, chromium carbide bonded and sintered with metallic cobalt or nickel has been known as a heat-resistant and corrosion-resistant material, but these materials deteriorate in strength and react with scale in the high-temperature atmosphere of a heating furnace. For example, at 1200°C, the strength decreases dramatically to 173 or less than that at room temperature, so it cannot withstand harsh environments such as the hearth of a heating furnace where dynamic stress acts at high temperatures, and eventually the skid It cannot be applied as a material for rail heat-resistant stands.

本発明は上述の諸問題を解決する為に炭化クロム主成分
とし特にその高温圧縮強度を高めた材料を提供せんとす
るものであり、その要旨はモリブデン、タングステン、
タンタル、チタン、ニオブ、バナジウム、ジルコニウム
、ハフニウムかう791fれる1種以上が0.2〜10
重量%、残部が炭化クロムからなる組成の耐熱用セラミ
ック材料であり、この場合にモリブデン、タングステン
、タンタル、チタン、ニオブ、ハフニウムについてはそ
れらを繊維状形態で用いると後で詳記する如く材料の機
械的強度を大きく向上せしめるのでより好ましいもので
ある。 なお本発明材料は上述の如き組成範囲に各種材
料粉末を配合しその後公知の焼結方法、即ちコールドプ
レス法、ホットプレス法あるいは熱間等方圧加圧焼結法
等による方法により焼結して得られるが、この焼結条件
としてはコールドプレス法の場合真空度10 〜10 
 torr、温度1300〜1500℃、ホットプレス
法の場合加圧力50〜350kg1adS温度1350
〜1550℃、又熱間等方圧加圧焼結法の場合には圧力
500kg / c+/以上、温度1500℃以下に設
定するのがそれぞれ好ましい。そして用いる各種原料粉
末は出来る限り高純度のもの、好ましくけ99%以上の
純度を有するものを使用する様にする、これは不純物が
あると高温焼成時にそれが蒸発して気孔の原因となった
り低融点相を形成するなどして得られる製品の高温特性
の低下を招くからである。またこの原料粉末は焼結性を
向上せしめ得られる製品が高密度となる為に粒度1゜μ
m以下の微細粉末を使用するのが望ましい。
In order to solve the above-mentioned problems, the present invention aims to provide a material containing chromium carbide as a main component and having particularly high high-temperature compressive strength.
One or more of tantalum, titanium, niobium, vanadium, zirconium, hafnium or 791f is 0.2 to 10
It is a heat-resistant ceramic material with a composition in which the balance by weight is chromium carbide.In this case, when molybdenum, tungsten, tantalum, titanium, niobium, and hafnium are used in a fibrous form, the material is This is more preferable because it greatly improves mechanical strength. The material of the present invention is prepared by blending various material powders within the composition range described above and then sintering them by a known sintering method, such as a cold press method, a hot press method, or a hot isostatic pressure sintering method. However, the sintering conditions for this are a vacuum degree of 10 to 10 in the case of the cold press method.
torr, temperature 1300-1500℃, pressure 50-350kg in the case of hot press method, temperature 1350
It is preferable to set the pressure to 500 kg/c+/ or more and the temperature to 1500°C or less in the case of a hot isostatic pressure sintering method. The various raw material powders used should be as pure as possible, preferably with a purity of 99% or higher.This is because impurities may evaporate during high-temperature firing and cause pores. This is because a low melting point phase is formed, resulting in a decrease in the high-temperature properties of the resulting product. In addition, this raw material powder improves sinterability and the resulting product has a high density, so the particle size is 1゜μ.
It is desirable to use fine powder of less than m.

次に本発明材料を開発するに至った試験並びにその結果
を示す。即ち、 純度99.9%で粒度が5μ哨の炭化クロム粉末と他の
各種添加物をそれぞれ下記第1表に示す割合に混合した
もの100重量部に対しパラフィンを3重量部添加混合
したものを原料粉末とした。なお下記第1表中でNo5
8〜No63の場合は、そこで用いたモリブデン、タン
グステン、タンタル、チタン、ニオブ、ハフニウムはそ
れぞれ直径50μAの繊維状物を原料としくこれら繊維
状物を用いたものについては該当No、の下にアンダー
ライン「−」を付している)、その他のものについては
すべて粉末状物を用いた。
Next, the tests that led to the development of the material of the present invention and their results will be shown. That is, 3 parts by weight of paraffin was added to 100 parts by weight of a mixture of chromium carbide powder with a purity of 99.9% and a particle size of 5 μm and other various additives in the proportions shown in Table 1 below. It was made into a raw material powder. In addition, No. 5 in Table 1 below
In the case of No. 8 to No. 63, the molybdenum, tungsten, tantalum, titanium, niobium, and hafnium used therein are each made from fibrous materials with a diameter of 50 μA, and those using these fibrous materials are listed under the corresponding No. (marked with a line "-"), and all other materials used were powdered materials.

この様にして得た原料を成形圧力】、5トン/dで10
1+In×30ffiln×6111In及び7 m 
X 7 mu X 7 mに成形し、780℃、10分
間真空中にて予備焼結をし、次いで真空中1450℃、
60分間本焼結を行って得た焼結体から各種試験用供試
体を得た。
The raw material obtained in this way was molded at a pressure of 5 tons/d to 10
1+In×30ffiln×6111In and 7 m
x 7 mu x 7 m, pre-sintered in vacuum at 780°C for 10 minutes, then heated at 1450°C in vacuum.
Various test specimens were obtained from the sintered bodies obtained by performing main sintering for 60 minutes.

これらの各種焼結体についての相対理論密度、抗折力、
粒度、高温圧縮強度をそれぞれ下記第2表に示す。この
中で高温圧縮強度は真空中1300℃に保持した供試体
(5m X 5 am X 5 wm )を0.1tn
/分の加圧速度で加圧圧縮し変形を開始した時の圧力値
で示す。
Relative theoretical density, transverse rupture strength, and
The particle size and high temperature compressive strength are shown in Table 2 below. Among these, the high temperature compressive strength is 0.1 tn for a specimen (5 m x 5 am x 5 wm) held at 1300°C in vacuum.
It is expressed as the pressure value when deformation starts after compression at a compression rate of /min.

加金属の添加量をある範囲に分けてまとめると下記第3
表の如くなる。
The amount of additive metal added can be divided into certain ranges and summarized in the following 3.
It will look like the table.

第3表 以上の試験結果から判る如く、炭化クロムに対し添加す
る各種金属の添加量については、それらを少なくとも 
0.2重量%用いなければ効果が不足し相対理論密度、
抗折力が小さく一方これらの金属をあまり多く加えその
量が10重量%を越えろ如くになると再び相対理論密度
、抗折力の低下がありかつ高温に於ける圧縮強度の低下
もあるのでこれらの添加金属量は0.2〜10重景%重
量る。
As can be seen from the test results in Table 3 and above, the amounts of various metals added to chromium carbide are at least
If 0.2% by weight is not used, the effect will be insufficient and the relative theoretical density will be reduced.
While the transverse rupture strength is small, if too much of these metals is added and the amount exceeds 10% by weight, the relative theoretical density and transverse rupture strength will again decrease, and the compressive strength at high temperatures will also decrease. The amount of added metal is 0.2 to 10% by weight.

上記した如く本発明のセラミック材料は相対理論密度が
98.0%以上で抗折力が40kg / ++m’ と
大であり、特に高温に於ける圧縮強度が大きいという優
れた性質を有し、しかも被加熱材たる金属片やそのスケ
ールとの反応性も小なので従来用いられていた様な特別
な冷却設備の必要もなくスキ・ソドレールをはじめとす
る高温用部材として最適である。そして特に繊維状炭化
物を用いた試料にあってはその抗折力、高温圧縮強度の
点で著しく大きな値を示し一層効果的である。
As mentioned above, the ceramic material of the present invention has excellent properties such as a relative theoretical density of 98.0% or more, a transverse rupture strength of 40 kg/++m', and a high compressive strength especially at high temperatures. Since it has low reactivity with metal pieces and their scales, which are the materials to be heated, there is no need for the special cooling equipment used in the past, making it ideal for high-temperature parts such as Suki Sodrail. In particular, samples using fibrous carbide exhibit significantly large transverse rupture strength and high-temperature compressive strength, making them even more effective.

第2図〜第4図は、それぞれ本発明のセラミ・ツク材料
にてスキッドレール耐熱台を製し、スキッドを構成した
例を示す。第2図は、水冷スキッドパイプ(2)に敷設
されt−耐熱合金製ヌキラドレール(3)の上面に本発
明のセラミック材料からなる板状の耐熱台(4−1)を
設けてスキッドを構成し、これに金属片(S)を載Wす
るようにしたものである。スキッドレール(3)に対す
る耐熱台(4−11の固定は、図示のように適当な係止
具(5)を介添さればよい。第3図は、本発明のセラミ
ック材料ニてレール状の耐熱台(4−2)を形成し、こ
れを直接スキ・ソドパイプ(2)の上面に敷設し係止具
(6)で支持してスキッドを構成した例である。この場
合、rif4熱台(4−21とスキッドパイプ(2) 
との直接々触をさけるために、第4図に示すように、例
えばセラミックファイバーなどからなる断熱材層(7)
を介在させ、その上に耐熱台(4−21を敷設すること
も好ましいことである。
FIGS. 2 to 4 each show an example in which a skid rail heat-resistant stand is manufactured from the ceramic material of the present invention and a skid is constructed. FIG. 2 shows a skid constructed by installing a plate-shaped heat-resistant stand (4-1) made of the ceramic material of the present invention on the top surface of a T-heat-resistant alloy Nukiradrail (3) installed on a water-cooled skid pipe (2). , on which a metal piece (S) is placed. The heat-resistant stand (4-11) can be fixed to the skid rail (3) by using an appropriate locking tool (5) as shown in the figure. This is an example in which a skid is constructed by forming a stand (4-2), laying this directly on the upper surface of the ski/sod pipe (2), and supporting it with a locking tool (6). -21 and skid pipe (2)
In order to avoid direct contact with the
It is also preferable to interpose a heat-resistant stand (4-21) thereon.

以上述べて来た如く、本発明の#4#lセラミック材料
は、抗折力が大で、しかも高温圧縮強度が大きく、かつ
断熱性に富む為にそれを例えばスキッドレールそのもの
、あるいはスキッドレール用耐熱台の如き用途に使用し
た場合に十分に耐え得、しかも被加熱材と当接しても該
当接部から熱を奪うという事が無い為に、該被加熱材の
局部的な冷却に伴う温度むらを生ぜしめる事なく均一加
熱な達成する事が出来る。従って温度むらを緩和する為
に従来行っていた様に在炉時間を長くする必要がなく、
かつスキッドレールを介して冷却水系が外部へ運び去る
熱量も減少するので作業能率の向上及び熱使用量の減少
が図れるものである。
As mentioned above, the #4#l ceramic material of the present invention has a large transverse rupture strength, a large high-temperature compressive strength, and a high heat insulating property, so it can be used, for example, in the skid rail itself or for the skid rail. It is sufficiently durable when used in applications such as heat-resistant stands, and even when it comes into contact with the heated material, it does not take away heat from the contact area, so it can withstand the temperature associated with local cooling of the heated material. Uniform heating can be achieved without causing unevenness. Therefore, there is no need to lengthen the furnace time as was done in the past in order to alleviate temperature unevenness.
In addition, the amount of heat carried away by the cooling water system to the outside via the skid rail is also reduced, so that work efficiency can be improved and the amount of heat used can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の加熱炉炉床の断面図、第2図〜第4図は
それぞれ本発明の耐熱セラミック材料による耐熱台の使
用形態を示す要部の断面図。 図中、  (1):被加熱材たる金属片(2): スキ
ッドパイプ (3)ニスキッドレール +4−11 、 (4−21。 (4−31: #4熱台 特許出願人 久保田鉄工株式会社 (他1名) 代理人有吉教晴 第1図 第2図 第3図 第4図 福岡市南区清水2丁目20番31号 手続補正書(至)式) 1.事件の表示 昭和57年 待 許 m   第215942号2、発
明 の名称 I#n用セクセラミック材料3補正る者 事件との関係  待 註      出願人住所 氏名 久保田鉄工株式会社 (外1名)4、代 理 人 特許庁長官 若 杉 和 夫 段 】、事件の表示 昭和57年 特許願 第215942号2、発明の名称 耐熱用セラミック材料 4、補正をする者 事件との関係    特 許 出願人 住所 氏名 久保田鉄工株式会社 (他1名)4、代理人 6、補正の対象 明細書 fil、第2頁第7行目及び第9行目の「スキレッドレ
ール」を、「スキレドレールシ」(こ補正する。 (2)、第15頁第3行目の「介添さ」を、「介添させ
」に補正する。 (3)、第16頁第10行目のrilllを、r+sl
、11と補正する。
FIG. 1 is a cross-sectional view of a conventional heating furnace hearth, and FIGS. 2 to 4 are cross-sectional views of essential parts showing how the heat-resistant stand made of the heat-resistant ceramic material of the present invention is used. In the figure, (1): Metal piece that is the material to be heated (2): Skid pipe (3) Niskid rail + 4-11, (4-21. (4-31: #4 heating platform patent applicant Kubota Iron Works Co., Ltd.) (1 other person) Agent Noriharu Ariyoshi Figure 1 Figure 2 Figure 3 Figure 4 No. 2-20-31 Shimizu, Minami-ku, Fukuoka City Written amendment (total) 1. Indication of the case 1982 Waiting Permit No. 215942 2, Title of invention: I#n ceramic material 3 Relationship with the amendr's case Note: Applicant's address and name: Kubota Iron Works Co., Ltd. (1 other person) 4, Agent: Commissioner of the Japan Patent Office Wakasugi [Kazuo Dan], Indication of the case 1982 Patent Application No. 2159422, Name of the invention Heat-resistant ceramic material 4, Relationship to the case by the person making the amendment Patent Applicant Address Name Kubota Tekko Co., Ltd. (1 other person) 4. Agent 6, subject of amendment Specification file, page 2, lines 7 and 9, "skilled rail" is amended to "skilled rail" (this is corrected. (2), page 15, line 3) Correct “attendance sa” in the line to “attendance”. (3), rill in page 16, line 10, r+sl
, 11.

Claims (1)

【特許請求の範囲】 1、モリブデン、タングステン、タンタル、チタン、ニ
オブ、バナジウム、ジルコニウム、ハフニウムから選ば
れる1W以上が0.2〜10重量%、残部が炭化クロム
からなる組成の耐熱用セラミック材料。 2、モリブデン、タングステン、タンタル、チタン、ニ
オブ、ハフニウムの少なくともIllが繊維状である特
許請求の範囲第1項記載の耐熱用セラミック材料。
[Scope of Claims] 1. A heat-resistant ceramic material having a composition of 0.2 to 10% by weight of 1W or more selected from molybdenum, tungsten, tantalum, titanium, niobium, vanadium, zirconium, and hafnium, and the balance being chromium carbide. 2. The heat-resistant ceramic material according to claim 1, wherein at least Ill of molybdenum, tungsten, tantalum, titanium, niobium, and hafnium is fibrous.
JP21594282A 1982-12-09 1982-12-09 Heat-resistant ceramic material Granted JPS59107059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21594282A JPS59107059A (en) 1982-12-09 1982-12-09 Heat-resistant ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21594282A JPS59107059A (en) 1982-12-09 1982-12-09 Heat-resistant ceramic material

Publications (2)

Publication Number Publication Date
JPS59107059A true JPS59107059A (en) 1984-06-21
JPS631384B2 JPS631384B2 (en) 1988-01-12

Family

ID=16680807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21594282A Granted JPS59107059A (en) 1982-12-09 1982-12-09 Heat-resistant ceramic material

Country Status (1)

Country Link
JP (1) JPS59107059A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289476A2 (en) * 1987-04-29 1988-11-02 Sandvik Aktiebolag Cemented carbonitride alloy with improved toughness behaviour
JPS63186760U (en) * 1987-05-21 1988-11-30

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020910A (en) * 1973-06-27 1975-03-05
JPS5162105A (en) * 1974-11-18 1976-05-29 Suwa Seikosha Kk TAINETSUTAISANKASEICHOKOGOKIN

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020910A (en) * 1973-06-27 1975-03-05
JPS5162105A (en) * 1974-11-18 1976-05-29 Suwa Seikosha Kk TAINETSUTAISANKASEICHOKOGOKIN

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289476A2 (en) * 1987-04-29 1988-11-02 Sandvik Aktiebolag Cemented carbonitride alloy with improved toughness behaviour
JPS63186760U (en) * 1987-05-21 1988-11-30

Also Published As

Publication number Publication date
JPS631384B2 (en) 1988-01-12

Similar Documents

Publication Publication Date Title
CN1084393C (en) Iron aluminide useful as electrical resistance heating element
Wang et al. Microstructural evolution and growth kinetics of interfacial compounds in TiAl/Ti3SiC2 diffusion bonding joints
JPH055152A (en) Hard heat resisting sintered alloy
Córdoba et al. Synthesis of Ti3SiC2 powders: reaction mechanism
Raj et al. Elevated temperature deformation of Cr3Si alloyed with Mo
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JPS59107058A (en) Heat-resistant ceramic material
US6482759B1 (en) Molybdenum silicide material with high strength
JPS59107059A (en) Heat-resistant ceramic material
JPS59107972A (en) Heat resistant ceramic material
JPS59107970A (en) Heat resistant ceramic material
JPS5853703B2 (en) Molybdenum material with excellent hot workability
JPS59107974A (en) Heat resistant ceramic material
JPS59107971A (en) Heat resistant ceramic material
JP2002501983A (en) Iron aluminide composite and method for producing the same
JPS60145954A (en) Chromium carbide sintered body for heated material supporting surface of heating furnace
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
JPS6310114B2 (en)
JPS59107973A (en) Heat resistant ceramic material
JP3414834B2 (en) Metal particle-dispersed aluminum oxide-based sintered body and method for producing the same
JPH0297614A (en) Steel material transferring member in heating furnace
JPH082961A (en) Sintered compact of metal particle-dispersed aluminum oxide base and its production
JPS605840A (en) Material having resistance to corrosion by molten zinc
JPS60166266A (en) Silicon nitride sintered body and manufacture
Tapfer et al. Silicon nitride ceramics-Cost-and process-effectiveness in molten metal applications