JPS5910586B2 - Metal substrate for attaching semiconductor pellets - Google Patents

Metal substrate for attaching semiconductor pellets

Info

Publication number
JPS5910586B2
JPS5910586B2 JP53029521A JP2952178A JPS5910586B2 JP S5910586 B2 JPS5910586 B2 JP S5910586B2 JP 53029521 A JP53029521 A JP 53029521A JP 2952178 A JP2952178 A JP 2952178A JP S5910586 B2 JPS5910586 B2 JP S5910586B2
Authority
JP
Japan
Prior art keywords
pellet
metal substrate
mounting part
pellet mounting
outer circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53029521A
Other languages
Japanese (ja)
Other versions
JPS54122088A (en
Inventor
隆彦 市村
利之 藤井
隆 小野
国昭 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP53029521A priority Critical patent/JPS5910586B2/en
Publication of JPS54122088A publication Critical patent/JPS54122088A/en
Publication of JPS5910586B2 publication Critical patent/JPS5910586B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3205Shape
    • H01L2224/32057Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83051Forming additional members, e.g. dam structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]

Description

【発明の詳細な説明】 この発明は半導体装置の半導体ペレット(以下単にペレ
ットと記す)を装着する金属基板の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a metal substrate on which a semiconductor pellet (hereinafter simply referred to as pellet) of a semiconductor device is mounted.

5 例えば電力用トランジスタもしくは電力用サイリス
タなどの定格出力の大きい電力用半導体装置では、その
ペレット内に動作時に消費される電力量が比較的大きい
ので、この消費電力により上記ペレットの温度が高温度
に上昇する。
5 For example, in a power semiconductor device with a large rated output, such as a power transistor or a power thyristor, a relatively large amount of power is consumed in the pellet during operation, so this power consumption causes the temperature of the pellet to rise. Rise.

このように、10電力用半導体装置では、動作する度毎
にそのペレットの温度が繰返し高温度になるヒートサイ
クルよつて、上記ペレットとこのペレットが装着されて
いる金属基板との間に熱膨張係数の差による熱応力が繰
返し発生し、この熱応力により上記ペレ15 ツトが劣
化するという問題があつた。この問題を解決するために
、上記ペレットを金属基板に装着するろう材の厚さが厚
くなるようにすることによつて、上記熱応力を緩和する
方法が広く用いられている。なお上記ろう材としては、
一般に鉛とス20ズを主成分とした半田が使用されてい
る。第1図はこのような配慮をした従来のメサ形パワー
トランジスタペレット装着用金属基板を示す斜視図、第
2図は第1図の…−■線での断面図である。25図にお
いて、1は銅製の金属基板、2はペレットが装着される
ペレット装着部で、このペレット装着部2はこゝに装着
されるペレットの外形より多少小さくなるように形成さ
れている。
In this way, in the 10-power semiconductor device, due to the heat cycle in which the temperature of the pellet repeatedly increases each time it is operated, the coefficient of thermal expansion between the pellet and the metal substrate on which this pellet is mounted increases. There was a problem in that thermal stress caused by the difference in temperature repeatedly occurred, and the pellet 15 deteriorated due to this thermal stress. To solve this problem, a method is widely used in which the thermal stress is alleviated by increasing the thickness of the brazing material used to attach the pellets to the metal substrate. The brazing filler metal mentioned above is
Generally, solder whose main components are lead and tin is used. FIG. 1 is a perspective view showing a conventional metal substrate for mounting mesa-type power transistor pellets with such consideration, and FIG. 2 is a sectional view taken along the line . . . -■ in FIG. 1. In Fig. 25, 1 is a copper metal substrate, 2 is a pellet mounting part on which a pellet is mounted, and this pellet mounting part 2 is formed to be somewhat smaller than the outer shape of the pellet to be mounted thereon.

3はペレット装着部2の主面部に所定間隔おいて互いに
平30行に配設された複数条の細溝、4は隣接する細溝
3間に形成された凸条、5はペレット装着部2を取り囲
んで形成された外周溝で、この外周溝5の外周壁はペレ
ット装着部2に装着されるペレットの外形より大きくな
るように形成され、その底面35は、第2図に示すよう
に、金属基板1の主面に実質的に平行である。
3 is a plurality of thin grooves arranged in 30 rows on the main surface of the pellet mounting portion 2 at predetermined intervals; 4 is a protrusion formed between adjacent narrow grooves 3; 5 is a pellet mounting portion 2. The outer circumferential wall of the outer circumferential groove 5 is formed to be larger than the external shape of the pellet to be mounted on the pellet mounting section 2, and the bottom surface 35 of the outer circumferential groove 5 is, as shown in FIG. It is substantially parallel to the main surface of the metal substrate 1.

なお第2図において、W1およびtlはそれぞれ細溝3
の幅および深さである。第3図はメサ形パワートランジ
スタのペレツトが、第1図および第2図に示す金属基板
1のペレツト装着部2に装着された状態を示し、第2図
に対応する断面図である。図において、6はメサ形パワ
ートランジスタのペレツト、7はペレツト6をペレツト
装着部2に装着する半田層を示す。
In FIG. 2, W1 and tl are the narrow grooves 3, respectively.
width and depth. FIG. 3 is a sectional view corresponding to FIG. 2, showing a state in which a pellet of a mesa-type power transistor is mounted on the pellet mounting portion 2 of the metal substrate 1 shown in FIGS. 1 and 2. FIG. In the figure, reference numeral 6 indicates a pellet of a mesa-type power transistor, and reference numeral 7 indicates a solder layer for attaching the pellet 6 to the pellet attachment portion 2.

このように、ペレツト装着部2の主面部に細溝3を設け
れば、ペレツト6をペレツト装着部2に装着するときに
、毛細現象により細溝3に流れこんだ半田と、ペレツト
6と凸条4との間に介在する半田との間の表面張力によ
り、ペレツト装着部2の主面部が平坦なものに比べて半
田層7の厚さd1を厚くすることができる。
In this way, if the narrow grooves 3 are provided in the main surface of the pellet mounting section 2, when the pellet 6 is mounted on the pellet mounting section 2, the solder that has flowed into the narrow groove 3 due to the capillary phenomenon and the pellets 6 and the convex Due to the surface tension between the strip 4 and the solder interposed between the strips 4 and the solder, the thickness d1 of the solder layer 7 can be made thicker than when the main surface of the pellet mounting section 2 is flat.

よつて、この厚さの厚い半田層7により、ペレツト6と
ペレツト装着部2との間に生ずる熱膨張係数の差による
熱応力を緩和することができる。また、外周溝5の外周
壁がペレツト6の外径より大きくなるように形成されて
いるので、ペレツト6とペレツト装着部2とのろう付け
時に、これらの間からはみ出た余分の半田が外周溝5内
へ流れ込んで収容されるため、上記余分の半田によりペ
レツト6のPN接合が短絡されるようなことがない。と
ころで、細溝3の幅W1と深さT,とが小さい場合には
、例えば半田層7内に発生した気泡などが細溝3内を移
動してその両端から脱出することが困難になるので、半
田層7内に空泡(巣)8ができやすくなる。
Therefore, the thick solder layer 7 can alleviate the thermal stress caused by the difference in coefficient of thermal expansion between the pellet 6 and the pellet mounting portion 2. In addition, since the outer circumferential wall of the outer circumferential groove 5 is formed to be larger than the outer diameter of the pellet 6, when the pellet 6 and the pellet mounting part 2 are brazed, excess solder that protrudes from between them is transferred to the outer circumferential groove. Since the solder flows into the pellet 5 and is contained therein, the PN junction of the pellet 6 will not be short-circuited by the excess solder. By the way, if the width W1 and depth T of the narrow groove 3 are small, it becomes difficult for air bubbles generated in the solder layer 7 to move inside the narrow groove 3 and escape from both ends thereof. , voids (cavities) 8 are likely to be formed within the solder layer 7.

そして、この空泡8が発生すれば、半田層7の接着強度
が低下すると共に、ペレツト6から金属基板1への熱抵
抗が増大する。しかしながら、通常、ペレツト装着部2
は金属基板1の主面部に外周溝5と細溝3と共に同時に
コイニング加工(圧印加工)によつて形成されるので、
このコイニング加工時に、ペレツト装着部2の肉が第2
図の矢印P方向に流動する。しかるに、第2図に示す外
周溝5の断面形状では、上記ペレツト装着部2の肉の流
動が容易でないので、細溝3の幅W1と深さt1とを十
分大きな所望の大きさに形成することが非常に困難であ
るという欠点があつた。この発明は、上述の欠点に鑑み
てなされたもので、ペレツト装着部の少なくとも細溝を
横切る方向の両側に、上記ペレツト装着部から離れるに
つれて深さが深くなるような断面形状の溝部を設けフる
ことにより、上記ペレツト装着部のコイニング成形時に
上記ペレツト装着部の肉の逃げを少なくして、所望の幅
と深さの細溝を上記ペレツト装着部の主面部に容易に形
成することができる半導体ペレツト装着用金属基板を提
案することを目的とする。
If these air bubbles 8 are generated, the adhesive strength of the solder layer 7 decreases, and the thermal resistance from the pellet 6 to the metal substrate 1 increases. However, usually the pellet loading section 2
is formed simultaneously with the outer circumferential groove 5 and the narrow groove 3 on the main surface of the metal substrate 1 by coining process (coining process).
During this coining process, the meat of the pellet attachment part 2 is
It flows in the direction of arrow P in the figure. However, the cross-sectional shape of the outer circumferential groove 5 shown in FIG. 2 does not allow the meat of the pellet mounting portion 2 to flow easily, so the width W1 and depth t1 of the narrow groove 3 are formed to a sufficiently large desired size. The drawback was that it was extremely difficult to do so. This invention has been made in view of the above-mentioned drawbacks, and includes grooves having a cross-sectional shape that becomes deeper as the distance from the pellet mounting section increases at least on both sides of the pellet mounting section in the direction across the narrow groove. By doing so, it is possible to reduce the escape of the flesh of the pellet mounting part during coining molding of the pellet mounting part, and to easily form a narrow groove of a desired width and depth on the main surface of the pellet mounting part. The purpose is to propose a metal substrate for mounting semiconductor pellets.

以下、この発明によるメサ形パワートランジスタのペレ
ツト装着用金属基板について説明する。
Hereinafter, a metal substrate for attaching pellets to a mesa-type power transistor according to the present invention will be explained.

第4図および第5図において、第1図および第2図と同
一符号は夫々同一または相当部分を示しており、第1図
および第2図と異なるところは、外周溝5を、ペレツト
装着部2から離れるに従つて深さが深くなるような断面
形状にした点である。なお、第5図において、θは外周
溝5の底面5bが金属基板1の主面に対するテーパー角
である。このような金属基板1は、第5図に示したパン
チ10を用いてペレツト装着部2と外周溝5とを同時に
コイニング加工して形成される。しかるに外周溝5の底
部5bに角度θをつけるようにしたので、コイニング時
にペレツト装着部2から外周溝5へ向かう被加工物の肉
の逃げを少なくすることができ、安定したコイニング加
工が可能となる。このテーパ角θは約2イから約45が
までが有効で、第4図および第5図のものに関する実験
では、θ=34〜20びが最も好ましい角度であつた。
これにより、所望する十分な大きさの深さ及び幅を持つ
た細溝3を容易に形成することができる。例えば第2図
に示した従来の断面形状の外周溝5では、細構3の断面
形状が深さt1ご25μm、幅Wl.:′120μmあ
るいはt1ご30μM,wlご80μm程度であつたの
に対し、第5図に示したテーパ角θをθ:5た程度にし
た場合は、細溝3の断面形状を深さt1ご50μm1幅
W2ご150μm程度にすることができた。このように
第5図に示した細溝3の断面積を従来のもの\それに比
べて2倍以上にすることができるので、従来例において
述べた半田層7の巣8の発生を少なくすることができる
。従つて固着に寄与する半田厚みを適当な値にまで厚く
でき、金属基板1とペレツト6との間の十分な固着が得
られると共に、半導体装置のより小さな熱抵抗を実現で
き、耐ヒートサイクル性の向上が可能となつた。実際に
本発明を適用して組立てた結果、上記特徴のうち特に半
田の巣8は従来のものに比べて大きなものは全くなくな
り、細溝3の底部付近に極く一部存在するのみにまで改
善でき、また、固着強度も十分な値が得られるに至つた
。なお、上記実施例では外周溝5の底面をテーパー角θ
の平面にしたが、必ずしも平面にする必要はなく、ペレ
ツト装着部2から離れるにつれて深さが深くなるような
断面形状の溝であれば差支えない。
In FIGS. 4 and 5, the same reference numerals as in FIGS. 1 and 2 indicate the same or corresponding parts, and the difference from FIGS. 1 and 2 is that the outer circumferential groove 5 is The point is that the cross-sectional shape is such that the depth increases as the distance from No. 2 increases. In FIG. 5, θ is the taper angle of the bottom surface 5b of the outer circumferential groove 5 with respect to the main surface of the metal substrate 1. Such a metal substrate 1 is formed by simultaneously coining the pellet mounting portion 2 and the outer circumferential groove 5 using a punch 10 shown in FIG. However, since the angle θ is formed at the bottom 5b of the outer circumferential groove 5, it is possible to reduce the escape of the material of the workpiece from the pellet mounting part 2 toward the outer circumferential groove 5 during coining, and stable coining processing is possible. Become. This taper angle .theta. is effective from about 2 to about 45 degrees, and in experiments with the ones shown in FIGS. 4 and 5, the most preferable angle was .theta.=34 to 20 degrees.
Thereby, it is possible to easily form the narrow groove 3 having a desired sufficient depth and width. For example, in the outer circumferential groove 5 having the conventional cross-sectional shape shown in FIG. 2, the cross-sectional shape of the fine structure 3 has a depth t1 of 25 μm and a width Wl. :'120 μm or 30 μM per t1 and 80 μm per wl, but when the taper angle θ shown in Fig. 5 is set to θ:5, the cross-sectional shape of the narrow groove 3 is It was possible to make the width W2 approximately 50 μm and 150 μm. In this way, the cross-sectional area of the narrow groove 3 shown in FIG. 5 can be more than doubled compared to the conventional one, so that the occurrence of cavities 8 in the solder layer 7 mentioned in the conventional example can be reduced. Can be done. Therefore, the solder thickness that contributes to adhesion can be increased to an appropriate value, and sufficient adhesion between the metal substrate 1 and the pellet 6 can be obtained, as well as lower thermal resistance of the semiconductor device and improved heat cycle resistance. It has become possible to improve As a result of actually assembling the present invention, the solder cavities 8, which have the above-mentioned features, are no longer large compared to the conventional ones, and only a small portion exists near the bottom of the narrow groove 3. It was possible to improve the bonding strength, and a sufficient value of adhesion strength was also obtained. In addition, in the above embodiment, the bottom surface of the outer circumferential groove 5 has a taper angle θ.
However, it is not necessarily necessary to have a flat surface, and any groove having a cross-sectional shape that becomes deeper as it moves away from the pellet mounting portion 2 may be used.

また上記実施例では、ペレツト装着部2の全周に亘つて
外周溝5を設けるようにしたが、ペレツト装着部2の少
なくとも細溝3を横切る方向の両側に、ペレツト装着部
から離れるにつれて深さが深くなるような断面形状の溝
を設ければ、この発明の効果は十分得られる。
Further, in the above embodiment, the outer circumferential groove 5 is provided over the entire circumference of the pellet mounting part 2, but at least on both sides of the pellet mounting part 2 in the direction crossing the narrow groove 3, the depth increases as the distance from the pellet mounting part increases. The effects of the present invention can be sufficiently obtained by providing a groove with a cross-sectional shape that is deep.

更にこの発明は、電力用トランジスタのみならず他の電
力用半導体装置、例えばサイリスタ、ダイオードなどに
も適用できることはいうまでもない。
Furthermore, it goes without saying that the present invention can be applied not only to power transistors but also to other power semiconductor devices such as thyristors and diodes.

以上、説明したように、この発明によれば、ペレツト装
着部の少なくとも細溝を横切る方向の両側に、上記ペレ
ツト装着部から離れるにつれて深さが深くなるような形
状の溝部を設けるようにしたので、上記ペレツト装着部
のコイニング成形が容易となり、上記ペレツト装着部の
主面部に十分な大きさの幅と深さを有する細溝を形成す
ることができるので、上記ペレツト装着部にペレツトを
装着する半田層内に気泡が発生するのを抑制し、上記半
田層の接着強度の減少を防止すると\もにその放熱抵抗
が増大するのを防止することができる。
As explained above, according to the present invention, grooves are provided at least on both sides of the pellet mounting section in the direction across the narrow groove, and the grooves are shaped so that the depth increases as the distance from the pellet mounting section increases. , the coining of the pellet mounting part is facilitated, and a narrow groove having a sufficient width and depth can be formed on the main surface of the pellet mounting part, so that pellets can be mounted in the pellet mounting part. By suppressing the generation of air bubbles in the solder layer and preventing the adhesive strength of the solder layer from decreasing, it is also possible to prevent the heat dissipation resistance from increasing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のメサ形パワートランジスタのペレツト装
着用金属基板を示す斜視図、第2図は第1図の一線での
断面図、第3図はメサ形パワートランジスタのペレツト
が第1図および第2図に示す金属基板に装着された状態
を示す断面図、第4図はこの発明の一実施例を示す斜視
図、第5図は第4図のV−V線での断面図である。 図において、1は金属基板、2はペレツト装着部、3は
細溝、4は凸条、5は外周溝、6はペレツトである。
Fig. 1 is a perspective view showing a metal substrate for attaching pellets of a conventional mesa-type power transistor, Fig. 2 is a cross-sectional view taken along the line in Fig. 1, and Fig. 3 shows a pellet of a mesa-type power transistor shown in Fig. FIG. 2 is a cross-sectional view showing the state in which the metal board is mounted, FIG. 4 is a perspective view showing an embodiment of the present invention, and FIG. 5 is a cross-sectional view taken along line V-V in FIG. 4. . In the figure, 1 is a metal substrate, 2 is a pellet mounting part, 3 is a thin groove, 4 is a convex strip, 5 is an outer circumferential groove, and 6 is a pellet.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体ペレットが装着される主面部に設けられ、所
定間隔を隔てゝ互いに平行に整列した複数条の細溝を有
するペレット装着部と、少なくとも上記細溝を横切る方
向のペレット装着部両側に上記ペレット装着部から離れ
るにつれて深さが深くなるような断面形状の溝部を備え
た半導体ペレット装着用金属基板。
1. A pellet mounting part that is provided on the main surface part on which the semiconductor pellets are mounted and has a plurality of thin grooves arranged parallel to each other at predetermined intervals, and the pellet mounting part is provided on both sides of the pellet mounting part in a direction that crosses at least the narrow grooves. A metal substrate for attaching semiconductor pellets, which has a groove section with a cross-sectional shape that becomes deeper as it moves away from the attachment section.
JP53029521A 1978-03-15 1978-03-15 Metal substrate for attaching semiconductor pellets Expired JPS5910586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53029521A JPS5910586B2 (en) 1978-03-15 1978-03-15 Metal substrate for attaching semiconductor pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53029521A JPS5910586B2 (en) 1978-03-15 1978-03-15 Metal substrate for attaching semiconductor pellets

Publications (2)

Publication Number Publication Date
JPS54122088A JPS54122088A (en) 1979-09-21
JPS5910586B2 true JPS5910586B2 (en) 1984-03-09

Family

ID=12278398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53029521A Expired JPS5910586B2 (en) 1978-03-15 1978-03-15 Metal substrate for attaching semiconductor pellets

Country Status (1)

Country Link
JP (1) JPS5910586B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178532U (en) * 1986-04-30 1987-11-12
TWI281717B (en) * 2006-05-17 2007-05-21 Univ Tsinghua Apparatus for aligning microchips on substrate and method for the same
EP2605278A1 (en) * 2011-12-15 2013-06-19 Nxp B.V. Lead Frame with Die Attach Bleeding Control Features

Also Published As

Publication number Publication date
JPS54122088A (en) 1979-09-21

Similar Documents

Publication Publication Date Title
KR100396130B1 (en) Semiconductor device
KR101391924B1 (en) Semiconductor package
JP2002151633A (en) Resin-sealed semiconductor device
TW510158B (en) Heat dissipation structure for semiconductor device
JP6008750B2 (en) Semiconductor device
JP2857648B2 (en) Electronic component manufacturing method
JPS5910586B2 (en) Metal substrate for attaching semiconductor pellets
US20230051389A1 (en) Semiconductor device and method of manufacturing semiconductor device
JP2828358B2 (en) Semiconductor heat dissipation structure
JPH073848B2 (en) Semiconductor device
JP2002100722A (en) Semiconductor device
JP2836219B2 (en) Resin-sealed semiconductor package
JP2660732B2 (en) Semiconductor device
JP2004235217A (en) Semiconductor device and method for manufacturing electronic device
JPH0476944A (en) Heat radiating structure of semiconductor device and mounting method for same
JPS63293928A (en) Electronic device
JPH0817975A (en) Semiconductor device
JP7178978B2 (en) Semiconductor device and method for manufacturing semiconductor device
JPH0870087A (en) Lead frame
JP3074010U (en) Heat dissipation die set
TWI678781B (en) Pad structure and integrated circuit die
JPS63208255A (en) Electronic device
JP2003023126A (en) Semiconductor device
JPH10125831A (en) Heat sink radiation fin
JPS6193654A (en) Resin sealed type semiconductor device