JPS59105552A - Gas detecting element - Google Patents

Gas detecting element

Info

Publication number
JPS59105552A
JPS59105552A JP21596982A JP21596982A JPS59105552A JP S59105552 A JPS59105552 A JP S59105552A JP 21596982 A JP21596982 A JP 21596982A JP 21596982 A JP21596982 A JP 21596982A JP S59105552 A JPS59105552 A JP S59105552A
Authority
JP
Japan
Prior art keywords
sensitivity
weight
added
gas
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21596982A
Other languages
Japanese (ja)
Other versions
JPH0225455B2 (en
Inventor
Nobuaki Murakami
伸明 村上
Shozaburo Sunahara
砂原 将三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUIGARO GIKEN KK
Figaro Engineering Inc
Original Assignee
FUIGARO GIKEN KK
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUIGARO GIKEN KK, Figaro Engineering Inc filed Critical FUIGARO GIKEN KK
Priority to JP21596982A priority Critical patent/JPS59105552A/en
Publication of JPS59105552A publication Critical patent/JPS59105552A/en
Publication of JPH0225455B2 publication Critical patent/JPH0225455B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Abstract

PURPOSE:To shorten the initial erroneous operation time after current supply is re-opened and to enhance sensitivity and a response speed to CH4 or isobutane while lowering sensitivity to obstruction gas, by providing a pair of electrodes to a gas sensor prepared by adding a small amount of Pd and, further, a small amount of Pt to SnO2. CONSTITUTION:A semiconductor 1 comprising metal oxide wherein 0.1- 0.5pts.wt. of Pd and, further, 0.01-0.06pts.wt. of Pt are added to 100pts.wt. of SnO2 and the addition wt. ratio of Pd and Pt is 15:1-3:1 is molded and a pair of noble metal electrodes 2, 3 also used as heaters are formed on said semiconductor 1. A current is supplied to the electrodes 2, 3 of this apparatus to heat the same to 400 deg.C and gas is detected at this temp. By this method, an element high in sensitivity to CH4 or isobutane, suppressed in sensitivity to obstruction gas such as H2 or alcohol, having good response speed and shortened in the erroneous operation time at the initial period of current supply is obtained.

Description

【発明の詳細な説明】 この発明はSnO2に少量のPdを添加したガス検出素
子の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a gas detection element in which a small amount of Pd is added to SnO2.

この明細書での用語法として、Pdやptはその金属だ
けでなく酸化物や塩化物等の化合物をも意味するものと
し、その添加量は常に金属Pdや金属Pjに換算した値
をSnO□100重量部当りの添加重量部として示すも
のとする。このようにするのはPdやPtの存在状態が
、素子の使用等によって変化し特定し難いことによる。
As used in this specification, Pd and pt refer not only to the metal but also to compounds such as oxides and chlorides, and the amount added is always the value converted to metal Pd or metal Pj by SnO□ It shall be expressed as parts by weight added per 100 parts by weight. This is done because the state of existence of Pd and Pt changes depending on the use of the element and is difficult to specify.

SnO2に少量のPdを添加した素子は、CH4やイソ
ブタンへの感度が高く経時的にも安定であるため、広く
用いられている。例えば特公昭5〇−23g17号は、
粒径約1μのS n 02に0.8wt%のPctを加
えた金属酸化物半導体をガス検出材料とし、これにSn
O3と等重量のアルミナ骨材を加えシリカゾルをバイン
ダーとして成型した素子を提案し、イソブタンに高感度
で長期間連続して使用しても安定な素子が得られること
を報告している。
Elements in which a small amount of Pd is added to SnO2 are widely used because they have high sensitivity to CH4 and isobutane and are stable over time. For example, Special Public Interest Publication No. 50-23g17,
A metal oxide semiconductor made by adding 0.8 wt% Pct to Sn 02 with a particle size of approximately 1 μm was used as a gas detection material, and Sn
We have proposed an element molded by adding alumina aggregate of the same weight as O3 and using silica sol as a binder, and have reported that it is highly sensitive to isobutane and is stable even when used continuously for a long period of time.

しかしこのような素子にも問題が有り、第1に通電再開
直後に素子の抵抗値が異常に低下する時間(以下初期誤
動作時間とする)が長く、第2に放置状態から通電状態
への移行時に素子の抵抗値が1〜3ケ月の間異常な挙動
を示す(以下この現象をレベルシフトとする)。そして
ガス検出装置は初期誤動作によって誤報し、レベルシフ
トによって検出精度が低下する。
However, such devices also have problems, firstly, the time it takes for the resistance value of the element to abnormally drop immediately after power is resumed (hereinafter referred to as initial malfunction time) is long, and secondly, the transition from an unattended state to a energized state is long. Sometimes, the resistance value of the element exhibits abnormal behavior for 1 to 3 months (hereinafter, this phenomenon will be referred to as a level shift). Then, the gas detection device gives a false alarm due to initial malfunction, and the detection accuracy decreases due to the level shift.

初期誤動作やレベルシフトは、SnO□lの素子や、P
tやAu等の助触媒を加えた素子でも生ずる。むしろ実
際には、Pdを加えた素子が最も初期誤動作時間が短く
レベルシフトも小さいのである。そして初期誤動作やレ
ベルシフトに対して、Pdの添加以上に効果のある対策
は発見されていない。
Initial malfunctions and level shifts are caused by SnO□l elements and P
This phenomenon also occurs in devices to which a co-catalyst such as T or Au is added. Rather, in reality, the element to which Pd is added has the shortest initial malfunction time and the smallest level shift. No countermeasure has been discovered that is more effective than the addition of Pd against initial malfunctions and level shifts.

この発明は、通電再開直後の初期誤動作を短縮し、レベ
ルシフトを小さくした素子の提供を目的とする。
The object of the present invention is to provide an element that reduces the initial malfunction immediately after restarting energization and reduces level shift.

この発明はPdとPtとの複合効果に着目したもので、
SnO□に対して0.1〜0.5重世部のPdと0.0
1〜0.06重量部のPtとを併用し、PdとPjとの
添加重量の比を15=1〜3:1としたことを特徴とす
る。
This invention focuses on the combined effect of Pd and Pt,
Pd of 0.1 to 0.5 overlap with SnO□ and 0.0
It is characterized in that 1 to 0.06 parts by weight of Pt is used in combination, and the weight ratio of Pd to Pj is 15=1 to 3:1.

以下にこの発明を実施例に基づいて説明する。The present invention will be explained below based on examples.

ill  ガス検出素子の製造例 5nC14水溶液をNH3で中和し、ややNH3過剰(
pH7〜8)で水酸化スズを沈澱させる。水酸化スズの
沈澱に水を加え、遠心分離により沈澱と水とを分離し、
沈澱を洗浄する。ついで水酸化スズを100°Cで1時
間乾燥し、800’Cに空気気流中で3時間加熱し、S
nOを得る。
ill Gas detection element production example 5NC14 aqueous solution was neutralized with NH3, and a slight excess of NH3 (
tin hydroxide is precipitated at pH 7-8). Add water to the tin hydroxide precipitate, separate the precipitate and water by centrifugation,
Wash the precipitate. The tin hydroxide was then dried at 100°C for 1 hour, heated to 800°C in a stream of air for 3 hours, and the S
Obtain nO.

SnO□に塩化白金酸と塩化パラジウムとの混合水溶液
を加えてパラジウムや白金を含浸させ、乾燥後700℃
に1時間加熱し、PtやPdを担持させる。ついでSn
O3と等重量の1000メツシユのアルミナを混合し、
5no21.00重量部に対して約1重量部の不定形シ
リカゾルをバインダーとし、第1図に示す形状の素子に
成型する。図において(1)は金属酸化物半導体、L2
L (31は使用時に約1.5Ωとなる一対のヒータ兼
用の貴金属電極で、成型はあらかじめ並行に配置した貴
金属電極(2)。
Add a mixed aqueous solution of chloroplatinic acid and palladium chloride to SnO□ to impregnate it with palladium and platinum, and dry at 700°C.
The mixture is heated for 1 hour to support Pt and Pd. Then Sn
Mix 1000 mesh of alumina of equal weight with O3,
About 1 part by weight of amorphous silica sol was used as a binder for 1.00 parts by weight of 5no2, and the element was molded into an element having the shape shown in FIG. In the figure, (1) is a metal oxide semiconductor, L2
L (31 is a pair of noble metal electrodes that also serve as a heater and have a resistance of about 1.5Ω when in use, and the noble metal electrodes (2) are molded in advance and arranged in parallel.

(3)に半導体(1)を塗布し、600°Cに10分加
熱した後、不定形シリカゾルを半導体+11に含浸させ
再度700°Cに10分間加熱することにより行った。
Semiconductor (1) was applied to (3), heated at 600°C for 10 minutes, and then semiconductor +11 was impregnated with amorphous silica sol and heated again at 700°C for 10 minutes.

このようにして各組成の素子を30個ずつ製作する。In this way, 30 elements of each composition are manufactured.

(2)測定回路と測定方法 ガス検出素子(10)の測定及び通電用回路を第2図に
示す。素子(lO)の各ヒータ兼用電極+21. !3
+にそれぞれトランス(11)を介して0.8v○1t
のヒータ電圧を加え、素子(lO)を約400°Cに加
熱する。素子(10)には4にΩの負荷抵抗(12)を
接続し、トランス(l 1)により10 voltの回
路電圧を供給し、抵抗(12)の両端間電圧(VRL)
から素子(lO)の特性を求める。素子(lO)の加熱
温度を400°Cとしたのは、0.1〜0.5重量部の
Pdを加えた素子に対して最も好ましい結果が得られる
温度だからである。加熱温度を下げるとCH4やイソブ
タンへの相対感度が低下し、H2やアルコールへの感度
が増す。またガスへの応答速度が低下し、初期誤動作時
間も長くなる。
(2) Measuring circuit and measuring method A circuit for measuring and energizing the gas detection element (10) is shown in FIG. Each heater electrode of the element (lO) +21. ! 3
+0.8v○1t via transformer (11) respectively
A heater voltage of 10.degree. C. is applied to heat the element (lO) to about 400.degree. A load resistor (12) of 4Ω is connected to the element (10), a circuit voltage of 10 volts is supplied by the transformer (l1), and the voltage across the resistor (12) (VRL) is
The characteristics of the element (lO) are determined from The heating temperature of the element (lO) was set to 400°C because this is the temperature at which the most favorable results can be obtained for an element to which 0.1 to 0.5 parts by weight of Pd is added. When the heating temperature is lowered, the relative sensitivity to CH4 and isobutane decreases, and the sensitivity to H2 and alcohol increases. Furthermore, the response speed to gas decreases, and the initial malfunction time also increases.

加熱温度を増すと、金属酸化物半導体の熱的劣化が進み
H2やアルコールへの感度が経時的に増大する。このよ
うな理由で、素子(lO)の通電温度を400°Cとす
る。
When the heating temperature is increased, thermal deterioration of the metal oxide semiconductor progresses, and sensitivity to H2 and alcohol increases over time. For this reason, the current supply temperature of the element (lO) is set to 400°C.

各素子を400 ’Cに1ケ月間通電加熱した後に測定
を開始する。得られた素子30個のうち10個を用いて
各種ガスへの感度や応答速度及び素子の抵抗温度係数を
求める。また他の10個を用いて初期誤動作時間を求め
る。残りの10個のうち5個を用いてレベルシフトにつ
いて測定し、他の5個を連続通電して比較例とする。ま
たこれらの素子10個により素子の経時特性を確認する
。測定結果は原則として平均値により表示し、測定雰囲
気は20℃で湿度65%とし温度や湿度の影響をさける
Measurement is started after heating each element to 400'C for one month. Sensitivity to various gases, response speed, and temperature coefficient of resistance of the elements are determined using 10 of the 30 elements obtained. In addition, the initial malfunction time is determined using the other 10 items. Level shift was measured using 5 out of the remaining 10, and the other 5 were continuously energized to serve as a comparative example. Furthermore, the aging characteristics of the elements were confirmed using these 10 elements. In principle, the measurement results are displayed as average values, and the measurement atmosphere is set at 20° C. and 65% humidity to avoid the effects of temperature and humidity.

結果を表にまとめて示す。The results are summarized in a table.

+31  Pdの添加効果 Pdの添加は水素やアルコール等の防害ガスへの感度を
抑制し、CH4やイソブタンへの感度と応答速度とを高
める。この効果は0.1重量部以上の添加で著しく大き
くなる。Pdを0゜5重量部以上添加すると、抵抗温度
係数が増大して電源電圧の変動(ヒータ電圧の変動)に
よる検出誤差が増大する。また長期間連続通電するとH
2やアルコールへの感度が増す現象が生じ、素子の信頼
性を損ねる。
+31 Effect of addition of Pd Addition of Pd suppresses sensitivity to harmful gases such as hydrogen and alcohol, and increases sensitivity and response speed to CH4 and isobutane. This effect becomes significantly greater when 0.1 part by weight or more is added. When Pd is added in an amount of 0.5 parts by weight or more, the temperature coefficient of resistance increases and detection errors due to fluctuations in power supply voltage (fluctuations in heater voltage) increase. Also, if the current is turned on continuously for a long period of time,
A phenomenon of increased sensitivity to 2 and alcohol occurs, impairing the reliability of the device.

0.1重量部以下のptをPdと併用しても(試料No
  2〜9)、ガスへの感度と応答速度はあまり変化せ
ず、この添加量の範囲ではガスへの感度と応答速度はP
dの添加量により定まる。
Even if 0.1 parts by weight or less of pt is used in combination with Pd (sample No.
2-9), the sensitivity to gas and the response speed do not change much, and in this range of addition amount, the sensitivity to gas and the response speed are P
It is determined by the amount of d added.

ガスへの感度と応答速度の面から、Pdの添加量を01
〜0.5重量部とする。
From the viewpoint of sensitivity to gas and response speed, the amount of Pd added was set to 0.1
~0.5 parts by weight.

(4)初期誤動作時間 10日間無通電で放置した素子10個について、通電開
始後3分程度の挙動を調べる。初期誤動作時間として、
イソブタン500 ppmに相当する抵抗値まで素子の
抵抗値が回復するのに要する時間を示す。
(4) Initial malfunction time: The behavior of the 10 elements left without energization for 10 days is examined for about 3 minutes after the start of energization. As the initial malfunction time,
It shows the time required for the resistance value of the element to recover to the resistance value corresponding to 500 ppm of isobutane.

初期誤動作は少量のPt添加により著しく短縮し、試料
NO[1jのpt無添加の素子では第3図の破線の)の
ように約90秒の初期誤動作時間を要するのに対して、
0.03重量部のPtを併用した素子(試料No (4
) )では約30秒に過ぎない(第3図実線(A))。
The initial malfunction time is significantly shortened by the addition of a small amount of Pt, whereas it takes about 90 seconds for the initial malfunction time as in sample No. 1j (indicated by the broken line in Fig. 3 for the element without pt addition).
Element using 0.03 parts by weight of Pt (sample No. (4)
)), it takes only about 30 seconds (solid line (A) in Figure 3).

Ptの添加効果はPtとPdとの添加量の比によって定
まり、Ptの添加量が小さい場合Pdの添加量を増すと
効果が失なわれてしまう(試料3と試料8)。またPt
添加量が大きい場合は、Pd添加量を減少させても失な
われてしまう(試料5と試料7)。良い結果が得られる
のはPt/Pdの比がI/15〜1/3の範囲に限られ
る(試料3〜5及び試料9)。
The effect of adding Pt is determined by the ratio of the amounts of Pt and Pd added, and when the amount of Pt added is small, the effect is lost when the amount of Pd added is increased (Samples 3 and 8). Also Pt
If the amount added is large, Pd will be lost even if the amount added is reduced (Samples 5 and 7). Good results are obtained only when the Pt/Pd ratio is in the range of I/15 to 1/3 (Samples 3 to 5 and Sample 9).

(5)  レベルシフト 3j月間無通電放置した素子の、通電再開直後の挙動を
第4図に示す。実線(ト)は試料No f41のPjを
併用した素子の結果を示し、破線(13)は試料N0(
1)のPt無添加の素子の特性を示す。なお結果はイソ
ブタン8000 ppmに対する素子5個の抵抗値の平
均を示すものである。いずれの場合も、最初素子の抵抗
値は異常に低下し、その後かなり高抵抗化した後に2週
間から2j月程度で安定する。
(5) Level Shift 3j Figure 4 shows the behavior of an element that has been left without energization for a month immediately after energization is resumed. The solid line (g) shows the results of the element using sample No f41 in combination with Pj, and the broken line (13) shows the result of the element using sample No f41 (
1) The characteristics of the Pt-free element are shown. Note that the results show the average resistance value of five elements with respect to 8000 ppm of isobutane. In either case, the resistance value of the element first drops abnormally, then increases to a considerably high resistance value, and then stabilizes in about 2 weeks to 2 months.

この現象をレベルシフトとすると、レベルシフトによる
変化は素子の抵抗値として最大で約30%、検出ガス濃
度として約60%になる。しかしレベルシフトは素子の
不可逆劣化を意味するものではなく、レベルシフト終了
後の素子の抵抗後は無通電放置に移す前の値に一致する
。従ってレベルシフトは長期間無通電状態におくことに
よって生ずる一種のヒステリシ子現象である。
If this phenomenon is referred to as a level shift, the change due to the level shift will be approximately 30% at maximum in the resistance value of the element and approximately 60% in the detected gas concentration. However, the level shift does not mean irreversible deterioration of the element, and the resistance of the element after the level shift is equal to the value before being left unenergized. Therefore, the level shift is a type of hysteresis phenomenon caused by leaving the device in a non-energized state for a long period of time.

第4図の実線<A)と破線(B)とを比較すると、Pt
の併用(実線(8))によりレベルシフトの完了に要す
る期間は著しく短縮される。レベルシフトに対してPj
が有効な範囲は、初期誤動作の場合と同様に、PtとP
dとの添加比によって定まり、Pt/Pdの比が1/1
5〜1/3が望ましい。Pjの添加量よりもptとPd
の比により効果が生ずることは、添加したPjとPdと
の間に強い複合関係があることを示唆する。本発明では
PtとPdの複合効果の面から、Pj : Pdの比を
1:15〜1;3とする。なおPtを0.01重量部と
Pdを0.25重量部加えた素子(試料(2))で良い
結果が得られなかったことからPt添加量の下限を0.
01重量部とした。
Comparing the solid line <A) and the broken line (B) in Fig. 4, it is found that Pt
By using the combination (solid line (8)), the period required to complete the level shift is significantly shortened. Pj for level shift
As in the case of initial malfunction, the valid range is Pt and P
It is determined by the addition ratio with d, and the Pt/Pd ratio is 1/1.
5 to 1/3 is desirable. pt and Pd than the addition amount of Pj
The fact that the effect occurs depending on the ratio of Pj and Pd suggests that there is a strong complex relationship between the added Pj and Pd. In the present invention, from the viewpoint of the combined effect of Pt and Pd, the ratio of Pj:Pd is set to 1:15 to 1:3. Note that good results were not obtained with the element (sample (2)) in which 0.01 part by weight of Pt and 0.25 part by weight of Pd were added, so the lower limit of the amount of Pt added was set at 0.01 parts by weight.
01 parts by weight.

(6)抵抗温度係数 素子の抵抗温度係数は、006重量部以上のPjの添加
により正から負に変化する。Pd量を0.25重量部と
した際の結果を第5図に示すが、Pj量が0.03〜0
.05重量部では正の抵抗温度係数が得られるのに対し
、0.07重量部では負の値となる。
(6) Temperature Coefficient of Resistance The temperature coefficient of resistance of the element changes from positive to negative by adding 006 parts by weight or more of Pj. The results when the Pd amount is 0.25 parts by weight are shown in FIG. 5, but when the Pj amount is 0.03 to 0.
.. At 0.05 parts by weight, a positive temperature coefficient of resistance is obtained, whereas at 0.07 parts by weight, a negative value is obtained.

なお図の横軸は素子の温度及びそれに対応する電源電圧
を示すものである。
Note that the horizontal axis in the figure indicates the temperature of the element and the corresponding power supply voltage.

抵抗温度係数が負になると、回路電圧の変動と素子の温
度変化とが相乗して、大きな検出誤差を生むことになる
。また回路電圧を高め回路電流による自己発熱を大きく
した素子では、抵抗値の変化が自己発熱量の変化を増幅
し、検出精度が低下するとともにヒステリシスを大きく
することになる。この理由で抵抗温度係数は正であるこ
とが望ましく、Ptの添加量を0.06重量部以下とし
た。
When the temperature coefficient of resistance becomes negative, fluctuations in circuit voltage and changes in element temperature combine to produce a large detection error. In addition, in an element in which the circuit voltage is increased and the self-heating due to the circuit current is increased, a change in resistance value amplifies a change in the amount of self-heating, resulting in a decrease in detection accuracy and an increase in hysteresis. For this reason, it is desirable that the temperature coefficient of resistance is positive, and the amount of Pt added is 0.06 parts by weight or less.

以上に説明したようにこの発明は、少量のPtをPdと
併用することにより、初期誤動作を短縮するとともに、
無通電から通電への移行によるレベルシフト期間を短縮
し、ガス検出素子の信頼性を高めるものである。
As explained above, this invention reduces initial malfunction by using a small amount of Pt in combination with Pd, and
This shortens the level shift period caused by the transition from non-energization to energization, thereby increasing the reliability of the gas detection element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガス検出回路の1例を示す断面図、第2図はガ
ス検出回路の回路図、第3図は素子の初期誤動作を示す
特性図、第4図は素子のレベルシフトを示す特性図、第
5図は素子の抵抗温度依存性を示す特性図である。 (1):金属酸化物半導体、 +2+、 +3) ;ヒータ兼用電極、(10) ;ガ
ス検出素子、   (+2) ;負荷抵抗。 特許出願人  フイガロ技研株式会社 (12)             28を第1図 第2図
Fig. 1 is a cross-sectional view showing an example of a gas detection circuit, Fig. 2 is a circuit diagram of the gas detection circuit, Fig. 3 is a characteristic diagram showing initial malfunction of the element, and Fig. 4 is a characteristic showing level shift of the element. FIG. 5 is a characteristic diagram showing the resistance temperature dependence of the element. (1): metal oxide semiconductor, +2+, +3); heater electrode, (10); gas detection element, (+2); load resistance. Patent applicant Figaro Giken Co., Ltd. (12) 28 in Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)酸化第二錫100重量部に0.1〜05重量部の
Pdを添加し、これに一対の電極を接続した素子におい
て、 前記酸化第二錫にはPdに加えてPjを添加し、かつP
jの添加量は酸化第二錫100重量部に対して0.01
〜0.06重量部で、PdとPjの添加重量の比は15
:1〜3二lであることを特徴とするガス検出素子。
(1) In an element in which 0.1 to 0.5 parts by weight of Pd is added to 100 parts by weight of stannic oxide, and a pair of electrodes are connected to this, Pj is added to the stannic oxide in addition to Pd. , and P
The amount of j added is 0.01 per 100 parts by weight of stannic oxide.
~0.06 parts by weight, the ratio of the added weight of Pd and Pj is 15
A gas detection element characterized in that: 1 to 32 l.
JP21596982A 1982-12-09 1982-12-09 Gas detecting element Granted JPS59105552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21596982A JPS59105552A (en) 1982-12-09 1982-12-09 Gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21596982A JPS59105552A (en) 1982-12-09 1982-12-09 Gas detecting element

Publications (2)

Publication Number Publication Date
JPS59105552A true JPS59105552A (en) 1984-06-18
JPH0225455B2 JPH0225455B2 (en) 1990-06-04

Family

ID=16681233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21596982A Granted JPS59105552A (en) 1982-12-09 1982-12-09 Gas detecting element

Country Status (1)

Country Link
JP (1) JPS59105552A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145382A (en) * 2008-12-22 2010-07-01 Toyama Prefecture GAS SENSOR FOR DETECTING Total-VOC, AND METHOD FOR MANUFACTURING THE SAME

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340973U (en) * 1989-08-30 1991-04-19

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556188A (en) * 1978-06-22 1980-01-17 Westinghouse Electric Corp Module type shell and tube heat exchanger
JPS55136947A (en) * 1979-04-13 1980-10-25 Matsushita Electric Works Ltd Gas detecting element
JPS5773661A (en) * 1980-10-25 1982-05-08 Matsushita Electric Works Ltd Sensing element for combustible gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556188A (en) * 1978-06-22 1980-01-17 Westinghouse Electric Corp Module type shell and tube heat exchanger
JPS55136947A (en) * 1979-04-13 1980-10-25 Matsushita Electric Works Ltd Gas detecting element
JPS5773661A (en) * 1980-10-25 1982-05-08 Matsushita Electric Works Ltd Sensing element for combustible gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145382A (en) * 2008-12-22 2010-07-01 Toyama Prefecture GAS SENSOR FOR DETECTING Total-VOC, AND METHOD FOR MANUFACTURING THE SAME

Also Published As

Publication number Publication date
JPH0225455B2 (en) 1990-06-04

Similar Documents

Publication Publication Date Title
US4397888A (en) Thick film sensor for hydrogen and carbon monoxide
US4072467A (en) Combustible gas detectors
US4723439A (en) Humidity detector
JPS626182B2 (en)
JPS59105552A (en) Gas detecting element
EP0056339A1 (en) A method of producing a stannic oxide type gas-detecting device
JP3854358B2 (en) Gas sensor material
JP7403232B2 (en) Semiconductor gas detection element
JP4041228B2 (en) CFC gas sensor and manufacturing method thereof
JPS6036017B2 (en) Manufacturing method of reducing gas detection element
EP0115953A2 (en) Gas sensor
JPS59105553A (en) Gas detecting element
JPS6214921B2 (en)
JP3171734B2 (en) Carbon monoxide gas sensing element
JPH07260727A (en) Board-type semiconductor gas sensor and gas detector
JP3534351B2 (en) High temperature detection type CO gas detection element
JPS59108947A (en) Co gas detecting element
JPH11132980A (en) Hydrocarbon gas detection element
KR100199443B1 (en) Material of semiconductor gas sensor for sensing of carbon monoxide
JPH1019820A (en) Incomplete combustion sensor and incomplete combustion detector
JPH11132979A (en) Heat ray type semiconductor gas detection element for detecting air pollution
JPH1073552A (en) Co sensor
JP3919307B2 (en) Hot wire semiconductor gas detector for air pollution detection
JPH0514861B2 (en)
JPS60170760A (en) Combustible gas detecting element