JPH11132979A - Heat ray type semiconductor gas detection element for detecting air pollution - Google Patents

Heat ray type semiconductor gas detection element for detecting air pollution

Info

Publication number
JPH11132979A
JPH11132979A JP29984197A JP29984197A JPH11132979A JP H11132979 A JPH11132979 A JP H11132979A JP 29984197 A JP29984197 A JP 29984197A JP 29984197 A JP29984197 A JP 29984197A JP H11132979 A JPH11132979 A JP H11132979A
Authority
JP
Japan
Prior art keywords
gas
tin
wire
detection element
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29984197A
Other languages
Japanese (ja)
Other versions
JP3919305B2 (en
Inventor
Kiyoshi Fukui
清 福井
Sachiko Nishida
幸子 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP29984197A priority Critical patent/JP3919305B2/en
Publication of JPH11132979A publication Critical patent/JPH11132979A/en
Application granted granted Critical
Publication of JP3919305B2 publication Critical patent/JP3919305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To lower humidity dependence and to detect low concn. gas by mainly constituting a metal oxide semiconductor to be coated of indium oxide containing a specific amt. of tin oxide. SOLUTION: A fine powder of indium oxide is impregnated with an aq. soln. containing tin chloride in predetermined concn. so that 0.5 atom.% of tin is contained to be dried and baked. The obtained indium oxide is further ground to form a fine powder which is, in turn, formed into paste by using 1,3-butane diol and this paste is applied to a platinum wire coil 1 with an effective dimension of 0.4 mm so as to cover the whole of the coil. The coated coil is further dried and a current is subsequently allowed to flow to the platinum wire coil 1 to bake the coil by Joule heat to apply and form a responsive layer 2 on the coil. At this time, if the content of tin oxide is about 0.1-50 atm.%, paste dispersibility is improved and the properties of tin oxide can be prevented from exceeding those of indium oxide. By using indium oxide originally high in resistant and hard to receive the effect of humidity while controlling the valency thereof by tin, low concn. gas can be detected with high sensitivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、貴金属線材に金属
酸化物半導体を被覆して焼成してある空気汚染検出用熱
線型半導体式ガス検知素子に関する。ここにいう空気汚
染検出とは、オフィス、家庭、車内等の環境下で、被検
知ガスの漏洩等による空気汚染を高感度に検知し、その
被検知ガスによる爆発等の危険や人体への悪影響を防止
するにとどまらず、さらに、そこに至るまでに被検知ガ
スを早期に排除する措置を講じるために、その被検知ガ
スを低濃度にて汚染とみなし、捕捉することを指す。ま
た、熱線型半導体式ガス検知素子とは、貴金属線材に金
属酸化物半導体を被覆焼成して形成してあるガス検知素
子を指す。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-wire type semiconductor gas detecting element for detecting air pollution, which is obtained by coating a noble metal wire with a metal oxide semiconductor and firing it. Air pollution detection here refers to highly sensitive detection of air pollution due to the leakage of the gas to be detected in environments such as offices, homes, and vehicles, and the danger of explosion and adverse effects on the human body due to the detected gas. In addition to preventing the detection of the detected gas, this means that the detected gas is regarded as low-contamination and trapped in order to take measures to eliminate the detected gas as early as possible. The hot-wire semiconductor gas detection element refers to a gas detection element formed by coating and firing a noble metal wire with a metal oxide semiconductor.

【0002】[0002]

【従来の技術】従来、この種の空気汚染検出用熱線型半
導体式ガス検知素子として、通常の一酸化炭素ガス検知
素子や、可燃性ガス検知素子等の汎用ガス検知素子が代
用されている場合が多い。ちなみに、これらの汎用ガス
検知素子としては、通常、酸化スズ半導体を主材とする
金属酸化物半導体を、白金等の貴金属線材に被覆焼成し
て構成してある、いわゆる熱線型半導体式ガス検知素子
が用いられる(図1参照)。このように形成したガス検
知素子は、酸化スズ半導体の持つ性質から低濃度ガス検
知に極めて高い特性を有すること、貴金属線材上に単に
焼成させただけの単純構造により、小型化が容易でかつ
小型小容量に基づき吸放熱応答特性に優れる点から、ガ
ス応答性に優れる、小電力で稼働することが出来る等の
ために、汎用されているものであり、その検知原理は、
以下のように説明される。図16に示すように、ガス検
知素子に電圧をかけたときに、貴金属線材と金属酸化物
半導体とが、並列に接続された抵抗として働く形態をと
る。一方、前記金属酸化物半導体は、被検知ガスが金属
酸化物半導体に接触したときに、その金属酸化物半導体
の表面で被検知ガスに起きる化学反応により、電子の授
受を行うことで見かけの電気抵抗が変化するという性質
を持つ。ガス検知素子は、貴金属線材と金属酸化物半導
体とが並列接続された合成抵抗体として働いているか
ら、その合成抵抗値が、前記ガス検知素子の前記金属酸
化物半導体に対する被検知ガスの接触による化学反応に
応じて変化する事になる。また、前記抵抗値の変化は、
化学反応に伴う電子の授受に基づいているから、化学反
応量は被検知ガスの濃度に基づいて決定されるため、前
記抵抗値の変化も被検知ガスの濃度に基づいて決定され
ることになる。つまり、ガス検知素子全体としての抵抗
値が、前記被検知ガスの濃度に基づいて変化することを
利用すれば、そのガス検知素子の抵抗値の変化を測定す
ることによって、そのガス検知素子に接触した被検知ガ
スの濃度を測定することができるようになるのである。
ちなみに、前記貴金属線材と、前記金属酸化物半導体と
は、抵抗体同士を並列に接続した関係にあるから、前記
貴金属線材と、金属酸化物半導体との抵抗差が小さいほ
ど、前記金属酸化物半導体の抵抗値変化に対する合成抵
抗の変化が大きく設定できるという特性を有することに
なり、熱線型半導体式ガス検知素子における前記金属酸
化物半導体としては、抵抗値の小さなものほど有利に用
いられる。
2. Description of the Related Art Conventionally, a general-purpose gas detection element such as a normal carbon monoxide gas detection element or a flammable gas detection element has been used as this type of hot-wire semiconductor detection element for detecting air pollution. There are many. Incidentally, as these general-purpose gas sensing elements, generally, a so-called hot-wire type semiconductor gas sensing element is formed by coating a metal oxide semiconductor mainly composed of a tin oxide semiconductor on a noble metal wire such as platinum and firing it. (See FIG. 1). The gas sensing element thus formed has extremely high characteristics for detecting low-concentration gases due to the properties of the tin oxide semiconductor, and has a simple structure that is simply fired on a noble metal wire, making it easy and compact. It is widely used because it has excellent gas responsiveness and can be operated with low power, etc., because it has excellent absorption and heat radiation response characteristics based on small capacity.
It is described as follows. As shown in FIG. 16, when a voltage is applied to the gas detection element, the noble metal wire and the metal oxide semiconductor take a form in which they function as resistors connected in parallel. On the other hand, when the gas to be detected comes into contact with the metal oxide semiconductor, the metal oxide semiconductor transmits and receives electrons due to a chemical reaction occurring in the gas to be detected on the surface of the metal oxide semiconductor, so that the apparent electricity is obtained. It has the property that the resistance changes. Since the gas sensing element functions as a combined resistor in which the noble metal wire and the metal oxide semiconductor are connected in parallel, the combined resistance value is caused by the contact of the gas to be detected with the metal oxide semiconductor of the gas sensing element. It will change according to the chemical reaction. Further, the change in the resistance value is as follows.
Since the amount of the chemical reaction is determined based on the concentration of the detected gas, the change in the resistance value is also determined based on the concentration of the detected gas. . That is, by utilizing the fact that the resistance value of the gas sensing element as a whole changes based on the concentration of the gas to be detected, the change in the resistance value of the gas sensing element is measured so that the gas sensing element is brought into contact with the gas sensing element. Thus, the concentration of the detected gas can be measured.
Incidentally, since the noble metal wire and the metal oxide semiconductor are in a relationship in which resistors are connected in parallel with each other, the smaller the resistance difference between the noble metal wire and the metal oxide semiconductor, the more the metal oxide semiconductor Therefore, the metal oxide semiconductor in the hot-wire semiconductor gas detection element has a characteristic that a change in the combined resistance with respect to the change in the resistance value can be set to be large.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の汎用ガ
ス検知素子によれば、上述の空気汚染検出という利用目
的に対しては安定性が十分でなく信頼性の面で改良の余
地があった。というのは、前記酸化スズ半導体は、表面
酸素や表面水酸基の活性が高くて空気中の水蒸気濃度に
応じて変化しやすいという特性を有するために、湿度変
化により、その被検知ガスに対する検知特性が変化しや
すいため、検知対象地区において常設するような場合
に、一日あるいは年間を通じての湿度変化に対する安定
性が確保しにくいという事情があるためである。そこ
で、前記酸化スズ半導体に種々の被覆層を形成したり、
添加物を添加することにより、先述の特性を改良して用
いることが考えられるのであるが、このような手法によ
れば、製造工程が煩雑化したり、製品ごとの品質安定性
の管理が困難になったりするという欠点があり、製造面
からはあまり好ましくないものとされている。そこで、
主材とすべき半導体の種類を替えるなどして、根本的に
ガス検知特性を変更する必要性が生じている。しかしな
がら、金属酸化物半導体の特性は、そのガス検知素子の
形状、形態、構造によって大きく変化する場合が多く、
一概に他のガス検知素子に用いられているものを転用す
ることが出来ない。
According to the above-mentioned conventional general-purpose gas detecting element, the stability is not sufficient for the above-mentioned purpose of detecting air pollution, and there is room for improvement in reliability. . This is because the tin oxide semiconductor has a property that surface oxygen and surface hydroxyl groups have a high activity and easily change according to the concentration of water vapor in the air. This is because it is difficult to secure stability against humidity changes throughout the day or throughout the year when it is permanently installed in the detection target area because it is easily changed. Therefore, various coating layers are formed on the tin oxide semiconductor,
By adding additives, it is conceivable to improve the above-mentioned properties and use them. However, according to such a method, the manufacturing process becomes complicated, and it becomes difficult to control the quality stability of each product. However, it is disadvantageous from the viewpoint of manufacturing. Therefore,
There is a need to fundamentally change the gas detection characteristics by changing the type of semiconductor to be the main material. However, the characteristics of a metal oxide semiconductor often vary greatly depending on the shape, form, and structure of the gas sensing element.
What is used for other gas detection elements cannot be diverted.

【0004】そこで、本発明者らは、一般にガス検知の
際の応答特性に優れた金属酸化物半導体と言われている
酸化インジウムを選択し、低濃度ガス検知が可能で、か
つ、湿度依存性が低いガス検知素子を提供する目的で鋭
意研究をおこなった。
Accordingly, the present inventors have selected indium oxide, which is generally referred to as a metal oxide semiconductor having excellent response characteristics in gas detection, and it is possible to detect low-concentration gas and to obtain humidity-dependent gas. The research was carried out diligently to provide a gas detection element having a low noise.

【0005】[0005]

【課題を解決するための手段】その結果、本発明者らは
酸化インジウム自体が本来高抵抗な物質であり、かつ湿
度の影響を受けにくいという新知見を得た。また、スズ
による原子価制御により、酸化インジウムの抵抗値を調
整することが可能であり、また、このような酸化インジ
ウムを用いたガス検知素子により、低濃度ガスを高感度
に検知できることを見いだした。本発明は、上記新知見
に基づきなされたものであって、前記目的を達成するた
めの本発明の空気汚染検出用熱線型半導体式ガス検知素
子の特徴構成は、貴金属線材に金属酸化物半導体を被覆
して焼成してある空気汚染検出用熱線型半導体式ガス検
知素子において、前記金属酸化物半導体が、酸化スズを
0.1atm%以上50atm%以下含有する酸化イン
ジウムを主成分とするものである点にある。
As a result, the present inventors have obtained a new finding that indium oxide itself is originally a substance having high resistance and is hardly affected by humidity. In addition, it has been found that the resistance value of indium oxide can be adjusted by controlling the valence with tin, and that a gas detection element using such indium oxide can detect low-concentration gases with high sensitivity. . The present invention has been made based on the above-mentioned new knowledge, and the characteristic configuration of the hot-wire semiconductor gas detection element for air pollution detection of the present invention for achieving the above object is to provide a noble metal wire with a metal oxide semiconductor. In the hot-wire semiconductor gas detection element for detecting air pollution, which is coated and fired, the metal oxide semiconductor is mainly composed of indium oxide containing tin oxide of 0.1 atm% or more and 50 atm% or less. On the point.

【0006】〔作用効果〕酸化インジウムが湿度の影響
を受けにくいのは、酸化インジウムの表面酸素や表面水
酸基は、酸化スズのものに比べて活性が低く、疎水的に
なっていることによると考えられる。つまり、前記表面
酸素や表面水酸基には、雰囲気下の水蒸気が付着反応し
て、被検知ガスとの反応を阻害したり、必要以上に活性
をあげてしまうような現象が起きにくくなっており、結
果として湿度の影響を受けにくくなって、所定の活性を
維持し易くなり安定に用いられるのである。そのため、
前記特徴構成に記載のガス検知素子は湿度に対して影響
を受けにくく、高感度で被検知ガスを検知できるのであ
る。尚、この論理に基づけば、酸化インジウムは水を加
えてペーストにするときに、その疎水性によって分散性
が低いはずである。はたして、酸化インジウムをペース
トにすると、酸化スズをペーストにする場合に比べて、
分散性が低く、貴金属線材上に塗布するような場合に取
り扱いの良くないものになりやすいことがわかった。と
ころが、前記スズを酸化インジウムに添加する際に酸化
スズとして添加してあれば、酸化インジウムの疎水的
で、湿度の影響を受けにくい性質を維持しながらペース
トにする際の分散性を向上させられることもわかり、ガ
ス検知素子の製造工程上も好ましいことがわかった。ま
た、酸化スズの添加量について種々検討したところ、
0.1〜50atm%程度であれば、先述のペースト分
散性を良好にしながら、酸化スズの性質が酸化インジウ
ムの性質に勝ってしまうのを防止し、酸化インジウムの
疎水的な特性が十分に発揮されにくくなるといった不都
合を生じにくくできる。
[Action and effect] The reason why indium oxide is hardly affected by humidity is considered to be that surface oxygen and surface hydroxyl groups of indium oxide are less active than those of tin oxide and are hydrophobic. Can be In other words, the surface oxygen and the surface hydroxyl group, the water vapor in the atmosphere adheres and reacts, inhibiting the reaction with the gas to be detected or preventing the phenomenon of raising the activity more than necessary, As a result, it is less susceptible to the influence of humidity, and it is easy to maintain a predetermined activity, so that it can be used stably. for that reason,
The gas detection element described in the above-mentioned characteristic configuration is hardly affected by humidity, and can detect a gas to be detected with high sensitivity. In addition, based on this logic, when indium oxide is added to water to form a paste, its dispersibility should be low due to its hydrophobicity. In fact, when indium oxide is used as a paste, compared to when tin oxide is used as a paste,
It was found that the dispersibility was low, and it became easy to handle poorly when applied on a noble metal wire. However, if tin is added as tin oxide when adding it to indium oxide, it is possible to improve the dispersibility of the paste while maintaining the hydrophobicity of indium oxide and the property of being insensitive to humidity. It was also found that it was preferable in the manufacturing process of the gas detection element. In addition, after various studies on the amount of tin oxide added,
When the content is about 0.1 to 50 atm%, the property of tin oxide is prevented from overcoming the property of indium oxide while improving the dispersibility of the paste described above, and the hydrophobic property of indium oxide is sufficiently exhibited. Inconvenience such as being difficult to perform can be prevented.

【0007】尚、これらの実験結果は、99.99%以
上の純度の原料を用い、実験室レベルで厳密に不純物の
混入を遮断した環境下で調製した酸化インジウムについ
て種々の試験を行って得られたものであり、既報の物性
と異なる結果が多数得られていることについては、既報
の物性は、原料純度の相違や、製法の相違による種々の
不純物が、ドーパントとして働き、再現性に乏しい結果
をもたらしたと考えられるのに対し、再現性の高い結果
を与えるものと言える条件下で行われた試験によって得
られたものである。
[0007] These experimental results were obtained by performing various tests on indium oxide prepared using a raw material having a purity of 99.99% or more and in an environment in which contamination of impurities was strictly blocked at the laboratory level. The reported physical properties are different from those in the raw material purity, and various impurities due to the difference in the production method act as dopants and have poor reproducibility. It was obtained by a test conducted under conditions that can be considered to have produced results, while giving highly reproducible results.

【0008】[0008]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。 〔熱線型半導体式ガス検知素子の製造〕水酸化インジウ
ムの微粉体に塩化スズの所定濃度水溶液を、前記水酸化
インジウム中のインジウムに対してスズが0.5atm
%含まれるように含浸させ、80℃で24時間乾燥させ
た後、電気炉で600℃で4時間焼成した。こうして得
られた酸化インジウムをさらに粉砕して、平均粒径1.
5μm程度の微粉体を形成した。この微粉体を1,3ブ
タンジオールを用いてペーストにして、実効寸法0.4
mmの白金線コイル1(線径20μm、巻き径0.30
mm、巻き間隔0.02mm)に直径0.50mmの球
形で、前記白金線コイルの全体を覆うように塗布する。
これをさらに80℃で1時間乾燥させた後、前記白金線
コイル1に電流を流し、そのジュール熱で600℃で1
時間焼成させて感応層2を被覆形成して、熱線型半導体
式ガス検知素子を得た(図1参照)。
Embodiments of the present invention will be described below with reference to the drawings. [Manufacture of hot-wire semiconductor type gas sensing element] A tin chloride solution of a predetermined concentration in water was added to fine powder of indium hydroxide, and tin was added at 0.5 atm to indium in the indium hydroxide.
%, And dried at 80 ° C. for 24 hours, and then fired in an electric furnace at 600 ° C. for 4 hours. The indium oxide thus obtained was further pulverized to have an average particle size of 1.
A fine powder of about 5 μm was formed. This fine powder was made into a paste using 1,3 butanediol, and the effective size was 0.4
mm platinum wire coil 1 (wire diameter 20 μm, winding diameter 0.30
mm, a winding interval of 0.02 mm) and a spherical shape having a diameter of 0.50 mm so as to cover the entire platinum wire coil.
This was further dried at 80 ° C. for 1 hour, and then an electric current was passed through the platinum wire coil 1, and the Joule heat was applied at 600 ° C. for 1 hour.
After baking for a time, the sensitive layer 2 was formed to cover, thereby obtaining a hot-wire type semiconductor gas detecting element (see FIG. 1).

【0009】尚、この場合、被覆というのは、白金線コ
イル1を覆って焼成してあれば足り、焼成物が白金線コ
イル1と感応層2とが一体となって、働く形態であれば
よい。また、前記貴金属線としては、白金線コイルのほ
かに、白金とロジウムの合金等の貴金属が用いられる。
さらに、焼成という場合には、前記貴金属線のジュール
熱で加熱する場合のほか、電気炉で加熱する場合等も含
み、不可避不純物の混入の許容量によっては、空気中で
行っても良いし、不活性ガス雰囲気下で行っても良い。
また、水酸化インジウムを調整するには、塩化インジウ
ムの水溶液にアンモニア水を滴下して、加水分解により
沈殿させても良い。塩化インジウムと塩化スズの混合水
溶液を、前記アンモニア水で処理し、共沈する水酸化イ
ンジウム及び水酸化スズを焼成することによっても酸化
スズを含有する酸化インジウムを得ることが出来る。
[0009] In this case, it is sufficient that the coating is performed by covering the platinum wire coil 1 and baking is performed as long as the fired material works together with the platinum wire coil 1 and the sensitive layer 2. Good. As the noble metal wire, a noble metal such as an alloy of platinum and rhodium is used in addition to the platinum wire coil.
Furthermore, in the case of firing, in addition to the case of heating with the Joule heat of the noble metal wire, including the case of heating with an electric furnace, etc., depending on the allowable amount of inevitable impurities mixed, it may be performed in air, It may be performed in an inert gas atmosphere.
To adjust indium hydroxide, ammonia water may be dropped into an aqueous solution of indium chloride and precipitated by hydrolysis. An indium oxide containing tin oxide can also be obtained by treating a mixed aqueous solution of indium chloride and tin chloride with the ammonia water and calcining the coprecipitated indium hydroxide and tin hydroxide.

【0010】尚、熱線型半導体式ガス検知素子の形成に
は以下に示す各試薬を用いた。 水酸化インジウム:(株)高純度化学研究所社製、純度
99.99% 塩化スズ:(株)高純度化学研究所社製、純度99.9
9% 1,3ブタンジオール:東京化成工業(株)製、純度9
9%
The following reagents were used for the formation of the hot-wire semiconductor gas detection element. Indium hydroxide: 99.99% purity, manufactured by Kojundo Chemical Laboratory Co., Ltd. Tin chloride: 99.9% pure, manufactured by Kojundo Chemical Laboratory Co., Ltd.
9% 1,3 butanediol: manufactured by Tokyo Chemical Industry Co., Ltd., purity 9
9%

【0011】〔回路構成〕前記熱線型半導体式ガス検知
素子は、図2に示すように、ブリッジ回路に組み込んで
用いられる。つまり、前記熱線型半導体式ガス検知素子
に、固定抵抗R0を直列に接続するとともに、この熱線
型半導体式ガス検知素子と固定抵抗R0との合成抵抗に
対して固定抵抗R1と固定抵抗R2との合成抵抗を、前
記熱線型半導体式ガス検知素子と固定抵抗R1、固定抵
抗R0と固定抵抗R2が対向するように並列に接続す
る。また、前記熱線型半導体式ガス検知素子と固定抵抗
の間と、前記固定抵抗R1と固定抵抗R2との間との電
位差をセンサ出力として取出す出力部を接続してある。
[Circuit Configuration] As shown in FIG. 2, the hot-wire semiconductor gas detection element is used by being incorporated in a bridge circuit. That is, a fixed resistor R0 is connected in series to the hot-wire type semiconductor gas detection element, and the fixed resistance R1 and the fixed resistance R2 are compared with the combined resistance of the hot-wire type semiconductor gas detection element and the fixed resistance R0. The combined resistors are connected in parallel so that the hot wire semiconductor gas sensing element and the fixed resistor R1, and the fixed resistors R0 and R2 face each other. Further, an output unit is connected to take out a potential difference between the hot wire semiconductor gas detection element and the fixed resistor and a potential difference between the fixed resistor R1 and the fixed resistor R2 as a sensor output.

【0012】このようなブリッジ回路によれば、供給電
圧をE、センサ出力をV、熱線型半導体式ガス検知素子
の全体としての抵抗値をRs、各固定抵抗R0,R1,
R2の抵抗値をそれぞれR0 、R1 、R2 としたとき
に、数1の関係を有する。
According to such a bridge circuit, the supply voltage is E, the sensor output is V, the resistance value of the hot-wire semiconductor gas detection element as a whole is Rs, and the fixed resistors R0, R1,
When the resistance values of R2 are R 0 , R 1 , and R 2 , respectively, there is a relationship of Equation 1.

【0013】[0013]

【数1】 (Equation 1)

【0014】ここでR1 =R2 とし、ガス感度を、被検
知ガス共存雰囲気下でのセンサ出力と清浄空気中でのセ
ンサ出力との差(ΔV)とすると、そのガス感度は、熱
線型半導体式ガス検知素子の被検知ガスとの接触による
抵抗値変化をΔRsとしたときに、熱線型半導体式ガス
検知素子の抵抗変化値に比例することになる。一方、熱
線型半導体式ガス検知素子の抵抗値Rsは、金属酸化物
半導体と、白金線コイルとの並列抵抗として挙動するか
ら、金属酸化物半導体の抵抗をrS とし、白金線コイル
の抵抗値をrC としたときに、数2(1)式であらわさ
れる。また、被検知ガスとの接触の際の金属酸化物半導
体の抵抗値変化をΔrS としたときに、被検知ガスの濃
度が低いときには、ΔRsやΔrS は、非常に小さいと
すると、その熱線型半導体式ガス検知素子の抵抗変化率
は近似的に数2(2)式で与えられる。つまり、熱線型
半導体式ガス検知素子の抵抗変化率は、金属酸化物半導
体の抵抗変化率に比例することになり、さらに熱線型半
導体式ガス検知素子の感度は、数2(3)のように近似
されることになる。ここで、βは、増幅率に相当し、r
S /rC が小さいほど大きくなり、つまり、一般に金属
酸化物半導体の抵抗は貴金属の抵抗よりも大きいもので
あるから、金属酸化物半導体の抵抗rS が小さいほど、
感度の良い熱線型半導体式ガス検知素子が得られること
になる。ところで、前記感度はΔrS /rS にも関与し
ているので、半導体の抵抗値を小さくしすぎても感度の
低下を招くことになり、その抵抗値を最適化すべく、酸
化スズの添加量を調整するのである。
Here, assuming that R 1 = R 2 and the gas sensitivity is the difference (ΔV) between the sensor output in an atmosphere coexisting with the gas to be detected and the sensor output in clean air, the gas sensitivity is a hot wire type. Assuming that the resistance change of the semiconductor gas detection element due to contact with the gas to be detected is ΔRs, the resistance change is proportional to the resistance change value of the hot-wire semiconductor gas detection element. On the other hand, the resistance value Rs of the hot wire type semiconductor type gas sensing element, a metal oxide semiconductor, since behaves as a parallel resistance of the platinum wire coil, the resistance of the metal oxide semiconductor and r S, the resistance of platinum wire coil Is represented by r C, and is expressed by Equation (1). When the resistance change of the metal oxide semiconductor upon contact with the gas to be detected is Δr S , when the concentration of the gas to be detected is low, ΔRs and Δr S are very small, The rate of change in resistance of the semiconductor gas detection element is approximately given by equation (2). That is, the resistance change rate of the hot-wire semiconductor gas detection element is proportional to the resistance change rate of the metal oxide semiconductor, and the sensitivity of the hot-wire semiconductor gas detection element is expressed by the following equation (3). It will be approximated. Here, β corresponds to the amplification factor, and r
Increases as the S / r C is small, i.e., generally from the resistance of the metal oxide semiconductor is greater than the resistance of the noble metal, as the resistance r S of the metal oxide semiconductor is small,
A highly sensitive hot-wire semiconductor gas detection element can be obtained. By the way, since the sensitivity is also related to Δr S / r S , the sensitivity is lowered even if the resistance value of the semiconductor is too small, and the amount of tin oxide added is optimized to optimize the resistance value. To adjust.

【0015】[0015]

【数2】 (Equation 2)

【0016】[0016]

【実施例】以下に本発明の実施例を図面に基づいて説明
する。 〔スズ添加量依存性〕熱線型半導体式ガス検知素子の抵
抗をベース出力として測定し、そのスズ添加量依存性を
調べたところ、図3に示すようになった。つまり、この
熱線型半導体式ガス検知素子は、酸化スズの含有量によ
って、ベース出力が変動し、酸化スズの使用量によって
有利にガスを検出できる領域があることがわかる。
Embodiments of the present invention will be described below with reference to the drawings. [Tin Addition Dependence] The resistance of the hot-wire semiconductor gas detection element was measured as a base output, and the tin addition dependence was examined. The result is shown in FIG. In other words, it can be seen that in this hot-wire semiconductor gas detection element, the base output fluctuates depending on the tin oxide content, and there is a region where the gas can be advantageously detected depending on the amount of tin oxide used.

【0017】これに対し、熱線型半導体式ガス検知素子
の各ガス種(水素(H2 )、エタノール(C2 5
H)、一酸化炭素(CO)、イソブタン(i−C
4 10)、メタン(CH4 ))に対するガス感度を調
べ、そのスズ添加量依存性を調べたところ、図4に示す
ようになった。つまり、種々のガスに対して、特に、1
atm%程度のスズ含有量に調整した場合に、高感度で
ガスを検知できるようになることがわかり、また、スズ
の添加量が50atm%に達したとしても、正の感度出
力を示すことから、酸化インジウムを主材とする熱線型
半導体式ガス検知素子としてのガス検知機能を有してい
ることがわかる。
On the other hand, each gas type (hydrogen (H 2 ), ethanol (C 2 H 5 O)
H), carbon monoxide (CO), isobutane (i-C
The gas sensitivity to 4 H 10 ) and methane (CH 4 )) was examined, and its dependence on the amount of tin added was examined. The results are as shown in FIG. That is, for various gases,
It can be seen that when the tin content is adjusted to about atm%, gas can be detected with high sensitivity, and even when the tin addition amount reaches 50 atm%, a positive sensitivity output is obtained. It can be seen that it has a gas detection function as a hot-wire type semiconductor gas detection element mainly containing indium oxide.

【0018】〔ガス検知温度依存性〕スズを0.5at
m%含有する先の熱線型半導体式ガス検知素子を製造
し、種々のガス種に対してガス感度の温度依存性を調べ
たところ、図5に示すようになった。つまり、この熱線
型半導体式ガス検知素子は、種々のガスを高感度に検知
出来ることがわかる。
[Dependence on gas detection temperature] Tin at 0.5 at
The above-described hot-wire semiconductor gas detection element containing m% was manufactured, and the temperature dependence of gas sensitivity for various gas types was examined. The result was as shown in FIG. That is, it can be seen that this hot-wire semiconductor gas detection element can detect various gases with high sensitivity.

【0019】〔湿度依存性〕同様に、前記熱線型半導体
式ガス検知素子のガス感度の水素ガス濃度依存性を種々
の湿度環境下で求めたところ、図6に示すようになっ
た。また、従来の酸化スズ半導体を主材とする熱線型半
導体式ガス検知素子についても同様に調べたところ図7
に示すようになった。つまり、センサ出力の濃度依存性
は、従来のものに比べて湿度によってあまり変動してい
ないことがわかる。尚、図中、標準あるいはSTDとあ
るのは、絶対湿度7.1g/m3 、低湿あるいはDRY
とあるのは0.8g/m3 、高湿あるいはWETとある
のは26g/m3 の湿度条件を指し、いずれもセンサ電
圧1.7V(420℃相当)の条件下で出力を調べたも
のである。
[Humidity Dependency] Similarly, the dependence of the gas sensitivity of the hot-wire type semiconductor gas detecting element on the hydrogen gas concentration was determined under various humidity environments, and the results are shown in FIG. In addition, a similar study was conducted on a conventional hot-wire semiconductor gas detection element mainly composed of a tin oxide semiconductor.
It became as shown in. That is, it can be seen that the concentration dependency of the sensor output does not fluctuate much with humidity as compared with the conventional one. In the drawing, the standard or STD means 7.1 g / m 3 absolute humidity, low humidity or DRY.
There is 0.8 g / m 3 , high humidity or WET refers to 26 g / m 3 humidity conditions, and the output was measured under the condition of a sensor voltage of 1.7 V (equivalent to 420 ° C.). It is.

【0020】また、同様の湿度依存性を各種センサ電圧
で調べたところ、図8に示すようになった。つまり、高
温動作させるほど湿度依存性は低下し、安定した出力が
得られることがわかる。尚図8においては、出力を、標
準条件のものをもとに規格化してあり、標準条件下で水
素ガス100ppmに対する感度を1とする相対感度で
示してある。
Further, when the same humidity dependency was examined with various sensor voltages, the result was as shown in FIG. In other words, it can be seen that the higher the operation is, the lower the humidity dependency is, and that a stable output is obtained. In FIG. 8, the output is normalized based on the standard condition, and is shown as a relative sensitivity with the sensitivity to 100 ppm of hydrogen gas being 1 under the standard condition.

【0021】さらに、同様の湿度依存性を、スズ添加量
の異なる各種ガス検知素子で調べたところ、図9に示す
ようになった。つまり、この種の熱線型半導体式ガス検
知素子の対湿度特性は、酸化インジウム自体の持つ重要
な特性であって、スズの添加量の少ない領域ではその添
加量によっては、ほとんど影響を受け得ていないことが
わかる。
Further, when the same humidity dependency was examined by various gas detecting elements having different tin addition amounts, the results were as shown in FIG. In other words, the humidity characteristics of this type of hot-wire semiconductor gas sensing element is an important characteristic of indium oxide itself, and in a region where the amount of tin added is small, it can be almost affected by the amount of tin added. It turns out there is no.

【0022】これらの結果、本発明の熱線型半導体式ガ
ス検知素子は、高いガス感度を有しながら、対湿度特性
にも優れたものであると言える。
As a result, it can be said that the hot-wire semiconductor gas detecting element of the present invention has high gas sensitivity and excellent humidity resistance.

【0023】〔経時安定性〕先の実施の形態における熱
線型半導体式ガス検知素子を、1.90V(R0 =5.
6Ω)の使用条件下で経日的に使用し、各種ガス(10
0ppm)に対するセンサ出力がどのように変化するか
を調べたところ、図10に示すようになった。つまり、
ベース出力、センサ出力ともにほぼ安定しているので、
安定した感度が長期にわたって得られることが読みとれ
る。
[Temperature stability] The hot-wire semiconductor gas detecting element in the above embodiment was 1.90 V (R 0 = 5.
6 Ω) for daily use under various usage conditions (10 Ω).
FIG. 10 shows how the sensor output changes with respect to 0 ppm). That is,
Since both base output and sensor output are almost stable,
It can be seen that stable sensitivity is obtained over a long period of time.

【0024】〔別実施形態〕先の熱線型半導体式ガス検
知素子に替え、スズの添加量を12atm%に替えた以
外は同様に製造した熱線型半導体式ガス検知素子を製造
した。 〔感度特性〕センサ電圧1.90V(R0 =5.6Ω、
センサ温度480℃)として、各種ガスに対して、感度
のガス濃度依存性を調べたところ、図11のようになっ
た。以下すべてこの動作条件で測定した。つまり各ガス
に対して、高い感度を示していることがわかる。 〔湿度依存性〕同様に各ガスの濃度を100ppmとし
たときのセンサ出力及びベース出力の湿度依存性を調べ
たところ図12(イ)に示すようになった。また、酸化
スズを主材とする従来の熱線型半導体式ガス検知素子に
ついても同様に調べたところ、図12(ロ)に示すよう
になった。つまり、ベース出力、センサ出力ともにほぼ
安定しているので、湿度によらず安定した感度が得られ
ることが読みとれる。また、20℃、相対湿度50%、
絶対湿度9g/m3 の条件下で100ppmの被検知ガ
スに対して正確なガス濃度を出力するように調整した熱
線型半導体式ガス検知素子を用いて、表1に示す各条件
下における入力ガス濃度と出力濃度との関係を調べたと
ころ、被検知ガスが水素ガスの場合、図13(イ)に示
すようになった。また、酸化スズを主材とする従来の熱
線型半導体式ガス検知素子についても同様に調べたとこ
ろ、図13(ロ)に示すようになった。つまり、本発明
の熱線型半導体式ガス検知素子は、各種湿度条件におい
て安定した性能を発揮し、従来のものに比べて信頼性の
高い濃度出力が得られることが読みとれる。この傾向
は、被検知ガスが一酸化炭素ガスの場合にも同様に言え
ることがわかった(図14参照)。
[Another Embodiment] A hot-wire type semiconductor gas detecting element was manufactured in the same manner as above except that the addition amount of tin was changed to 12 atm% instead of the hot-wire type semiconductor gas detecting element. [Sensitivity characteristics] Sensor voltage 1.90 V (R 0 = 5.6Ω,
As a result of examining the gas concentration dependence of the sensitivity for various gases at a sensor temperature of 480 ° C.), the results are as shown in FIG. Hereinafter, all measurements were made under these operating conditions. That is, it can be seen that high sensitivity is shown for each gas. [Humidity Dependency] Similarly, when the humidity dependency of the sensor output and the base output when the concentration of each gas was set to 100 ppm was examined, the result was as shown in FIG. In addition, a similar study was conducted on a conventional hot-wire type semiconductor gas detection element mainly composed of tin oxide, and the result was as shown in FIG. That is, since both the base output and the sensor output are almost stable, it can be seen that stable sensitivity can be obtained regardless of humidity. Also, at 20 ° C. and 50% relative humidity,
Input gas under each condition shown in Table 1 using a hot-wire type semiconductor gas detection element adjusted so as to output an accurate gas concentration with respect to a gas to be detected of 100 ppm under the condition of an absolute humidity of 9 g / m 3. When the relationship between the concentration and the output concentration was examined, when the gas to be detected was hydrogen gas, the result was as shown in FIG. In addition, a similar study was conducted on a conventional hot-wire semiconductor gas detection element mainly composed of tin oxide, and the result was as shown in FIG. In other words, it can be seen that the hot-wire semiconductor gas detection element of the present invention exhibits stable performance under various humidity conditions, and provides a more reliable concentration output than the conventional one. It has been found that this tendency can be similarly applied to the case where the gas to be detected is carbon monoxide gas (see FIG. 14).

【0025】[0025]

【表1】 [Table 1]

【0026】〔経時安定性〕この熱線型半導体式ガス検
知素子を、1.90V(R0 =5.6Ω)の使用条件下
で経日的に使用し、各種ガス(100ppm)に対する
センサ出力がどのように変化するかを調べたところ、図
15に示すようになった。つまり、ベース出力、センサ
出力ともにほぼ安定しているので、安定した感度が長期
にわたって得られることが読みとれる。
[Stability over time] This hot-wire type semiconductor gas sensing element is used daily under the operating conditions of 1.90 V (R 0 = 5.6Ω), and the sensor output for various gases (100 ppm) is obtained. When the change was examined, the result was as shown in FIG. That is, since both the base output and the sensor output are almost stable, it can be seen that stable sensitivity can be obtained for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱線型半導体式ガス検知素子の縦断斜視図FIG. 1 is a longitudinal perspective view of a hot-wire semiconductor gas detection element.

【図2】熱線型半導体式ガス検知素子を組み込む回路構
成図
FIG. 2 is a circuit configuration diagram incorporating a hot-wire semiconductor gas detection element.

【図3】ベース出力のスズ添加量依存性を示すグラフFIG. 3 is a graph showing the dependence of base output on the amount of tin added.

【図4】感度出力のスズ添加量依存性を示すグラフFIG. 4 is a graph showing the dependence of the sensitivity output on the amount of tin added.

【図5】感度出力のガス検知温度依存性を示すグラフFIG. 5 is a graph showing the dependence of sensitivity output on gas detection temperature.

【図6】センサ出力の水素ガス濃度依存性の湿度による
影響を示すグラフ
FIG. 6 is a graph showing the influence of humidity on the hydrogen gas concentration dependency of the sensor output.

【図7】従来の熱線型半導体式ガス検知素子でのセンサ
出力の水素ガス濃度依存性の湿度による影響を示すグラ
FIG. 7 is a graph showing the influence of humidity on the hydrogen gas concentration dependence of sensor output in a conventional hot-wire semiconductor gas detection element.

【図8】水素ガス感度曲線に対する湿度の影響を示すグ
ラフ
FIG. 8 is a graph showing the influence of humidity on a hydrogen gas sensitivity curve.

【図9】水素ガス感度曲線に対する湿度の影響を示すグ
ラフ
FIG. 9 is a graph showing the influence of humidity on a hydrogen gas sensitivity curve.

【図10】熱線型半導体式ガス検知素子の経時安定性を
示すグラフ
FIG. 10 is a graph showing the stability over time of a hot-wire semiconductor gas detection element.

【図11】別実施形態における熱線型半導体式ガス検知
素子の感度特性を示すグラフ
FIG. 11 is a graph showing sensitivity characteristics of a hot-wire semiconductor gas detection element according to another embodiment.

【図12】別実施形態における熱線型半導体式ガス検知
素子の経時安定性を示すグラフ
FIG. 12 is a graph showing the stability over time of a hot-wire semiconductor gas detection element according to another embodiment.

【図13】別実施形態における水素ガス感度曲線に対す
る湿度の影響を示すグラフ
FIG. 13 is a graph showing the influence of humidity on a hydrogen gas sensitivity curve in another embodiment.

【図14】別実施形態における一酸化炭素ガス感度曲線
に対する湿度の影響を示すグラフ
FIG. 14 is a graph showing the influence of humidity on a carbon monoxide gas sensitivity curve in another embodiment.

【図15】別実施形態における熱線型半導体式ガス検知
素子の経時安定性を示すグラフ
FIG. 15 is a graph showing the stability over time of a hot-wire semiconductor gas detection element according to another embodiment.

【図16】熱線型半導体式ガス検知素子の動作概念図FIG. 16 is an operation conceptual diagram of a hot-wire semiconductor gas detection element.

【符号の説明】[Explanation of symbols]

1 貴金属線材 2 感応層 1 Noble metal wire 2 Sensitive layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 貴金属線材に金属酸化物半導体を被覆し
て焼成してある空気汚染検出用熱線型半導体式ガス検知
素子であって、 前記金属酸化物半導体が、酸化スズを0.1atm%以
上50atm%以下含有する酸化インジウムを主成分と
するものである空気汚染検出用熱線型半導体式ガス検知
素子。
1. A hot-wire semiconductor gas detection element for detecting air pollution, wherein a noble metal wire is coated with a metal oxide semiconductor and fired, wherein the metal oxide semiconductor contains tin oxide in an amount of 0.1 atm% or more. A hot-wire semiconductor gas detection element for detecting air pollution, which is mainly composed of indium oxide containing 50 atm% or less.
JP29984197A 1997-10-31 1997-10-31 Hot wire semiconductor gas detector for air pollution detection Expired - Fee Related JP3919305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29984197A JP3919305B2 (en) 1997-10-31 1997-10-31 Hot wire semiconductor gas detector for air pollution detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29984197A JP3919305B2 (en) 1997-10-31 1997-10-31 Hot wire semiconductor gas detector for air pollution detection

Publications (2)

Publication Number Publication Date
JPH11132979A true JPH11132979A (en) 1999-05-21
JP3919305B2 JP3919305B2 (en) 2007-05-23

Family

ID=17877580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29984197A Expired - Fee Related JP3919305B2 (en) 1997-10-31 1997-10-31 Hot wire semiconductor gas detector for air pollution detection

Country Status (1)

Country Link
JP (1) JP3919305B2 (en)

Also Published As

Publication number Publication date
JP3919305B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
US5427740A (en) Tin oxide gas sensors
US4723439A (en) Humidity detector
EP0022369B1 (en) Combustible gas detecting elements
JP4916357B2 (en) Semiconductor gas detector
JP3171745B2 (en) Substrate type semiconductor gas sensor and gas detector
CA1196990A (en) Gas sensor
JP3203120B2 (en) Substrate type semiconductor gas sensor and gas detector
JPH11132979A (en) Heat ray type semiconductor gas detection element for detecting air pollution
JP3919306B2 (en) Hydrocarbon gas detector
JP3919307B2 (en) Hot wire semiconductor gas detector for air pollution detection
JP3929199B2 (en) HYDROGEN GAS DETECTION ELEMENT AND MANUFACTURING METHOD THEREOF
Williams et al. Novel room temperature carbon monoxide sensor utilizing rate of change of resistance in thick films of tin oxide
JP3976883B2 (en) Gas detection element
JP3901594B2 (en) Semiconductor hydrogen gas detector
JP3669807B2 (en) Carbon monoxide detection sensor
JPH02263145A (en) Semiconductor type gas sensor
JPH0755745A (en) Carbon monoxide gas detecting element
JPH11287781A (en) Hydrogen gas detection element and its manufacture
JPS5957153A (en) Gas detecting element
JPH09105731A (en) Gas detection element
JP2003065991A (en) Gas detecting circuit
JPH0772107A (en) High temperature detection type co gas detector
JPS6245495B2 (en)
JPH0743332A (en) Tio2-sno2 gas sensor element
JPS5957150A (en) Gas detecting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees