JPS59102192A - Method and device for detecting failed fuel position - Google Patents

Method and device for detecting failed fuel position

Info

Publication number
JPS59102192A
JPS59102192A JP57212391A JP21239182A JPS59102192A JP S59102192 A JPS59102192 A JP S59102192A JP 57212391 A JP57212391 A JP 57212391A JP 21239182 A JP21239182 A JP 21239182A JP S59102192 A JPS59102192 A JP S59102192A
Authority
JP
Japan
Prior art keywords
gas
activated carbon
tag
carbon adsorption
sampler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57212391A
Other languages
Japanese (ja)
Other versions
JPH0153736B2 (en
Inventor
小林 孝良
秋山 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP57212391A priority Critical patent/JPS59102192A/en
Publication of JPS59102192A publication Critical patent/JPS59102192A/en
Publication of JPH0153736B2 publication Critical patent/JPH0153736B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、高速増殖炉における破損燃料の位置を、当該
燃料要素から放出された特定のガスをカバーガスから分
離濃縮し、測定することによって検出する方法及びそれ
に用いる装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method and apparatus for detecting the position of damaged fuel in a fast breeder reactor by separating and concentrating a specific gas released from the fuel element from the cover gas and measuring it. It is related to.

高速増殖炉において、破損燃料位置検出系(FFDL)
は、原子炉の安全運転および運転の効率化の面から重要
である。このための一方法として、炉内に装荷する前の
各燃料要素に各々同位体組成の異なる希ガス(通常クリ
プトンおよびキセノンが使用される。これをタグガスと
称す)を予め封入しておき、燃料破損によって冷五Hオ
ナトリウムを経てカバーガス中へ放出されたタグガスの
同位体組成を測定する方法(ラギング法)がある。
In fast breeder reactors, failed fuel position detection system (FFDL)
This is important from the standpoint of safe nuclear reactor operation and operational efficiency. One method for this purpose is to pre-fill each fuel element with a rare gas (usually krypton and xenon, referred to as tag gas) having different isotopic compositions before loading it into the reactor. There is a method (lagging method) of measuring the isotopic composition of the tag gas released into the cover gas through the cold penta-H onodium due to the breakage.

ラギング法を実施するに際しては、カバーガス中からタ
グガスを濃縮捕集するための濃縮装置と濃縮したタグガ
スの同位体組成を測定するための質量分析計が必要とさ
れる。これらは各々独立した装置であり、その櫟能およ
び設置条件等の制約から原子炉建屋における設置場所に
ついて制限があり、両装置を同−空白には設置できない
ものと考えられている。このため、濃縮装置にてカバー
ガスから濃縮捕集したタグガスを効率よくサンプラーに
回収し、質量分析計へ移送することが必要である。濃縮
装置は活性炭深冷吸着法を用いて、破損した燃料要素か
らカバーカス中へ移行拡散した微量のタグガスを濃縮捕
集するためのものである。第1図に示すように、この濃
縮装置1は、大型活性炭吸着筒2、予冷管3、およびこ
れらを内蔵する恒温槽4で構成されるタグガス瀧縮捕集
部5と、小型活性炭吸着筒6、予冷管7、およびこれら
を内蔵する恒温槽8で構成される共吸着アルゴン除去部
9とからなる。濃縮方法は、濃縮捕集部5の大型吸着筒
2を極低温に保ち、ここにカバーガスを流通させること
によってタグガスを深冷吸着させ、前記大型吸着筒5を
昇温してヘリウムキャリヤーガスでアルゴン除去部9の
小型活性炭吸着筒6に導き、該小型活性炭吸着筒6に再
び深冷吸着させ、前記小型活性炭吸着筒6を一80℃に
保ってヘリウムフラッシングすることにより共吸着アル
ゴンを選択的に分離除去するのである。このようにして
最終的に小型活性炭吸着筒6に保持された濃縮タグガス
は、ガスサンプラー10に採取される。この採取方法と
しては、従来、小型活性炭吸着筒6の一端にガスサンプ
ラー10を取付け、真空ポンプ11でその内部を真空排
気し、゛その後、小型活性炭吸着筒6を加熱し、脱離し
たタグガスを採取する方法が考えられる。しかしこの方
法では小型吸着筒系の配管死容積が多いため、脱離した
タグガスの一部しか採取できない。さらに、タグガスと
して用いられるクリプトンとキセノンの活性炭に対する
吸着能の相違からクリプトンの方が先にサンプラー内に
採取されるため、クリプトンとキセノンを同率に回収す
ることは困難である。この方法の改善策として、小型活
性炭吸着筒6とサンプラー10との温度勾配を大きくし
て回収効率を高める方法、例えばサンプラー10をジュ
ワーびん12中の液化窒素13に浸漬してサンプリング
する方法や、真空排気したサンプラーを数本設置して上
述のサンプリング操作で複数回行なう方法等が考えられ
るが、いずれの方法でもタグガス全量を回収することは
不可能であり、また、複数回サンプリング法はその後の
分析時間を著しく増大させてしまう。
When carrying out the lagging method, a concentrator for concentrating and collecting the tag gas from the cover gas and a mass spectrometer for measuring the isotopic composition of the concentrated tag gas are required. These are each independent devices, and there are restrictions on where they can be installed in the reactor building due to restrictions such as their capacity and installation conditions, and it is considered that both devices cannot be installed in the same space. Therefore, it is necessary to efficiently collect the tag gas concentrated and collected from the cover gas in the concentrator into the sampler and transfer it to the mass spectrometer. The concentrator uses activated carbon cryogenic adsorption to concentrate and collect trace amounts of tag gas that has migrated and diffused from the damaged fuel element into the cover scum. As shown in FIG. 1, this concentrator 1 includes a tag gas condensation collection unit 5, which is composed of a large activated carbon adsorption tube 2, a precooling tube 3, and a constant temperature bath 4 containing these, and a small activated carbon adsorption tube 6. , a precooling tube 7, and a co-adsorption argon removal section 9 consisting of a constant temperature bath 8 containing these. The concentration method is to keep the large adsorption cylinder 2 of the concentration collection section 5 at an extremely low temperature, to cause the tag gas to be cryogenically adsorbed by flowing a cover gas therein, and to raise the temperature of the large adsorption cylinder 5 to absorb helium carrier gas. The co-adsorbed argon is selectively introduced into the small activated carbon adsorption cylinder 6 of the argon removal unit 9, and is adsorbed in the small activated carbon adsorption cylinder 6 again by deep cooling, and the small activated carbon adsorption cylinder 6 is kept at -80°C and flushed with helium. It is separated and removed. The concentrated tag gas finally retained in the small activated carbon adsorption cylinder 6 in this way is collected by the gas sampler 10. Conventionally, this sampling method involves attaching a gas sampler 10 to one end of the small activated carbon adsorption cylinder 6, evacuating the inside using a vacuum pump 11, and then heating the small activated carbon adsorption cylinder 6 to collect the desorbed tag gas. One possible method is to collect it. However, with this method, only a portion of the desorbed tag gas can be collected because the pipe dead volume of the small adsorption cylinder system is large. Furthermore, because krypton and xenon, which are used as tag gases, have different adsorption capacities for activated carbon, krypton is collected into the sampler first, making it difficult to recover krypton and xenon at the same rate. As an improvement to this method, there is a method of increasing the temperature gradient between the small activated carbon adsorption cylinder 6 and the sampler 10 to increase the collection efficiency, for example, a method of sampling by immersing the sampler 10 in the liquefied nitrogen 13 in the dewar bottle 12, One possible method is to install several evacuated samplers and perform the sampling operation described above multiple times, but it is impossible to recover the entire amount of tag gas with either method, and the multiple sampling method This significantly increases analysis time.

本発明は上記の問題を解決するためになされたもので、
濃縮装置によってカバーガス中から濃縮捕集されたタグ
ガスの全量を質量分析用のサンプラーに回収し得る方法
及びそれに用いる装置を提供することを目的としている
The present invention was made to solve the above problems,
It is an object of the present invention to provide a method for collecting the entire amount of tag gas concentrated and collected from a cover gas by a concentrator into a sampler for mass spectrometry, and an apparatus used therefor.

そこで本発明では、濃縮装置の小型活性炭吸着筒に濃縮
されたタグガスを直接ガスサンプラーで捕集するのでは
なく、一旦、小型可搬式活性炭吸着筒へキャリヤガスを
用いて強制的に送り込み吸着させ、それをガスサンプリ
ング装置に移してセットし、再びキャリヤガスを用いて
タグガスをサンプラ〜で採取するよう(育成されている
Therefore, in the present invention, instead of directly collecting the tag gas concentrated in the small activated carbon adsorption cylinder of the concentrator with a gas sampler, the tag gas is first forcibly fed to the small portable activated carbon adsorption cylinder using a carrier gas and adsorbed. Transfer it to the gas sampling device, set it, and use the carrier gas again to collect the tag gas with the sampler.

以下、本発明について更に詳しく説明する。The present invention will be explained in more detail below.

本発明の第1番目の発明は、原子炉に装荷されている燃
料要素から放出された特定のタグガスをカバーガスから
分離濃縮し、採取したタグガスの成分を測定することに
よって破損燃料位置を検出する方法において、分離濃縮
したタグガスをキャリヤガスで小型可搬式活性炭吸着筒
に強制的に送り込んで一旦そこで深冷吸着させた後、該
小型可搬式活性炭゛吸着筒とガスサンプラーとを連結し
、該小型可搬式活性炭吸着筒を加熱してタグガスを離脱
させるとともに、キャリA2ガスで強制的にガスサンプ
ラー内に送り込み採取することを特徴とする破損燃料位
置検出方法である。
The first aspect of the present invention is to separate and concentrate a specific tag gas released from a fuel element loaded in a nuclear reactor from a cover gas, and detect the location of a damaged fuel by measuring the components of the collected tag gas. In this method, the separated and concentrated tag gas is forcibly fed into a small portable activated carbon adsorption column using a carrier gas, where it is once deep-cooled and adsorbed, and then the small portable activated carbon adsorption column is connected to a gas sampler, This is a method for detecting the position of damaged fuel, which is characterized by heating a portable activated carbon adsorption column to release tag gas, and forcing the carrier A2 gas into a gas sampler to collect the tag gas.

本発明の第2番目の発明は、前記方法を実施するのに用
いる装置であって、原子炉の一次カバーガス系に設置し
たタグガス濃縮装置:内部に活性炭が充填されている吸
着筒と、その入口管及び出口管にそれぞれ弁を介して取
付けられている着脱自在の継手部を有し、前記タグガス
濃縮装置の出口流路に設けられた取付部に対して着脱自
在に取付く小型可搬式活性炭吸着筒装置ニ ガスピユーレットと小型可搬式活性炭吸着筒装置の着脱
自在の取付部とガスサンプラー取付部と真空排気系と、
それらを連結するコック付配管を備えたサンプリング装
置; 及び、質量分析計とで構成される破損燃料位置検出装置
である。
The second invention of the present invention is a device used to carry out the above method, which is a tag gas concentrator installed in the primary cover gas system of a nuclear reactor: an adsorption tube whose inside is filled with activated carbon; A small portable activated carbon having detachable joints attached to the inlet pipe and the outlet pipe through valves, and detachably attached to the attachment part provided in the outlet flow path of the tag gas concentrator. Adsorption cylinder device Nigaspiulet, small portable activated carbon adsorption cylinder device detachable mounting part, gas sampler mounting part, vacuum exhaust system,
A sampling device equipped with a piping with a cock to connect them; and a damaged fuel position detection device consisting of a mass spectrometer.

第2図に示すように、タグガス濃縮装置1は、第1図に
示した従来のものと同じであってよい。
As shown in FIG. 2, the tag gas concentrator 1 may be the same as the conventional one shown in FIG.

その構成、作用とも前述した通りであるので対応する部
分には同一符号を付し、それらについての記載は省略す
る。第1図の場合には、タグガス濃縮装置1の出口流路
に直接ガスサンプラー10が設けられていたが、本発明
では、小型の可搬式活性炭吸着筒装置20が設けられて
いる点で顕著な相違がある。即ち、本発明では、タグガ
ス濃縮装置1の出口流路に可搬式活性炭吸着筒装置20
の取付部21を設け、それに着脱自在に取付く小型可搬
式活性炭吸着筒装置20は、第3図に詳細に示されてい
るように、内部に活性炭か充填されている小型可搬式活
性炭吸着筒22(以下、単に「吸着筒22」という)と
、その入口管23及び出口管24にそれぞれ弁25.2
6を介して取付けられている着脱自在の継手部27と、
吸着筒22の外周に巻付けられている電熱ヒータ28と
からなる。この小型可搬式活性炭吸着筒装置20の容積
は、例えば1Qcc程度であり、後述するガスサンプラ
ーの容積に比し充分小さな(例えば1/10程度)のも
のとなっている。
Since the structure and operation thereof are as described above, corresponding parts are given the same reference numerals, and description thereof will be omitted. In the case of FIG. 1, the gas sampler 10 was installed directly in the outlet flow path of the tag gas concentrator 1, but the present invention is notable in that a small, portable activated carbon adsorption cylinder device 20 is installed. There is a difference. That is, in the present invention, a portable activated carbon adsorption cylinder device 20 is installed in the outlet flow path of the tag gas concentrator 1.
As shown in detail in FIG. 3, the small portable activated carbon adsorption cylinder device 20 is provided with a mounting part 21 and is detachably attached thereto.As shown in detail in FIG. 22 (hereinafter simply referred to as "adsorption cylinder 22"), and its inlet pipe 23 and outlet pipe 24 are provided with valves 25.2, respectively.
a removable joint portion 27 attached via 6;
It consists of an electric heater 28 wrapped around the outer periphery of the suction cylinder 22. The volume of this small-sized portable activated carbon adsorption column device 20 is, for example, about 1 Qcc, which is sufficiently smaller (for example, about 1/10) than the volume of a gas sampler, which will be described later.

さて、小型可搬式活性炭吸着筒装置20は、タグガスの
濃縮捕集操作開始前あるいは操作中に濃縮装置1の出口
流路に設けられた取付部21に取付け、弁30および3
1を開として取付時に流入した空気を真空ポンプ11で
排気しておく。濃縮装置1によってカバーガス中から濃
縮捕集されたタグガスは、共吸着アルゴンを分離後、小
型活性炭吸着筒6に一80℃で保持された状態となる。
Now, the small portable activated carbon adsorption cylinder device 20 is attached to the mounting part 21 provided in the outlet flow path of the concentrator 1 before or during the start of the tag gas concentration collection operation, and the valves 30 and 3
1 is opened and the air that has flowed in during installation is evacuated by the vacuum pump 11. The tag gas concentrated and collected from the cover gas by the concentrator 1 is held in a small activated carbon adsorption cylinder 6 at -80° C. after separating the co-adsorbed argon.

ここで先に取付けてあった吸着筒22を、液体窒素13
を満たしたジュワーびん12中に設置して冷却する。続
いて弁32.33および25を開として、ヘリウムを小
型活性炭吸着筒6を通して吸着筒22へ流入させる。流
路内のヘリウム圧が平衡となったら弁26および34を
開としてヘリウムの流通を開始する。同時に小型活性炭
吸着筒6を加熱し、保持されていたタグガスを脱離させ
る。脱離したタグガスはヘリウムによって吸着筒22へ
運ばれ、ここに深冷吸着する。この時の最適操作条件に
ついて調べた結果を第5図および第6図に示す。すなわ
ちタグガス回収率は、小型活性炭吸着筒6におけるヘリ
ウムの空筒線速度を40m/ secとした場合には小
型活性炭吸着筒6の加熱温度および時間を各々50〜3
60℃および10〜30分間の間に設定すれば、常にほ
ぼ100%の回収率が得られることがわかる。
Here, the adsorption tube 22 that was installed earlier is replaced with the liquid nitrogen 13
It is placed in a dewar bottle 12 filled with water and cooled. Valves 32, 33 and 25 are then opened to allow helium to flow into the adsorption cylinder 22 through the small activated carbon adsorption cylinder 6. When the helium pressure in the flow path reaches equilibrium, valves 26 and 34 are opened to begin the flow of helium. At the same time, the small activated carbon adsorption cylinder 6 is heated to desorb the retained tag gas. The desorbed tag gas is carried by helium to the adsorption column 22, where it is cryogenically adsorbed. The results of an investigation into the optimum operating conditions at this time are shown in FIGS. 5 and 6. In other words, the tag gas recovery rate is calculated as follows: When the linear velocity of helium in the small activated carbon adsorption cylinder 6 is 40 m/sec, the heating temperature and heating time of the small activated carbon adsorption cylinder 6 are 50 to 30 m/sec.
It can be seen that when the temperature is set at 60° C. and between 10 and 30 minutes, a recovery rate of approximately 100% is always obtained.

上記の最適条件にてタグガスの全量を吸着筒22へ移し
換えたなら、弁26および25を閉じ、小型可搬式活性
炭吸着筒装置20を取付部21からはずす。これを第4
図に示したサンプリング装置へ運搬する。
Once the entire amount of tag gas has been transferred to the adsorption cylinder 22 under the above optimal conditions, the valves 26 and 25 are closed, and the small portable activated carbon adsorption cylinder device 20 is removed from the mounting part 21. This is the fourth
Transport to the sampling device shown in the figure.

そして、取外した小型可搬式活性炭吸着筒装置20をサ
ンプリング装置の取付部40に取付ける。同時に容量1
00cc程度のガスサンプラー10をサンプラー取付部
41に取付ける。コツ   ゛り42および43ならび
にサンプラー10のコツク44を操作して配管内および
サンプラー10内の空気を真空排気した後、コック43
をサンプラー10と吸着筒22が導通できる位置とする
。次に吸着筒22の弁26およびサンプラー10のコッ
ク44を開の状態にし、吸着筒22に巻付けたヒータ2
8に通電して吸着筒内の活性炭を加熱する。加熱中にコ
ック45を通してガスビューレット46にヘリウムを導
入する。活性炭に保持されていたタグガスの全色が脱離
したならコック42および45をカスビューレット46
と吸着筒22が導通できる位置とする。続いて吸着筒2
2の弁25を徐々に開きながらガスビューレット46の
水銀溜47を押し上げて、ヘリウムを吸着筒22を通し
てサンプラー10へ導入する。この時、脱離した状態の
タグガスもヘリウムと共にサンプラー10中へ導かれる
。サンプラー10内の圧力が大気圧となったらコック4
4を閉とし1、水銀溜47を元の位置へ戻す。以上のタ
グガスサンプリング操作を行なう際の最適加熱条件をし
らべた結果を第7図に示す。すなわち、吸着筒22を加
熱温度150〜200℃、加熱時間10分間の条件で加
熱した場合、タグガスをほぼ100%回収できることが
わかる。
Then, the removed small-sized portable activated carbon adsorption cylinder device 20 is attached to the attachment part 40 of the sampling device. capacity 1 at the same time
A gas sampler 10 of approximately 0.00 cc is attached to the sampler attachment part 41. After evacuating the air inside the piping and the sampler 10 by operating the cocks 42 and 43 and the cock 44 of the sampler 10,
is a position where the sampler 10 and the adsorption column 22 can be electrically connected. Next, the valve 26 of the adsorption tube 22 and the cock 44 of the sampler 10 are opened, and the heater 2 wrapped around the adsorption tube 22 is opened.
8 to heat the activated carbon in the adsorption cylinder. Helium is introduced into the gas buret 46 through the cock 45 during heating. Once all of the tag gas retained in the activated carbon has been released, the cocks 42 and 45 are turned off to the cassburette 46.
The position is such that conduction can be established between the adsorption cylinder 22 and the suction cylinder 22. Next, adsorption tube 2
While gradually opening the valve 25 of No. 2, the mercury reservoir 47 of the gas burette 46 is pushed up, and helium is introduced into the sampler 10 through the adsorption cylinder 22. At this time, the desorbed tag gas is also introduced into the sampler 10 together with helium. When the pressure inside the sampler 10 reaches atmospheric pressure, click the cock 4.
4 is closed, and 1 returns the mercury reservoir 47 to its original position. FIG. 7 shows the results of an investigation of the optimum heating conditions for carrying out the above tag gas sampling operation. That is, it can be seen that when the adsorption column 22 is heated at a heating temperature of 150 to 200° C. for a heating time of 10 minutes, almost 100% of the tag gas can be recovered.

上記の最適条件にてタグガスを採取したサンプラーを質
量分析計へ取付け、タグガスの同位体比を測定すること
によって破損燃料の炉内位置を知ることができる。
The location of the damaged fuel in the reactor can be determined by attaching the sampler that collected the tag gas under the above optimal conditions to a mass spectrometer and measuring the isotope ratio of the tag gas.

なa5、ガスサンプリング装置において、必ずしもガス
ビューレットを用いなくてもよく、代りにヘリウムボン
ベから徐々にヘリウムを可搬式活性炭吸着筒装置に送り
込んでもよいが、このときには別の圧力計を設ける必要
があり、デッドスペースが増えることになる。上記実施
例のように、ガスビューレットを用いると、常に一定の
圧力条件でサンプリングすることができるので、特に好
ましい。
A5. It is not necessary to use a gas buret in the gas sampling device; instead, helium can be gradually fed from a helium cylinder to the portable activated carbon adsorption cylinder device, but in this case it is necessary to provide a separate pressure gauge. This will increase dead space. It is particularly preferable to use a gas burette, as in the above embodiment, because sampling can always be performed under constant pressure conditions.

以上の説明から明らかなように、本発明によれば、原子
炉中における燃料破損の位置検出をラギング法にて実施
する場合、小型の可搬式活性炭吸着筒装置を設け、′キ
ャリヤガスを用いて濃縮装置のタグガスを強制的に移送
し吸着させるとともに、小型可搬式活性炭吸着筒装置か
ら真空にしたガスサンプラーへの移送も、ヘリウムを用
いて強制的に行なうので損失が少なく、結局、これによ
って濃縮装置によって濃縮されたタグガスをほぼ全組質
量分析計に導入することができる。つまり、これらによ
って、タグガス同位体比測定精度の向上が可能となり、
破損燃料位置の正確な同定が期待できるし、また最終回
収率が向上することから、タグガス濃縮時間の短縮を計
ることもできるなど、すぐれた効果を奏しうるちのであ
る。
As is clear from the above description, according to the present invention, when detecting the location of fuel damage in a nuclear reactor by the lagging method, a small, portable activated carbon adsorption cylinder device is provided, and a carrier gas is used to detect the location of fuel damage. In addition to forcibly transferring and adsorbing the tag gas in the concentrator, helium is also used to forcibly transfer the tag gas from the small, portable activated carbon adsorption cylinder device to the evacuated gas sampler, resulting in less loss. The tag gas concentrated by the device can be introduced into almost all mass spectrometers. In other words, these make it possible to improve the accuracy of tag gas isotope ratio measurement.
It is expected to accurately identify the location of damaged fuel, and since the final recovery rate will be improved, it will also be possible to shorten the tag gas concentration time, making it extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術の説明図、第2図は本発明の一実施例
におけるタグガス濃縮装置と小型可搬式活性炭吸る筒装
置の関連部分の説明図、第3図は小型可搬式活性炭吸着
筒装置の詳細図、第4図はjl−ンプリング装置の説明
図、第5図および第6図は各々タグガスを濃縮装置から
小型可搬式活性炭吸着筒へ移し換える際の濃縮装置内小
型活性炭吸着筒の加熱温度および加熱時間とタグガス回
収率との関係を示すグラフ、第7図はタグガスを小型可
搬式活性炭吸着筒装置からサンプラーへ採取する際吸着
筒の加熱温度とタグガス回収率との関係を示すグラフで
ある。 1・・・濃縮装置、10・・・ガスサンプラー、20・
・・小型可搬式吸着筒装置、46・・・ガスごューレッ
1へ。
Fig. 1 is an explanatory diagram of the prior art, Fig. 2 is an explanatory diagram of related parts of a tag gas concentrator and a small portable activated carbon adsorption cylinder device in an embodiment of the present invention, and Fig. 3 is an explanatory diagram of a small portable activated carbon adsorption cylinder. A detailed view of the device, Figure 4 is an explanatory diagram of the JL-sampling device, and Figures 5 and 6 are diagrams of the small activated carbon adsorption cylinder inside the concentrator when transferring tag gas from the concentrator to the small portable activated carbon adsorption cylinder. A graph showing the relationship between heating temperature and heating time and tag gas recovery rate. Figure 7 is a graph showing the relationship between heating temperature of the adsorption cylinder and tag gas recovery rate when collecting tag gas from a small portable activated carbon adsorption cylinder device to a sampler. It is. 1... Concentrator, 10... Gas sampler, 20.
...Small portable adsorption tube device, 46...To gas gure 1.

Claims (1)

【特許請求の範囲】 1、原子炉に装荷されている燃料要素から放出された特
定のタグガスをカバーガスから分離濃縮し、採取したタ
グガスの成分を測定することによって破損燃料位置を検
出する方法において、分離濃縮したタグガスをキャリヤ
ガスで小型可搬式活性炭吸着筒に強制的に送り込んで一
旦そこで深冷吸着させた後、該小型可1般式活性炭吸着
筒とガスサンプラーとを連結し、該小型可搬式活性炭吸
着筒を加熱してタグガスを離脱させるとともに、キャリ
ヤガスで強制的にガスサンプラー内に送り込み採取する
ことを特徴とする破損燃料位置検出方法。 2、原子炉の一次カバーガス系に設置したタグガス濃縮
装置; 内部に活性炭が充填されている吸着筒と、その入口管及
び出口管にそれぞれ弁を介して取付けられている着脱自
在の継手部を有し、前記タグガス濃縮装置の出口流路に
設けられた取付部に対して着脱自在に取付く小型可搬式
%式% ガスビューレットと小型可搬式活性炭吸着筒装置の着脱
自在の取付部とガスサンプラー取付部と真空排気系と、
それらを連結するコック付配管を備えたサンプリング装
置: 及び、質量分析計とで構成される破損燃料位置検出装置
[Claims] 1. A method for detecting the position of damaged fuel by separating and concentrating a specific tag gas released from a fuel element loaded in a nuclear reactor from a cover gas and measuring the components of the collected tag gas. The separated and concentrated tag gas is forcibly fed into a small portable activated carbon adsorption column using a carrier gas, where it is deep-cooled and adsorbed. A method for detecting the position of damaged fuel, which is characterized by heating a portable activated carbon adsorption cylinder to release tag gas, and forcing it into a gas sampler using a carrier gas to collect it. 2. A tag gas concentrator installed in the primary cover gas system of the reactor; an adsorption cylinder filled with activated carbon inside, and removable joints attached to its inlet and outlet pipes via valves, respectively. The gas burette and the small portable activated carbon adsorption tube device have a small and removable mounting part that is removably attached to the mounting part provided in the outlet flow path of the tag gas concentrator. Sampler mounting part and vacuum exhaust system,
A sampling device equipped with piping with a cock to connect them; and a damaged fuel position detection device consisting of a mass spectrometer.
JP57212391A 1982-12-03 1982-12-03 Method and device for detecting failed fuel position Granted JPS59102192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57212391A JPS59102192A (en) 1982-12-03 1982-12-03 Method and device for detecting failed fuel position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57212391A JPS59102192A (en) 1982-12-03 1982-12-03 Method and device for detecting failed fuel position

Publications (2)

Publication Number Publication Date
JPS59102192A true JPS59102192A (en) 1984-06-13
JPH0153736B2 JPH0153736B2 (en) 1989-11-15

Family

ID=16621802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57212391A Granted JPS59102192A (en) 1982-12-03 1982-12-03 Method and device for detecting failed fuel position

Country Status (1)

Country Link
JP (1) JPS59102192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112195A (en) * 1987-10-27 1989-04-28 Toshiba Corp Burst slug detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728845A (en) * 1970-05-30 1973-04-24 Shimadzu Corp Method and apparatus for stripping the components of a mixed sample from a trap
JPS5238199A (en) * 1975-08-28 1977-03-24 Matsushita Electric Ind Co Ltd Magnetizing method for magnet
JPS5341022U (en) * 1976-09-13 1978-04-10
JPS55141697A (en) * 1979-04-23 1980-11-05 Tokyo Shibaura Electric Co Failed fuel position detecting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728845A (en) * 1970-05-30 1973-04-24 Shimadzu Corp Method and apparatus for stripping the components of a mixed sample from a trap
JPS5238199A (en) * 1975-08-28 1977-03-24 Matsushita Electric Ind Co Ltd Magnetizing method for magnet
JPS5341022U (en) * 1976-09-13 1978-04-10
JPS55141697A (en) * 1979-04-23 1980-11-05 Tokyo Shibaura Electric Co Failed fuel position detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01112195A (en) * 1987-10-27 1989-04-28 Toshiba Corp Burst slug detector

Also Published As

Publication number Publication date
JPH0153736B2 (en) 1989-11-15

Similar Documents

Publication Publication Date Title
JP6082226B2 (en) Sample preparation system for carbon-14 measurement
Dubasov et al. The АРИКС-01 automatic facility for measuring concentrations of radioactive xenon isotopes in the atmosphere
JPS61213742A (en) Helium-gas leakage detector for small-sized part
Prelovskii et al. The ARIX-03F mobile semiautomatic facility for measuring low concentrations of radioactive xenon isotopes in air and subsoil gas
US20040151622A1 (en) Ultra-trace automatic mercury species analyzer
US4792526A (en) Method for collecting and analyzing hydrocarbons
CN214473080U (en) Online continuous flow analysis and extraction device for methane carbon isotope composition in gas
JPS59102192A (en) Method and device for detecting failed fuel position
CN206074528U (en) A kind of particulate matter organic chemical components on-line measurement system
CN109323909B (en) Gas automatic separation system for inertness in small-gas-volume environment sample
WO2005059593A1 (en) Method and equipment to separate and measure 37ar quickly
Nevins et al. Nitrogen isotope ratio analysis of small samples: sample preparation and calibration
JP2858143B2 (en) Concentration analysis method and apparatus therefor
CN115792107A (en) Mu Bq/m 3 Magnitude gas radon concentration measuring device
US4214473A (en) Gaseous trace impurity analyzer and method
Hayes et al. Operations of the Automated Radioxenon Sampler/Analyzer—ARSA
JP2004264282A (en) Method for concentrating gaseous substance, and apparatus for concentrating and analyzing carrier gas
CN111289311A (en) Mixed emergency cooling type high-temperature flue gas sampling device and method
JPS6133369B2 (en)
JPS5844375A (en) Collecting and measuring system for radioactive gas
Janssens et al. An improved method for the sampling of atmospheric 85Kr
CN110941005B (en) On-line continuous monitoring device for carbon-14 in air and calculation method for carbon-14 activity concentration in air
CN115200962B (en) Graphite sample preparation system and sample preparation method for accelerator mass spectrum
CN113092654B (en) In the air85Automatic continuous measurement system for Kr gas separation extraction and content
Kunz Separation techniques for reactor-produced noble gases