JPS59101476A - Purification of epoxy compound - Google Patents

Purification of epoxy compound

Info

Publication number
JPS59101476A
JPS59101476A JP21022782A JP21022782A JPS59101476A JP S59101476 A JPS59101476 A JP S59101476A JP 21022782 A JP21022782 A JP 21022782A JP 21022782 A JP21022782 A JP 21022782A JP S59101476 A JPS59101476 A JP S59101476A
Authority
JP
Japan
Prior art keywords
epoxy compound
acetic acid
condenser
condensed
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21022782A
Other languages
Japanese (ja)
Other versions
JPH0324475B2 (en
Inventor
Shinji Hattori
服部 信司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP21022782A priority Critical patent/JPS59101476A/en
Publication of JPS59101476A publication Critical patent/JPS59101476A/en
Publication of JPH0324475B2 publication Critical patent/JPH0324475B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)

Abstract

PURPOSE:To purify a crude epoxy compound having small boiling temperature difference between acetic acid, thermally unstable in the presence of acetic acid, and unsuitable for the application of water extraction process, in high yield, by combining a flash evaporation process with a fractional condensation process. CONSTITUTION:A crude epoxy compound is charged in a flash evaporator having short residence time, e.g. a thin-film evaporator, and subjected to the flash evaporation under reduced pressure. The temperature of the heat medium in the flash evaporator is adjusted preferably at a level lower than the boiling point of the epoxy compound under the corresponding vapor pressure by 10-40 deg.C. The vapor generated by the flash evaporation is partially condensed in the first condenser, and the condensed liquid containing concentrated epoxy compound is recycled as a feed liquid. The noncondensed vapor is introduced into the second condenser, condensed completely, the recovered as an acetic acid solution. The epoxy compound suitable for the process is the one having a boiling temperature difference of 50-150 deg.C betweeen acetic acid.

Description

【発明の詳細な説明】 本発明は、エポキシ化合物の精製方法に関するもので、
さらに詳しくはエポキシ化合物と副生酢酸の分離方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying an epoxy compound,
More specifically, the present invention relates to a method for separating epoxy compounds and by-product acetic acid.

過酢酸による有機化合物のエポキシ化法は、通常、アセ
トアルテヒドを酸化してつくった過酢酸溶液を使って行
なわれ、エボギシ化反応から得られた液はエポキシ化合
物、副生酢酸、溶媒、未反応有機化合物、その他の副生
物等の混合物である。
Epoxidation of organic compounds with peracetic acid is usually carried out using a peracetic acid solution prepared by oxidizing acetaltehyde, and the liquid obtained from the epoxidation reaction contains the epoxy compound, by-product acetic acid, solvent, and non-alcoholic acid. It is a mixture of reactive organic compounds and other by-products.

この反応粗液からエポキシ化合物を高純度で得るには大
量に副生ずる酢酸との分離をいかに行なうかが重蟹なポ
イントになっており、目的とするエポキシ化合物の安定
性及び物性により従来、3つの型に大別される。
In order to obtain a high-purity epoxy compound from this crude reaction solution, the key point is how to separate the large amount of by-product acetic acid. It is roughly divided into two types.

■。連続フラッシュ蒸発法; これは酢酸をフラッジ−
蒸発する方法であり、エポキシ化合物の沸点が酢酸より
著しく高(、容易にフラッジ−蒸発で分離できるものに
適用され、この場合、目的物の滞留時間が短いので、酢
酸共存下の熱安定性はさほど要求されない。
■. Continuous flash evaporation; this method flashes acetic acid
This is a method of evaporation, and is applied to compounds whose boiling point is significantly higher than that of acetic acid (and which can be easily separated by flash-evaporation). Not much is required.

■。連続脱酢酸蒸留法; これは丁の方法の精密分留で
あり、エポキシ化合物の沸点が酢酸より高く、蒸留分離
できるものに適用され、この場合、目的物の滞留時間が
比較的長いので、酢酸共存下の熱安定性が良好であるこ
とが必要である。
■. Continuous acetic acid removal distillation method; This is a precision fractionation of Ding's method, and is applied to epoxy compounds whose boiling point is higher than acetic acid and can be separated by distillation. In this case, since the residence time of the target product is relatively long, acetic acid It is necessary that the thermal stability under coexistence is good.

■。水抽出法; これはエポキシ化合物の沸点が酢酸と
近似していて蒸留分離が困難なもの、あるいは酢酸共存
下の熱安定性が悪いものに適用される。しかしながら、
1〜■各蒸発蒸留法は酢酸共存下で熱安定性が悪いエポ
キシ化合物では、仮に酢酸との蒸留分離が可能な沸点差
があったどしても、蒸留中に酢酸と反応するため収率が
大幅に低下する。また■水抽出法も水と反応しやすいエ
ポキシ化合物や水への溶解度が高いエポキシ化合物には
用いることができず、さらに抽出水から酢酸の回収にも
コストがか又る等欠点が多い。従って、■の方法では酢
酸と簡≠に蒸発分離できず酢酸共存下の熱安定性が悪い
ために■の方法も用いることがて゛きないエポキシ化合
物の精製は困難とされていた。即ち、このような分離に
は滞留時間を短か<シ、シかも蒸留分離をよ(するとい
う−見矛盾した要求を満たす必要があるためである。
■. Water extraction method: This method is applied to epoxy compounds whose boiling point is close to that of acetic acid and is difficult to separate by distillation, or to those whose thermal stability is poor in the presence of acetic acid. however,
1~■Each evaporative distillation method uses epoxy compounds that have poor thermal stability in the coexistence of acetic acid.Even if there is a boiling point difference that allows for distillation separation from acetic acid, the yield will be lower because the epoxy compound will react with acetic acid during distillation. decreases significantly. Furthermore, the water extraction method (2) cannot be used for epoxy compounds that easily react with water or have high solubility in water, and furthermore, it has many drawbacks, such as the high cost of recovering acetic acid from the extracted water. Therefore, it has been difficult to purify epoxy compounds, which cannot be easily separated from acetic acid by evaporation using the method (2), and which cannot be separated by method (2) because of their poor thermal stability in the presence of acetic acid. That is, such separation requires a short residence time or alternatively distillative separation, which are contradictory requirements.

本発明者は、上記のような大きな問題を持一つエポキシ
化合物の精製について鋭意研究した結果、本発明の方法
を見い出し、完成するに至った。
As a result of intensive research into the purification of epoxy compounds, which have the above-mentioned major problems, the inventors discovered and completed the method of the present invention.

即ち、本発明は、l)過酢酸によるエポキシ化法で合成
したエポキシ化合物を精製するに際し、該粗液を7ラソ
シ一蒸発器及び分縮器の組合わせからなる装置で連続的
に処理することを特徴とするエポキシ化合物の精製方法
。2、特許請求の範囲第1項記載の方法であって、該粗
液を薄膜蒸発器(A、)でフラッジ−蒸発させる。そし
て(A)の頂部から蒸気は第1コンデンサー(B)で分
縮され、元の粗液に再循環し、さらに分縮されなかった
蒸気は第2コンデンザ−(C)で全縮され、酢酸溶液と
して回収する。同時に、(A)の底部から目的とする精
エポキシ化合物を得ることを特徴とするエポキシ化合物
の精製方法である。
That is, the present invention provides: l) When purifying an epoxy compound synthesized by an epoxidation method using peracetic acid, the crude liquid is continuously treated in an apparatus consisting of a combination of a 7-layer evaporator and a demultiplexer. A method for purifying an epoxy compound, characterized by: 2. The method according to claim 1, in which the crude liquid is flood-evaporated in a thin film evaporator (A). The vapor from the top of (A) is partially condensed in the first condenser (B) and recirculated to the original crude liquid, and the vapor that has not been further condensed is completely condensed in the second condenser (C) and Collect as a solution. At the same time, this is a method for purifying an epoxy compound, which is characterized in that a desired purified epoxy compound is obtained from the bottom of (A).

本発明の方法によれば、使用装置がフラッジ−蒸発と分
縮の組合わせであるため、滞留時間な短かくすることが
でき、エポキシ化合物と酢酸の反応を抑えることが可能
となり、しかも酢酸を含む低沸点成分からの効率よ(分
離することが可能となる。このようにして得られた精エ
ポギシ化合物中の酢酸濃度は、かなり低い。しかも、そ
のため次の工程で?、IM留時間の長い蒸留を行なって
も、蒸留中にエポキシ化合物が酢酸と反応ずろことは殆
んどないため、必要に応じて公知のバッチ蒸留や連続蒸
留を行なうことにより、収率よ(高純度のエポキシ化合
物とすることができる。
According to the method of the present invention, since the equipment used is a combination of flood-evaporation and fractional condensation, the residence time can be shortened, and the reaction between the epoxy compound and acetic acid can be suppressed. The concentration of acetic acid in the purified epoxy compound thus obtained is quite low. Moreover, in the next step, the IM distillation time is long. Even if distillation is performed, there is almost no chance that the epoxy compound will react with acetic acid during distillation, so if necessary, known batch distillation or continuous distillation can be used to improve the yield (high purity epoxy compound and can do.

エポキシ化に用いられる゛過酢酸はアセトアルデヒドを
液相または気相で酸化する公知の方法により調製される
。このようにして得られた過酢酸は一般に溶液の形で、
例えばアセトン、メチラール、酢酸メチル、酢酸エチル
などの溶液として用いられる。被エポキシ化合物は少く
とも1個のオレフィン性二重結合を含む有機化合物であ
る。
Peracetic acid used in epoxidation is prepared by a known method of oxidizing acetaldehyde in the liquid or gas phase. The peracetic acid thus obtained is generally in the form of a solution;
For example, it is used as a solution in acetone, methylal, methyl acetate, ethyl acetate, etc. The epoxidized compound is an organic compound containing at least one olefinic double bond.

エポキシ化反応は、バッチ式、連続式のどちらでもよく
、通常、液相で常圧下io〜60℃、4〜5Hr  で
行なわれろ。反応粗液中にはエポキシ化合物と酢酸が存
在するため、反応が終了したら、すぐに精製工程へ移す
か、保存する場合も冷却する必要がある。
The epoxidation reaction may be carried out either batchwise or continuously, and is usually carried out in a liquid phase at normal pressure at IO to 60°C for 4 to 5 hours. Since an epoxy compound and acetic acid are present in the crude reaction solution, it is necessary to immediately proceed to the purification step after the reaction is completed, or to cool it when storing it.

本発明を用いることにより、酢酸と効率よく分離できる
エポキシ化合物としては、スチレンオキサイド、ジペン
テンジオキサイド(リモネンジオギサイト)、ジペンテ
ンモノオキサイド(リモネンモノオキサイド)、ビニル
シクロヘキセンジオキサイド、ビニルシクロヘキセンモ
ノオキサイド、ピネンオキサイドなどがあり、酢酸との
沸点差(フラノシー蒸発を行なう圧力下)が50°C〜
150℃の範囲であることが必要である。沸点差が50
℃より少ないと酢酸との分離が悪くなる。また、沸点差
か150℃より大きい場合は、フラノシー蒸発単独を用
いても普通に酢酸と分離できる。
Epoxy compounds that can be efficiently separated from acetic acid by using the present invention include styrene oxide, dipentene dioxide (limonene dioxysite), dipentene monooxide (limonene monooxide), vinylcyclohexene dioxide, vinylcyclohexene monooxide, There are pinene oxides, etc., whose boiling point difference with acetic acid (under the pressure of Furanosea evaporation) is 50°C or more.
It is necessary that the temperature is in the range of 150°C. Boiling point difference is 50
If it is less than ℃, separation from acetic acid will be poor. Furthermore, if the boiling point difference is greater than 150°C, it can be normally separated from acetic acid using Furanosee evaporation alone.

操作圧力は常圧下でもよいが、減圧(200Torr以
下)にして蒸発温度を下げる方が酢酸とエポキシ化合物
の反応を抑える点で好ましい。ただし、圧力が低すぎる
と第2段の全縮コンデンサーでの溶媒や酢酸の凝縮が通
常の冷却水では困難となり経済的でない。
Although the operating pressure may be normal pressure, it is preferable to reduce the pressure (200 Torr or less) to lower the evaporation temperature in order to suppress the reaction between acetic acid and the epoxy compound. However, if the pressure is too low, it will be difficult to condense the solvent and acetic acid in the second stage total condensation condenser using ordinary cooling water, making it uneconomical.

本発明において用いられるフラッジ−蒸発器としては、
上昇型薄膜蒸発器や流下型薄膜蒸発器等のような滞留時
間の短かい型式のものが好ましい。
The flood evaporator used in the present invention includes:
Types with short residence times such as rising thin film evaporators and falling thin film evaporators are preferred.

さらにTurba−Fil、m型のような回転するかき
取り板をもった型式の蒸発器も伝熱を促進する上で有効
である。分縮器としては二重管式熱交換器や多管式熱交
換器等のような周知のコンデンサーが使用される。
Furthermore, evaporators of the type with rotating scraping plates, such as the Turba-Fil, m-type, are also effective in promoting heat transfer. A well-known condenser such as a double-tube heat exchanger, a shell-and-tube heat exchanger, etc. is used as the demultiplexer.

次に、本発明の方法を概略フローの一例に沿って説明す
る。
Next, the method of the present invention will be explained along with an example of a general flow.

粗エポキシ化合物を薄膜蒸発器(A)に仕込み、減圧下
フラッジー蒸発させる。該器(A)の熱媒温度は対応蒸
気圧におけるエポキシ化合物の沸点よりlO乃至40℃
低い温度範囲が適当である。
The crude epoxy compound is charged into a thin film evaporator (A) and subjected to flagge evaporation under reduced pressure. The temperature of the heating medium in the vessel (A) is 10 to 40°C below the boiling point of the epoxy compound at the corresponding vapor pressure.
A lower temperature range is appropriate.

フラッシュ蒸発により発生した蒸気は、まず第1コンデ
ンサー(B)に導かれて部分凝縮される。
The vapor generated by flash evaporation is first led to the first condenser (B) where it is partially condensed.

ここで得られた分縮液は主としてエポキシ化合物と酢酸
の混合物であり、そのまま仕込み液にリサイクルする。
The partial condensate obtained here is mainly a mixture of an epoxy compound and acetic acid, and is recycled as it is as a charging solution.

この時、分縮液中でエポキシ化合物と酢酸の反応が進行
しないように出来るだけ短時間でリサイクルを行なう必
要がある。分縮液を一旦受器に貯蔵し、その後リサイク
ルをする場合は分縮液を冷却しておかなければならない
。該器(B)の温水温度は対応蒸気圧における酢酸の露
点乃至その露点より20°C低い温度範囲が適尚である
At this time, it is necessary to carry out recycling in as short a time as possible to prevent the reaction between the epoxy compound and acetic acid from proceeding in the partial condensate. If the partial condensate is to be stored in a receiver and then recycled, the partial condensate must be cooled. The temperature of the hot water in the vessel (B) is suitably within the range of the dew point of acetic acid at the corresponding vapor pressure or 20° C. lower than the dew point.

第1コンデンサー(B)で凝縮されなかった蒸気は第2
コンデンサー(C)に導かれ、全縮され、酢酸溶液とし
て回収する。
The steam not condensed in the first condenser (B) is
It is led to a condenser (C), completely condensed, and recovered as an acetic acid solution.

同時に、薄膜蒸発器(A)の底部から酢酸の大部分が分
離された精エポキシ化合物を得ることができる。
At the same time, a purified epoxy compound from which most of the acetic acid has been separated can be obtained from the bottom of the thin film evaporator (A).

さらに、実施例を挙げて本発明の方法を具体的に説明す
る。
Furthermore, the method of the present invention will be specifically explained with reference to Examples.

実施例1 酢酸エチル溶媒中で、アセトアルデヒドを加圧下空気酸
化して過酢酸溶液を調製した。得られた過酢酸溶液の組
成は過酢酸299重量%、酢酸65重量係、酢酸エチル
636重量係であった。
Example 1 A peracetic acid solution was prepared by air oxidizing acetaldehyde under pressure in an ethyl acetate solvent. The composition of the obtained peracetic acid solution was 299% by weight of peracetic acid, 65% by weight of acetic acid, and 636% by weight of ethyl acetate.

ジペンテン500gに上記過酢酸溶液2,240Iを反
応温度20℃に保ちながら2時間かげて滴下し、後、2
時間20℃に保ち熟成した。得られた反応粗液の組成は
酢酸エチル523重量係、酢酸227重−t’%、ジペ
ンテンジオキサイド171重量係、その他7.9重量係
であった。この反応粗液は、すぐに次の精製工程の仕込
み液として用いた。
2,240 I of the above peracetic acid solution was added dropwise to 500 g of dipentene over 2 hours while keeping the reaction temperature at 20°C.
The mixture was kept at 20°C and aged. The composition of the resulting reaction crude liquid was 523% by weight of ethyl acetate, 227% by weight of acetic acid, 171% by weight of dipentene dioxide, and 7.9% by weight of others. This reaction crude liquid was immediately used as a charging liquid for the next purification step.

頂部に分縮用のコンデンサーを取り付けた、内径237
1.m 、長さ500 Inのステンレス製流下型薄膜
蒸発器を用いてジペンテンジオキサドの反応粗液を50
0 g/hr  で仕込み、50 Torr  の減圧
下で7ラノシ一蒸発を行なった。蒸発器の外側ジャケッ
トに140℃の熱媒を循環した。分縮用のコンデンサー
に50℃の温水を流して分縮を行なった。
Internal diameter 237 with a partial condenser attached to the top
1. Using a stainless steel falling thin film evaporator with a length of 500 m and a length of 500 m, the reaction crude liquid of dipentene dioxade was
The mixture was charged at a rate of 0 g/hr and evaporated for 7 hours under reduced pressure of 50 Torr. A heating medium at 140° C. was circulated through the outer jacket of the evaporator. Partial condensation was carried out by flowing hot water at 50°C into a condenser for partial condensation.

分縮液ば、そのまま自重によりフラノシー蒸発の仕込み
口まで落下させリサイクルした。分縮されなかった蒸気
は第2コンデンサーに導いて全縮させ(温度8℃)、低
沸液(酢酸)として回収した。同時に底部から塔底液(
精ジペンテンジオキサイド)を抜き取った。この結果を
表1に示す。
The decondensed liquid was allowed to fall under its own weight to the Furanosea evaporation inlet for recycling. The uncondensed vapor was led to a second condenser where it was completely condensed (temperature: 8°C) and recovered as a low-boiling liquid (acetic acid). At the same time, the bottom liquid (
Dipentene dioxide) was extracted. The results are shown in Table 1.

この場合、仕込液中に含まれるジペンテンジオキサイド
に対する塔底液中に回収されるジペンテンジオキサイド
の収率は927%であった。
In this case, the yield of dipentene dioxide recovered in the bottom liquid relative to the dipentene dioxide contained in the feed liquid was 927%.

実施例 分縮用のコンデンサーを内蔵する内径60mm長さ30
0mmのガラス管に回転式かき取り板を取り付けた縦型
の薄膜蒸発器(+実験室用スミス式薄膜蒸留装置)を用
いた以外、実施例1と同様((シて処理を行った。
Example Inner diameter 60mm Length 30mm with built-in condenser for decompression
The treatment was carried out in the same manner as in Example 1, except that a vertical thin film evaporator (+Laboratory Smith type thin film distillation apparatus) with a 0 mm glass tube and a rotary scraping plate was used.

尚、分縮液は冷水循環用ジャケットの付いた受器に受け
、受器の液面が一定となるようポンプで抜き取り、仕込
み口へリサイクルした。
The decondensed liquid was collected in a receiver equipped with a cold water circulation jacket, extracted with a pump to maintain a constant liquid level in the receiver, and recycled to the charging port.

この結果を表2に示す。The results are shown in Table 2.

この場合、塔底液中に回収されるジペンテンジオキサイ
ドの収率は94.2%″であった。
In this case, the yield of dipentene dioxide recovered in the bottom liquid was 94.2%''.

実施例3 スチレン800gに実施例1で調製した過酢酸溶液1.
940.9を反応温度40℃に保ちながら2時間かげて
滴下し、後、2時間40℃に保ち熟成した。得られた反
応粗液の組成は、酢酸エチル453重量係、酢酸202
重量係1、スチレ重量上サイド2フ、0重量係、その他
7.5重量係であった。この反応粗液はすぐに次の精製
工程の仕込み液として用いた。
Example 3 A peracetic acid solution prepared in Example 1 was added to 800 g of styrene.
940.9 was added dropwise over 2 hours while keeping the reaction temperature at 40°C, and then aged at 40°C for 2 hours. The composition of the obtained reaction crude liquid was as follows: 453 parts by weight of ethyl acetate, 202 parts by weight of acetic acid.
The weight section was 1, the steel weight upper side 2 f., the 0 weight section, and the other 7.5 weight sections. This reaction crude solution was immediately used as a charging solution for the next purification step.

フラッジ−蒸発器の減圧を100 Torr−、熱媒温
度を120°C1さらに分縮器の温水温度を60°Cに
変更した以外、実施例1と同様にして処理を行った。こ
の結果を表3に示す。
The treatment was carried out in the same manner as in Example 1, except that the reduced pressure in the flood evaporator was changed to 100 Torr, the heating medium temperature was changed to 120°C, and the hot water temperature in the dephlegmator was changed to 60°C. The results are shown in Table 3.

この場合、塔底液中に回収されるスチレンオキサイドの
収率は942係であった。
In this case, the yield of styrene oxide recovered in the bottom liquid was 942.

比較例1 実施例1で用いた蒸発器から分縮用のコンテンサーを取
り外し、発生した蒸気はずべて全縮するようにした以外
、実施例1と同様にして処理を行った。この結果を表4
に示す。
Comparative Example 1 The process was carried out in the same manner as in Example 1, except that the partial condensation condenser was removed from the evaporator used in Example 1, and all the generated steam was completely condensed. This result is shown in Table 4.
Shown below.

この場合、塔底液中に回収されるジペンテンジオキサイ
ドの収率は781%であった。
In this case, the yield of dipentene dioxide recovered in the bottom liquid was 781%.

比較例2 内径80 mmのオルグーショー蒸留塔(20段)を用
いて下から10段目に実施例Jで調製したジオギサイド
の反応粗液を5o Og/ h rで仕込んだ。塔頂圧
力50 Torrで還流比1とし、塔頂(温度40℃)
から低沸液、同時に塔底(温度162℃)から塔底液を
抜ぎ取った。この結果を表5に示す。
Comparative Example 2 Using an Orguschau distillation column (20 stages) with an inner diameter of 80 mm, the reaction crude solution of geogicide prepared in Example J was charged at 50 Og/hr into the 10th stage from the bottom. The reflux ratio was set to 1 at a tower top pressure of 50 Torr, and the tower top (temperature 40°C)
A low-boiling liquid was removed from the tower, and at the same time, a bottom liquid was removed from the tower bottom (temperature: 162°C). The results are shown in Table 5.

この時、塔底液中に回収されるジペンテンジオキサイド
の収率は681%であった。
At this time, the yield of dipentene dioxide recovered in the bottom liquid was 681%.

Claims (1)

【特許請求の範囲】 1) 過酢酸によるエポキシ化法で合成したエポキシ化
合物を精製するに際し、該粗液をフラッジ−蒸発器及び
分縮器の組合わせからなる装置で連続的に処理すること
を特徴とするエポキシ化合物の精製方法。 2、特許請求の範囲第1項記載の方法であって、該粗液
を薄膜蒸発器(A)でフラノシー蒸発さぜる。そして(
A)の頂部から蒸気は第1コンデンサー(B)で分縮さ
れ、元の粗液に再循環し、さらに分縮されなかった蒸気
は第2コンデンサー(C)で全縮され、酢酸溶液として
回収する。同時に(A)の底部から1百的とする精エポ
キシ化合物を得ることを特徴とするエポキシ化合物の精
製方法。
[Scope of Claims] 1) When purifying an epoxy compound synthesized by an epoxidation method using peracetic acid, the crude liquid is continuously treated in an apparatus consisting of a combination of a flood evaporator and a dephlegmator. Characteristic method for purifying epoxy compounds. 2. The method according to claim 1, in which the crude liquid is evaporated using a thin film evaporator (A). and(
The vapor from the top of A) is partially condensed in the first condenser (B) and recirculated to the original crude liquid, and the vapor that is not further condensed is completely condensed in the second condenser (C) and recovered as an acetic acid solution. do. A method for purifying an epoxy compound, the method comprising simultaneously obtaining a purified epoxy compound from the bottom of (A).
JP21022782A 1982-11-30 1982-11-30 Purification of epoxy compound Granted JPS59101476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21022782A JPS59101476A (en) 1982-11-30 1982-11-30 Purification of epoxy compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21022782A JPS59101476A (en) 1982-11-30 1982-11-30 Purification of epoxy compound

Publications (2)

Publication Number Publication Date
JPS59101476A true JPS59101476A (en) 1984-06-12
JPH0324475B2 JPH0324475B2 (en) 1991-04-03

Family

ID=16585887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21022782A Granted JPS59101476A (en) 1982-11-30 1982-11-30 Purification of epoxy compound

Country Status (1)

Country Link
JP (1) JPS59101476A (en)

Also Published As

Publication number Publication date
JPH0324475B2 (en) 1991-04-03

Similar Documents

Publication Publication Date Title
JP3957298B2 (en) Acrylic acid production method
US5831124A (en) Purification of acrylic acid and methacrylic acid
US4209646A (en) Process for crystallizing an adduct of 2,2-di(4-hydroxyphenyl) propane and phenol
CZ6397A3 (en) Process for preparing acrylic acid and esters thereof and apparatus for making the same
KR20010072021A (en) Method For Producing Acrylic Acid
WO2018216699A1 (en) Method for producing (meth)acrylic acid
JP2005015478A (en) Method for production of acrylic acid
JP2515765B2 (en) Method for separating o, p ''-isomer of bisphenol A
US3993651A (en) Triethylenediamine recovery
JPS59101476A (en) Purification of epoxy compound
FI90656C (en) Process for the purification of 2- (4-isobutylphenyl) propionic acid
WO1994019303A1 (en) A dephenolization process for obtaining ultrapure polycarbonate grade bisphenol a
KR100716095B1 (en) Method for Producing Phthalic Anhydride According to Specifications
SU620202A3 (en) Method of purifying 4-oxy-3-(c1-c2-alcoxy)-benzaldehyde, quinizarin or nitrodiphenylamine
EP1636178B1 (en) Method for making caprolactam
JPS6013739A (en) Purification of acrylic acid
JP4658104B2 (en) Acrylic acid production method
JPH0584318B2 (en)
JPH08325183A (en) Production of bisphenol a
JPS61251662A (en) Purification of pyridine
EP1636179B1 (en) Method for making caprolactam from impure 6-amino-capronitrile containing tetrahydroazepine
KR0163294B1 (en) A new method to get a high purity diketene
JPS58140039A (en) Purification method of acrylic acid
JPS6249253B2 (en)
KR20180018955A (en) Process and apparatus for refining acetic acid