JPH0324475B2 - - Google Patents

Info

Publication number
JPH0324475B2
JPH0324475B2 JP21022782A JP21022782A JPH0324475B2 JP H0324475 B2 JPH0324475 B2 JP H0324475B2 JP 21022782 A JP21022782 A JP 21022782A JP 21022782 A JP21022782 A JP 21022782A JP H0324475 B2 JPH0324475 B2 JP H0324475B2
Authority
JP
Japan
Prior art keywords
acetic acid
epoxy compound
condenser
liquid
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21022782A
Other languages
Japanese (ja)
Other versions
JPS59101476A (en
Inventor
Shinji Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP21022782A priority Critical patent/JPS59101476A/en
Publication of JPS59101476A publication Critical patent/JPS59101476A/en
Publication of JPH0324475B2 publication Critical patent/JPH0324475B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、エポキシ化合物の精製方法に関する
もので、さらに詳しくはエポキシ化合物と副生酢
酸の分離方法に関するものであるる。 過酢酸による有機化合物のエポキシ化法は、通
常、アセトアルデヒドを酸化してつくつた過酢酸
溶液を使つて行なわれ、エポキシ化反応から得ら
れた液はエポキシ化合物、副生酢酸、溶媒、未反
応有機化合物、その他の副生物等の混合物であ
る。この反応粗液からエポキシ化合物を高純度で
得るには大量に副生する酢酸との分離をいかに行
なうかが重要なポイントになつており、目的とす
るエポキシ化合物の安定性及び物性により従来3
つの型に大別される。 連続フラツシユ蒸発法;これは酢酸をフラツ
シユ蒸発する方法であり、エポキシ化合物の沸
点が酢酸より著しく高く、容易にフラツシユ蒸
発で分離できるものに適用され、この場合、目
的物の滞留時間が短いので、酢酸共存下の熱安
定性はさほど要求されない。 連続脱酢酸蒸留法;これはの方法の精密分
留であり、エポキシ化合物の沸点が酢酸より高
く、蒸留分離できるものに適用され、この場
合、目的物の滞留時間が比較的長いので、酢酸
共存下の熱安定性が良好であることが必要であ
る。 水抽出法;これはエポキシ化合物の沸点が酢
酸と近似していて蒸留分離が困難なもの、ある
いは酢酸共存下の熱安定性が悪いものに適用さ
れる。しかしながら、〜各蒸発蒸留法は酢
酸共存下で熱安定性が悪いエポキシ化合物で
は、仮に酢酸との蒸留分離が可能な沸点差があ
つたとしても、蒸留中に酢酸と反応するため収
率が大幅に低下する。また水抽出法も水と反
応しやすいエポキシ化合物や水への溶解度が高
いエポキシ化合物には用いることができず、さ
らに抽出水から酢酸の回収にもコストがかゝる
等欠点が多い。従つて、の方法では酢酸と簡
単に蒸発分離できず酢酸共存下の熱安定性が悪
いためにの方法も用いることができないエポ
キシ化合物の精製は困難とされていた。即ち、
このような分離には滞留時間を短かくし、しか
も蒸留分離をよくするという一見矛盾した要求
も満たす必要があるためである。 本発明者は、上記のような大きな問題を持つエ
ポキシ化合物の精製について鋭意研究した結果、
本発明の方法を見い出し、完成するに至つた。 即ち、本発明は、1)過酢酸によるエポキシ化
合物で合成したエポキシ化合物を精製するに際
し、該粗液をフラツシユ蒸発器及び分縮器の組合
わせからなる装置で連続的に処理すことを特徴と
するエポキシ化合物の精製方法。2)特許請求の
範囲第1項記載の方法であつて、該粗液を薄膜蒸
発器Aでフラツシユ蒸発させる。そしてAの頂部
から蒸気は第1コンデンサーBで分縮され、元の
粗液に再循環し、さらに分縮されなかつた蒸気は
第2コンデンサーCで全縮され、酢酸溶液として
回収する。同時に、Aの底部から目的とする精エ
ポキシ化合物を得ることを特徴とするエポキシ化
合物の精製方法である。 本発明の方法によれば、使用装置がフラツシユ
蒸発と分縮の組合わせであるため、滞留時間を短
かくすることができ、エポキシ化合物と酢酸の反
応を抑えることが可能となり、しかも酢酸を含む
低沸点成分からの効率よく分離することが可能と
なる。このようにして得られた精エポキシ化合物
中の酢酸濃度は、かなり低い。しかも、そのため
次の工程で滞留時間の長い蒸留を行なつても、蒸
留中にエポキシ化合物が酢酸と反応することは殆
んどないため、必要に応じて公知のバツチ蒸留や
連続蒸留を行なうことにより、収率よく高純度の
エポキシ化合物とすることができる。 エポキシ化に用いられる過酢酸はアセトアルデ
ヒドを液相または気相で酸化する公知の方法によ
り調製される。このようにして得られた過酢酸は
一般に溶液の形で、例えばアセトン、メチラー
ル、酢酸メチル、酢酸エチルなどの溶液として用
いられる。被エポキシ化合物は少くとも1個のオ
レフイン性二重結合を含む有機化合物である。 エポキシ化反応は、バツチ式、連続式のどちら
でもよく、通常液相で常圧下10〜60℃、4〜5Hr
で行なわれる。反応粗液中にはエポキシ化合物と
酢酸が存在するため、反応が終了したら、すぐに
精製工程へ移すか、保存する場合も冷却する必要
がある。 本発明を用いることにより、酢酸と効率よく分
離できるエポキシ化合物としては、スチレンオキ
サイド、ジペンテンジオキサイド(リモネンジオ
キサイド)、ジペンテンモノオキサイド(リモネ
ンモノオキサイド)、ビニルシクロヘキセンジオ
キサイド、ビニルシクロヘキセンモノオキサイ
ド、ピネンオキサイドなどがあり、酢酸との沸点
差(フラツシユ蒸発を行なう圧力下)が50℃〜
150℃の範囲であることが必要である。沸点差が
50℃より少ないと酢酸との分離が悪くなる。ま
た、沸点差が150℃より大きい場合は、フラツシ
ユ蒸発単独を用いても普通に酢酸と分離できる。
操作圧力は常圧下でもよいが、減圧(200Torr以
下)にして蒸発温度を下げる方が酢酸とエポキシ
化合物の反応を抑える点で好ましい。ただし、圧
力が低すぎると第2段の全縮コンデンサーでの溶
媒や酢酸の凝縮が通常の冷却水では困難となり経
済的でない。 本発明において用いられるフラツシユ蒸発器と
しては、上昇型薄膜蒸発器や流下型薄膜蒸発器等
のような滞留時間の短かい型式のものが好まし
い。さらにTurba−Film型のような回転するか
き取り板をもつた型式の蒸発器も伝熱を促進する
上で有効である。分縮器としては二重管式熱交換
器や多管式熱交換器等のような周知のコンデンサ
ーが使用される。 次に、本発明の方法を概略フローの一例に沿つ
て説明する。 粗エポキシ化合物を薄膜蒸発器Aに仕込み、減
圧下フラツシユ蒸発させる。該器Aの熱媒温度は
対応蒸気圧におけるエポキシ化合物の沸点より10
乃至40℃低い温度範囲が適当である。 フラツシユ蒸発により発生した蒸気は、まず第
1コンデンサーBに導かれて部分凝縮される。こ
こで得られた分縮液は主としてエポキシ化合物と
酢酸の混合物であり、そのまま仕込み液にリサイ
クルする。この時、分縮液中でエポキシ化合物と
酢酸の反応が進行しないように出来るだけ短時間
でリサイクルを行なう必要がある。分縮液を一旦
受器に貯蔵し、その後リサイクルをする場合は分
縮液を冷却しておかなければならない。該器Bの
温水温度は対応蒸気圧における酢酸の露点乃至そ
の露点より20℃低い温度範囲が適当である。第1
コンデンサーBで凝縮されなかつた蒸気は第2コ
ンデンサーCに導かれ、全縮され、酢酸溶液とし
て回収する。 同時に、薄膜蒸発器Aの底部から酢酸の大部分
が分離された精エポキシ化合物を得ることができ
る。 さらに、実施例を挙げて本発明の方法を具体的
に説明する。 実施例 1 酢酸エチル溶媒中で、アセトアルデヒドを加圧
下空気酸化して過酢酸溶液を調製した。得られた
過酢酸溶液の組成は過酢酸29.9重量%、酢酸6.5
重量%、酢酸エチル63.6重量%であつた。 ジペンテン500gに上記過酢酸溶液2240gを反
応温度20℃に保ちながら2時間かけて滴下し、後
2時間20℃に保ち熟成した。得られた反応粗液の
組成は酢酸エチル52.3重量%、酢酸22.7重量%、
ジペンテンジオキサイド17.1重量%、その他7.9
重量%であつた。この反応粗液は、すぐに次の精
製工程の仕込み液として用いた。 頂部に分縮用のコンデンサー取り付けた、内径
23mm、長さ500mmのステンレス製流下型薄膜蒸発
器を用いてジペンテンジエポキシドの反応粗液を
500g/hrで仕込み、50Torrの減圧下でフラツシ
ユ蒸発を行なつた。蒸発器の外側ジヤケツトに
140℃の熱媒を循環した。分縮用のコンデンサー
に50℃の温水を流して分縮を行なつた。 分縮液は、そのまま自重によりフラツシユ蒸発
の仕込み口まで落下させリサイクルした。分縮さ
れなかつた蒸気は第2コンデンサーに導いて全縮
させ(温度8℃)、低沸液(酢酸)として回収し
た。同時に底部から塔底液(精ジペンテンジオキ
サイド)を抜き取つた。この結果を表1に示す。 この場合、仕込液中に含まれるジペンテンジオ
キサイドに対する塔底液中に回収されるジペンテ
ンジオキサイドの収率は92.7%であつた。 実施例 2 分縮用のコンデンサーを内蔵する内径60mm長さ
300mmのガラス管に回転式かき取り板を取り付け
た縦型の薄膜蒸発器(*実験室用スミス式薄膜蒸
留装置)を用いた以外、実施例1と同様にして処
理を行つた。 尚、分縮液は冷水循環用ジヤケツトの付いた受
器に受け、受器の液面が一定となるようポンプで
抜き取り、仕込み口へリサイクルした。この結果
を表2に示す。 この場合、塔底液中に回収されるジペンテンジ
オキサイドの収率は94.2%であつた。 実施例 3 スチレン800gに実施例1で調製した過酢酸溶
液1940gを反応温度40℃に保ちながら2時間かけ
て滴下し、後、2時間40℃に保ち熟成した。得ら
れた反応粗液の組成は、酢酸エチル45.3重量%、
酢酸20.2重量%、スチレンオキサイド27.0重量
%、その他7.5重量%であつた。この反応粗液は
すぐに次の精製工程の仕込み液として用いた。 フラツシユ蒸発器の減圧を100Torr、熱媒温度
を120℃、さらに分縮器の温水温度を60℃に変更
した以外、実施例1と同様にして処理を行つた。
この結果を表3に示す。 この場合、塔底液中に回収されるスチレンオキ
サイドの収率は94.2%であつた。 比較例 1 実施例1で用いた蒸発器から分縮用のコンデン
サーを取り外し、発生した蒸気はすべて全縮する
ようにした以外、実施例1と同様にして処理を行
つた。この結果を表4に示す。 この場合、塔底液中に回収されるジペンテンジ
オキサイドの収率は78.1%であつた。 比較例 2 内径80mmのオルダーシヨー蒸留塔(20段)を用
いて下から10段目に実施例1で調製したジオキサ
イドの反応粗液を500g/hrで仕込んだ。塔頂圧
力50Torrで還流比1とし、塔頂(温度40℃)か
らら低沸液、同時に塔底(温度162℃)から塔底
液を抜き取つた。この結果を表5に示す。 この時、塔底液中に回収されるジペンテンジオ
キサイドの収率は68.1%であつた。
The present invention relates to a method for purifying epoxy compounds, and more specifically to a method for separating epoxy compounds and by-product acetic acid. Epoxidation of organic compounds with peracetic acid is usually carried out using a peracetic acid solution prepared by oxidizing acetaldehyde, and the liquid obtained from the epoxidation reaction contains the epoxy compound, by-product acetic acid, solvent, and unreacted organic compounds. It is a mixture of compounds, other by-products, etc. In order to obtain a highly pure epoxy compound from this crude reaction solution, the important point is how to separate the large amount of by-product acetic acid.
It is roughly divided into two types. Continuous flash evaporation method: This is a method of flash evaporating acetic acid. It is applied to epoxy compounds whose boiling point is significantly higher than acetic acid and can be easily separated by flash evaporation. In this case, the residence time of the target product is short, so Thermal stability in the presence of acetic acid is not particularly required. Continuous acetic acid removal distillation method: This is a precision fractionation of the method of , and is applied to epoxy compounds whose boiling point is higher than acetic acid and can be separated by distillation. It is necessary that the lower thermal stability is good. Water extraction method: This is applied to epoxy compounds whose boiling point is close to that of acetic acid and is difficult to separate by distillation, or to those whose thermal stability is poor in the presence of acetic acid. However, in the case of epoxy compounds that have poor thermal stability in the coexistence of acetic acid, each evaporative distillation method reacts with acetic acid during distillation, resulting in a significant yield reduction, even if there is a boiling point difference that allows for distillation separation from acetic acid. decreases to Furthermore, the water extraction method cannot be used for epoxy compounds that easily react with water or have high solubility in water, and furthermore, there are many drawbacks such as the high cost of recovering acetic acid from the extracted water. Therefore, it has been difficult to purify the epoxy compound, which cannot be easily separated by evaporation from acetic acid using the method described above, and which also cannot be used due to its poor thermal stability in the coexistence of acetic acid. That is,
This is because such separation requires satisfying the seemingly contradictory requirements of shortening the residence time and improving distillation separation. As a result of intensive research into the purification of epoxy compounds, which have the above-mentioned major problems, the inventor has found that
The method of the present invention has been discovered and completed. That is, the present invention is characterized in that: 1) when purifying an epoxy compound synthesized using an epoxy compound using peracetic acid, the crude liquid is continuously treated in an apparatus consisting of a combination of a flash evaporator and a dephlegmator; A method for purifying epoxy compounds. 2) A method according to claim 1, in which the crude liquid is flash evaporated in a thin film evaporator A. The vapor from the top of A is partially condensed in the first condenser B and recycled to the original crude liquid, and the vapor that has not been condensed is completely condensed in the second condenser C and recovered as an acetic acid solution. At the same time, this is a method for purifying an epoxy compound, which is characterized in that the desired purified epoxy compound is obtained from the bottom of A. According to the method of the present invention, since the equipment used is a combination of flash evaporation and partial condensation, it is possible to shorten the residence time and suppress the reaction between the epoxy compound and acetic acid. It becomes possible to efficiently separate low boiling point components. The acetic acid concentration in the purified epoxy compound thus obtained is quite low. Moreover, even if distillation with a long residence time is performed in the next step, the epoxy compound will hardly react with acetic acid during distillation, so known batch distillation or continuous distillation can be used as necessary. Accordingly, a highly purified epoxy compound can be obtained with good yield. Peracetic acid used in epoxidation is prepared by a known method of oxidizing acetaldehyde in the liquid or gas phase. The peracetic acid thus obtained is generally used in the form of a solution, for example in acetone, methylal, methyl acetate, ethyl acetate, or the like. The epoxidized compound is an organic compound containing at least one olefinic double bond. The epoxidation reaction can be carried out either batchwise or continuously, usually in a liquid phase at 10 to 60°C under normal pressure for 4 to 5 hours.
It will be held in Since an epoxy compound and acetic acid are present in the crude reaction solution, it is necessary to immediately proceed to the purification step after the reaction is completed, or to cool it when storing it. Epoxy compounds that can be efficiently separated from acetic acid using the present invention include styrene oxide, dipentene dioxide (limonene dioxide), dipentene monooxide (limonene monooxide), vinylcyclohexene dioxide, vinylcyclohexene monooxide, and pinene. There are oxides, etc., and the boiling point difference with acetic acid (under the pressure of flash evaporation) is 50°C or more.
The temperature must be within the range of 150℃. boiling point difference
If it is less than 50°C, separation from acetic acid will be poor. Furthermore, if the boiling point difference is greater than 150°C, it can be normally separated from acetic acid using flash evaporation alone.
Although the operating pressure may be normal pressure, it is preferable to lower the evaporation temperature by reducing the pressure (200 Torr or less) in order to suppress the reaction between acetic acid and the epoxy compound. However, if the pressure is too low, it will be difficult to condense the solvent and acetic acid in the second stage total condensation condenser using ordinary cooling water, making it uneconomical. The flash evaporator used in the present invention is preferably of a type having a short residence time, such as a rising thin film evaporator or a falling thin film evaporator. Additionally, evaporators with rotating scraping plates, such as the Turbo-Film type, are also effective in promoting heat transfer. A well-known condenser such as a double-tube heat exchanger, a shell-and-tube heat exchanger, etc. is used as the demultiplexer. Next, the method of the present invention will be explained along with an example of a general flow. The crude epoxy compound is charged into a thin film evaporator A and flash evaporated under reduced pressure. The temperature of the heating medium in vessel A is 10% higher than the boiling point of the epoxy compound at the corresponding vapor pressure.
A temperature range of 40° C. lower is suitable. The vapor generated by flash evaporation is first led to the first condenser B where it is partially condensed. The partial condensate obtained here is mainly a mixture of an epoxy compound and acetic acid, and is recycled as it is as a charging solution. At this time, it is necessary to carry out recycling in as short a time as possible to prevent the reaction between the epoxy compound and acetic acid from proceeding in the partial condensate. If the partial condensate is to be stored in a receiver and then recycled, the partial condensate must be cooled. The temperature of the hot water in vessel B is suitably within the range of the dew point of acetic acid at the corresponding vapor pressure or 20° C. lower than the dew point. 1st
The vapor not condensed in condenser B is led to second condenser C, where it is completely condensed and recovered as an acetic acid solution. At the same time, a purified epoxy compound from which most of the acetic acid has been separated can be obtained from the bottom of the thin film evaporator A. Furthermore, the method of the present invention will be specifically explained with reference to Examples. Example 1 A peracetic acid solution was prepared by air oxidizing acetaldehyde under pressure in an ethyl acetate solvent. The composition of the obtained peracetic acid solution was 29.9% by weight of peracetic acid and 6.5% by weight of acetic acid.
% by weight, and 63.6% by weight of ethyl acetate. 2240 g of the above peracetic acid solution was added dropwise to 500 g of dipentene over 2 hours while keeping the reaction temperature at 20°C, and then kept at 20°C for 2 hours to ripen. The composition of the obtained crude reaction liquid was 52.3% by weight of ethyl acetate, 22.7% by weight of acetic acid,
Dipentene dioxide 17.1% by weight, others 7.9%
It was in weight%. This reaction crude liquid was immediately used as a charging liquid for the next purification step. Internal diameter with a partial condenser attached to the top
The reaction crude liquid of dipentene diepoxide was produced using a stainless steel falling-type thin film evaporator measuring 23 mm and 500 mm in length.
It was charged at a rate of 500 g/hr, and flash evaporation was performed under a reduced pressure of 50 Torr. on the outer jacket of the evaporator.
A heating medium of 140°C was circulated. Partial condensation was carried out by flowing hot water at 50°C into a condenser. The decondensate was allowed to fall under its own weight to the inlet for flash evaporation and recycled. The uncondensed vapor was led to a second condenser where it was completely condensed (temperature: 8°C) and recovered as a low-boiling liquid (acetic acid). At the same time, the bottom liquid (purified dipentene dioxide) was extracted from the bottom. The results are shown in Table 1. In this case, the yield of dipentene dioxide recovered in the bottom liquid was 92.7% based on the dipentene dioxide contained in the feed liquid. Example 2 Inner diameter 60mm length with built-in condenser for partial compression
The treatment was carried out in the same manner as in Example 1, except that a vertical thin film evaporator (*Laboratory Smith type thin film distillation apparatus) having a 300 mm glass tube and a rotary scraping plate was used. The partial condensate was collected in a receiver equipped with a cold water circulation jacket, extracted with a pump so that the liquid level in the receiver remained constant, and recycled to the charging port. The results are shown in Table 2. In this case, the yield of dipentene dioxide recovered in the bottom liquid was 94.2%. Example 3 1940 g of the peracetic acid solution prepared in Example 1 was added dropwise to 800 g of styrene over 2 hours while keeping the reaction temperature at 40°C, and then aged at 40°C for 2 hours. The composition of the obtained crude reaction liquid was 45.3% by weight of ethyl acetate;
The contents were 20.2% by weight of acetic acid, 27.0% by weight of styrene oxide, and 7.5% by weight of others. This reaction crude solution was immediately used as a charging solution for the next purification step. The treatment was carried out in the same manner as in Example 1, except that the reduced pressure in the flash evaporator was changed to 100 Torr, the heat medium temperature was changed to 120°C, and the hot water temperature in the partial condenser was changed to 60°C.
The results are shown in Table 3. In this case, the yield of styrene oxide recovered in the bottom liquid was 94.2%. Comparative Example 1 The process was carried out in the same manner as in Example 1, except that the condenser for partial condensation was removed from the evaporator used in Example 1, and all the generated vapor was completely condensed. The results are shown in Table 4. In this case, the yield of dipentene dioxide recovered in the bottom liquid was 78.1%. Comparative Example 2 Using an Olderschau distillation column (20 stages) with an inner diameter of 80 mm, the reaction crude liquid of the dioxide prepared in Example 1 was charged into the 10th stage from the bottom at a rate of 500 g/hr. The reflux ratio was set to 1 at a tower top pressure of 50 Torr, and a low-boiling liquid was extracted from the tower top (temperature 40°C) and at the same time, a tower bottom liquid was extracted from the tower bottom (temperature 162°C). The results are shown in Table 5. At this time, the yield of dipentene dioxide recovered in the bottom liquid was 68.1%.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 過酢酸によるエポキシ化法で合成したエポキ
シ化合物を精製するに際し、該粗液をフラツシユ
蒸発器及び分縮器の組合わせからなる装置で連続
的に処理することを特徴とするエポキシ化合物の
精製方法。 2 特許請求の範囲第1項記載の方法であつて、
該粗液を薄膜蒸発器Aでフラツシユ蒸発させる。
そしてAの頂部から蒸気は第1コンデンサーBで
分縮され、元の粗液に再循環し、さらに分縮され
なかつた蒸気は第2コンデンサーCで全縮され、
酢酸溶液として回収する。同時にAの底部から目
的とする精エポキシ化合物を得ることを特徴とす
るエポキシ化合物の精製方法。
[Claims] 1. When purifying an epoxy compound synthesized by an epoxidation method using peracetic acid, the crude liquid is continuously treated in an apparatus consisting of a combination of a flash evaporator and a dephlegmator. A method for purifying epoxy compounds. 2. The method according to claim 1, comprising:
The crude liquid is flash evaporated in a thin film evaporator A.
The vapor from the top of A is partially condensed in the first condenser B and recirculated to the original crude liquid, and the vapor that has not been partially condensed is completely condensed in the second condenser C.
Collect as an acetic acid solution. A method for purifying an epoxy compound, which is characterized in that a target purified epoxy compound is obtained from the bottom of A at the same time.
JP21022782A 1982-11-30 1982-11-30 Purification of epoxy compound Granted JPS59101476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21022782A JPS59101476A (en) 1982-11-30 1982-11-30 Purification of epoxy compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21022782A JPS59101476A (en) 1982-11-30 1982-11-30 Purification of epoxy compound

Publications (2)

Publication Number Publication Date
JPS59101476A JPS59101476A (en) 1984-06-12
JPH0324475B2 true JPH0324475B2 (en) 1991-04-03

Family

ID=16585887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21022782A Granted JPS59101476A (en) 1982-11-30 1982-11-30 Purification of epoxy compound

Country Status (1)

Country Link
JP (1) JPS59101476A (en)

Also Published As

Publication number Publication date
JPS59101476A (en) 1984-06-12

Similar Documents

Publication Publication Date Title
US5831124A (en) Purification of acrylic acid and methacrylic acid
JP3957298B2 (en) Acrylic acid production method
CZ6397A3 (en) Process for preparing acrylic acid and esters thereof and apparatus for making the same
US4209646A (en) Process for crystallizing an adduct of 2,2-di(4-hydroxyphenyl) propane and phenol
JP4056429B2 (en) Method for producing (meth) acrylic acid
JP2012232996A (en) Process for producing (meth)acrylic acid
WO2018216699A1 (en) Method for producing (meth)acrylic acid
KR20010072021A (en) Method For Producing Acrylic Acid
JP5368673B2 (en) Method for producing (meth) acrylic acid
US4568427A (en) Continuous isolation of phthalic anhydride and maleic anhydride from reaction gases
ES2309227T3 (en) PROCESS FOR THE EPOXIDATION OF OLEFINS.
US4147721A (en) Process for recovering methacrylic acid
EP0031097B1 (en) Method for distilling ethyl alcohol
US4308110A (en) Process for separation and purification of dihydric phenols
US4092481A (en) Process for the recovery of dimethyl terephthalate and of intermediates from the dimethyl terephthalate manufacture
US3993651A (en) Triethylenediamine recovery
JPH0324475B2 (en)
KR100716095B1 (en) Method for Producing Phthalic Anhydride According to Specifications
EP1636178B1 (en) Method for making caprolactam
US3860495A (en) Process for the purification of crude acrolein by extractive distillation
JP3832868B2 (en) Acrylic acid purification method
KR0168055B1 (en) Process for the preparation of hydroxyphenylpropionates
JP3917201B2 (en) Method for producing bisphenol A
JPS6013739A (en) Purification of acrylic acid
EP1636179B1 (en) Method for making caprolactam from impure 6-amino-capronitrile containing tetrahydroazepine