JPS59100357A - Solar system - Google Patents

Solar system

Info

Publication number
JPS59100357A
JPS59100357A JP57210475A JP21047582A JPS59100357A JP S59100357 A JPS59100357 A JP S59100357A JP 57210475 A JP57210475 A JP 57210475A JP 21047582 A JP21047582 A JP 21047582A JP S59100357 A JPS59100357 A JP S59100357A
Authority
JP
Japan
Prior art keywords
series
heat
flow
group
piping unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57210475A
Other languages
Japanese (ja)
Inventor
Shunichiro Mori
俊一郎 森
Yoshio Yamamoto
山本 芳雄
Yutaka Takahashi
豊 高橋
Yu Fukuda
祐 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57210475A priority Critical patent/JPS59100357A/en
Publication of JPS59100357A publication Critical patent/JPS59100357A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To obtain hot water of a high temperature by collecting solar heat effectively, by providing a device controlling a flow of a heat transferring medium according to an irradiating quantity of solar energy at each series piping unit and series and parallel piping unit of a plurality of heat collectors. CONSTITUTION:Three heat collectors 1 are regarded as a series piping unit and the series piping units are regarded as series and parallel piping unit group (b) by making them into parallel piping on a southern roof not having a thing shutting off the sun light. Flow controllers 5 controlling a flow according to a temperature of a heat transferring medium is piped in the vicinity of an outlet 4 of the heat transferring medium of the series piping unit 2 and the series and parallel piping unit group 3, and after these having been piped in parallel with each other, a heat exchanger 8 of a pump 6 and a hot water tank 7 is piped in series. Although a temperature is increased starting from the heat collector 1 of a group (a) to be installed on an east side roof according as the sun rises and a flow is increased gradually, the other (b) group and (c) group are kept at a throttled state. The flow of the flow controller 5 of the southern (b) group is increased according as the sun moves, and then the flow of the series piping unit 2 of the western (c) group is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、太陽エネルギーを蓄熱して利用する一ソーラ
システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a solar system that stores and utilizes solar energy.

従来例の構成とその問題点 従来から太陽エネルギーを利用するものに太陽熱を集熱
する集熱器で太陽エネルギーを熱エネルギーとして吸収
し、プロピレングリコール等の熱搬送媒体を循環させて
、水等の蓄熱材に蓄熱して利用するツーランステムがあ
る。これらのソーラシステムにおいては、複数の集熱器
を直列配管したものを用いて蓄熱装置の熱交換器と集熱
器の間をポンプにより熱搬送媒体を強制循環させるよう
になっていた。ポンプの作動は集熱器と熱交換器の差温
を検知することにより制御される。この場合直列配管さ
れた複数の集熱器か同一の条件で太陽エネルギーを吸収
できるような設置の条件下では問題はない。しかし、直
列配電された複数の集熱器を太陽エネルギー照射条件か
異なる環境に設置した場合には効率は良くなかった。例
えは太陽光を遮きる建造物の影響番こより太陽エネルギ
ーの照射量が変化する場合、あるいは段差のある屋根上
及び寄棟等の傾斜面の異なる屋根上に設置した場合等に
、−・定速度て熱搬送媒体をポンプにより循環させれば
、十分な昇温かないため集熱器と熱交換器との差温によ
って作動するポンプか断続的に作動し、太陽エネルギー
の吸収度の低い集熱器−〇は放熱ロスを生じ高温を得に
くかった。
Conventional configurations and their problems Traditionally, solar energy is used in solar energy collectors, which absorb solar energy as thermal energy, circulate a heat transfer medium such as propylene glycol, and generate water, etc. There is a tooling stem that stores and uses heat in a heat storage material. In these solar systems, a plurality of heat collectors are arranged in series, and a heat transfer medium is forced to circulate between the heat exchanger and the heat collector of the heat storage device using a pump. The operation of the pump is controlled by sensing the temperature difference between the collector and the heat exchanger. In this case, there is no problem if there are multiple heat collectors connected in series or if the solar energy can be absorbed under the same conditions. However, efficiency was not good when multiple series-distributed heat collectors were installed under different solar energy irradiation conditions. For example, if the amount of solar energy irradiation changes due to the influence of a building that blocks sunlight, or if the installation is installed on a roof with different slopes such as a stepped roof or a hipped roof, etc. If the heat transfer medium is circulated by a pump at a high speed, the temperature will not rise sufficiently, so the pump will operate intermittently depending on the temperature difference between the heat collector and the heat exchanger, and the heat collection system will absorb less solar energy. Container-〇 caused heat radiation loss and was difficult to obtain high temperature.

又多数の集熱器を用いて太陽エネルギー吸収をイー1な
うソーラシステムとするときには、ポンプのfit:;
力等に従って熱搬送媒体の流路抵抗を所定の値にするた
めに集熱器を並列も[7くは1riA管にする必要か生
ずる。この場合、前述した各々の直列配もされた集熱器
群毎に太陽エネルギー照射条件が冗なる環境に設置し、
これらに一つのポンプから熱搬送媒体を循環させようと
すると、各々の直列配管された集熱器群毎に集熱の度合
か異j^るためM温に差か生じる。代表的群の集熱器と
熱交換器とのλ−温を検知しても、他の群とは罫温条件
か一致ローす、ケイ温した#1゜と塀温しない群の熱搬
送媒体の温IWか平均化されるため^j+温か得られな
かったたけでなく、太陽エネルギーを集熱てきないこと
もあ−)た3゜ 上述の欠点を改善するためには、各々の直列配管された
集熱器群毎に、集熱器と熱交換器の差温検知器、ポンプ
及び熱交換器を用いることにより各々の独立した集熱器
群を一つの集熱部にまとめたソーラシステムを作ること
かあったか、コスト的に高いものであった。
Also, when using a large number of collectors to create a solar system that absorbs solar energy, the pump fit:;
In order to adjust the flow path resistance of the heat transfer medium to a predetermined value according to the power, etc., it may be necessary to arrange the heat collectors in parallel (7 or 1riA tubes). In this case, each series-arranged heat collector group described above is installed in an environment with redundant solar energy irradiation conditions,
If you try to circulate a heat transfer medium through these from a single pump, the degree of heat collection will be different for each series-piped heat collector group, resulting in a difference in M temperature. Even if the λ-temperature of the representative group of heat collectors and heat exchangers is detected, the grid temperature condition is the same as that of other groups. In order to improve the above-mentioned shortcomings, each series piping By using a temperature difference detector between the heat collector and heat exchanger, a pump, and a heat exchanger for each heat collector group, a solar system is created that combines each independent heat collector group into one heat collection section. For some reason, the cost was high.

発明の目的 本発明は、効率よく太陽熱を集熱てき、高温の湯を得る
ことかできると共に、コスト面でも安価で経済性の高い
ソーラシステムを提供することをL1的とする。
OBJECTS OF THE INVENTION The object of the present invention is to provide a solar system that can efficiently collect solar heat and obtain high-temperature hot water, and is also inexpensive and highly economical.

発明の構成 [−記目的を達成するために本発明は、直列配賀された
複数の集熱器及び/もしくは、単数の集熱器を並列配有
した集熱器配管において、直並列配着の一直列船幅単位
及び/もしくは直並列配管単位#゛[lこ配着設置した
前記集熱器の前記直並列配有の一泊列配へ単位毎及び/
も1. <は偵並夕りj配置1単位群毎に熱搬送媒体の
流出口を設け、この熱搬送媒体流出[1の近傍に、n1
1記熱搬送媒体の温度に応じて流I71を力11i威す
−るff1N制御装高を設けたもので、この構成によれ
は、多数の集熱器を用いるソーラシステムにおいても、
各々の等]7い太陽エネルキー照射条倒の場F91に設
置された集熱器群毎に直列もしくは直並列配管をし、各
々は流(1−1制御装置を持゛つているので、太陽エネ
ルギーの照射(dに応して熱搬送的体か昇温しにくい照
射条件の場合には2& J)ijを減少させ、昇温しや
すい)H<4射条件の場合には流h1を増加さぜる。又
直並Otj肯の一直列配へ即位毎及び7・′もシフ<5
は7並列配!b単位群毎の熱搬送媒体流出1]1近傍の
流出熱搬送媒体温度はほぼ等しく、11−、)−t′T
)に昇温されたものとし7て、熱搬送媒体を(IN t
Rさ旦ることがてきる。
Structure of the Invention [- In order to achieve the object, the present invention provides a series-parallel arrangement in a heat collector piping in which a plurality of heat collectors arranged in series and/or a single heat collector are arranged in parallel. One series ship width unit and/or series parallel piping unit
Also 1. An outlet for the heat transfer medium is provided for each unit group in the arrangement, and the outlet for the heat transfer medium is provided in the vicinity of [1, n1
1) A control device is installed to apply a force 11i to the flow I71 according to the temperature of the heat transfer medium. With this configuration, even in a solar system using a large number of heat collectors,
Series or series-parallel piping is installed for each group of heat collectors installed in the 7 solar energy key irradiation fields F91, and each has a flow (1-1 control device, so solar energy irradiation (according to d, in the case of irradiation conditions where it is difficult to raise the temperature of the heat transporting body, decrease ij, and increase the flow h1 in the case of H < 4 irradiation conditions). Zeru. In addition, each accession and 7・' to one series arrangement of Otj positive are also Schiff < 5
is arranged in 7 parallels! The temperature of the outflowing heat transfer medium in the vicinity of b heat transfer medium outflow 1]1 for each unit group is almost equal, 11-, )-t'T
), and the heat transfer medium is heated to (IN t
R can be stopped.

実施例の説明 以ド、本発明C)一実施例を・添イ(」図1h1にもと
ついで説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention (C) will now be described with reference to Figure 1h1.

11〜1図は人陽熱を集熱する集熱器のシステム図であ
り、12飼の!4ご熱器(1)を会棟の屋根に分散設置
4シた例である。a群の3個の集熱器(1)は東面した
屋5恨に、1)群の0個の集熱器(1)は南面した屋根
に、〔2群の3個の集熱器(1)は西面した屋根に設置
した。
Figures 11-1 are system diagrams of the heat collector that collects human solar heat, and there are 12 animals! This is an example of four heaters (1) being distributed and installed on the roof of a conference building. The three heat collectors (1) of group A are placed on the roof facing east, the zero heat collector (1) of group 1) is placed on the roof facing south, and the three heat collectors of group 2 are placed on the roof facing south. (1) was installed on the roof facing west.

第2図は集熱器の配管の一実施例を示し、3個の集熱器
(1)毎(こ的外配へ単位とすると共に、太陽エネルギ
ーを遮きるもののない、南面した屋根に設置した13群
の6個の集熱器(1)の太陽エネルギーに照射条件か等
しいので、史に並列船幅して直並列配管単位群すとして
いる。a群、0群及びb群のそれぞれ、すなわち直並列
配管の一直列配管単位(2)及び的並列配肯単位群(3
)のそれぞれに、熱搬送媒体流出口(4)の近傍に熱搬
送媒体の温度に応して流(讐:を加減する流hj′制御
装置(5)を的外に配管し、次にこ才′1らを並列配管
した後、ポンプ(6)及び石湯槽(7)の熱交換器(8
)と直列配管したソーラシステムとし7た。
Figure 2 shows an example of the piping for the heat collectors, where each of the three heat collectors (1) is installed on a south-facing roof where there is nothing to block solar energy. Since the irradiation conditions are the same as the solar energy of the six heat collectors (1) in the 13 groups, the series and parallel piping units are grouped with parallel ship widths.Respectively, group a, group 0, and group b, In other words, one series piping unit (2) of series-parallel piping and a group of parallel connecting units (3
), in the vicinity of the heat transfer medium outlet (4), a flow hj' control device (5) that adjusts the flow according to the temperature of the heat transfer medium is installed outside the target, and then this After connecting the heat exchanger (8) of the pump (6) and stone bath (7) in parallel,
) and a solar system connected in series.

このソーラシステムでは、太陽か昇るに従い東側の屋根
に設置されたa群の集熱器(1)からケ?温し、alq
の的列配管単位(2)の流量制御装@(5)が徐々にそ
の流qjを増していくか、他のb群、0群の直並列配管
単位群(3)、直列配管即位(2)の流−u4制御装置
(5)は流Mを絞ったままの状1p iこある。太陽か
移動するに従い南面した1〕R1−の偵並列配管単位群
(3)の?に量制御装置(5)は流tmtを増加し、次
に西面した0群の1列配管単位(2)の流用か増加する
。夕刻に近つくに従って東面したa群の直列配管単位(
2)から流量制御装置(5)は流Iを絞りはじめ、順次
す群の的並列配管1を位粗(3)、0群の直列配管単位
(2)の流量制御装置(5)か絞られてゆき1日の太陽
エネルギーの吸収を終る。日中、雲の動き等により、太
陽エネルギーか遮きられた場合にはその関係した君1の
流、[l制御装置(5)か、昇温か低下する度合(こ応
t。
In this solar system, as the sun rises, heat is released from the heat collectors (1) of group A installed on the roof on the east side. warm, alq
The flow rate control device @(5) of the target series piping unit (2) gradually increases its flow qj, or the series-parallel piping unit group (3) of the other b group, 0 group, the series piping encroachment (2 ) The flow-u4 control device (5) is in a state where the flow M remains restricted to 1pi. 1] R1- parallel piping unit group (3) facing south as the sun moves? The quantity control device (5) increases the flow tmt, and then increases the diversion of the 1-row piping unit (2) of the 0 group facing west. As evening approaches, series piping units of group a facing east (
From 2) onwards, the flow control device (5) starts to throttle the flow I, sequentially restricts the flow control device (5) of the parallel piping unit (3) of the group 0 to the parallel piping unit (3), and the series piping unit (2) of the group 0. The end of the day's absorption of solar energy. During the day, if solar energy is blocked by movement of clouds, etc., the related flow, the control device (5), and the degree of increase or decrease in temperature.

て絞られる。東、あるいは南西側の一部に太陽エネルギ
ーを遮きるものの影響を受ける場合にも前述と同様に、
遮きられる度合により昇温の度合か低下し、これに応じ
て各群の流帛制御装@(5)か絞られる。このように、
太陽エネルギーの照射条件の変化に伴ない、各群毎に所
定の熱搬送媒体の温度を保つように、流用制御装置(5
)を作動させることによって、高い温度の湯として貯湯
することかできると共に、集熱か効率よく行なわれるこ
とから、従来に比して多量の太陽エネルギーを集熱する
ことかできるようになった。
It is narrowed down. Similarly to the above, if you are affected by something blocking solar energy on the east or southwest side,
The degree of temperature rise decreases depending on the degree of blockage, and the flow control device (5) of each group is throttled accordingly. in this way,
As the solar energy irradiation conditions change, a diversion control device (5
), it is possible to store hot water at a high temperature and also to collect heat efficiently, making it possible to collect a large amount of solar energy compared to the past.

Cの実施例において採用した流41制御装置(5)を絞
ることにより、流路抵抗か変化し、流−41を直接加減
する方法を利用する他、流路抵抗の変化により、負圧か
変化するのを利用してポンプ(6)のリーク水路を加減
してポンプ(6)の循環流■1をも加減する方法を利用
することもてきる。この方式において常時ポンプ(6)
を作動させると共に、流量制御装置(5)に紋り切り閉
止機能を持たせた場合には、流用制御装置(5)の温度
依存性により所定の温度の熱搬送媒体の循環か実現でき
るので、差温検知器を省略することかできる。この際、
ポンプ(6)の作動を夕刻より早朝の…]止めるよう制
御し7たり、東面したC、群の集熱器(1)の温度を検
知することtこより始動させるようにすれは、運転コス
トを低下させることかできる。
By throttling the flow 41 control device (5) adopted in Example C, the flow path resistance is changed, and in addition to using a method of directly adjusting the flow 41, the negative pressure can also be changed by changing the flow path resistance. It is also possible to use a method of adjusting the leakage waterway of the pump (6) by taking advantage of this, and also adjusting the circulating flow (1) of the pump (6). In this method, the constant pump (6)
If the flow rate control device (5) is provided with a cut-off and closing function, circulation of the heat transfer medium at a predetermined temperature can be realized due to the temperature dependence of the diversion control device (5). The temperature difference detector can be omitted. On this occasion,
Controlling the operation of the pump (6) to stop it in the evening rather than in the early morning, or starting it by detecting the temperature of the heat collector (1) facing east, will reduce operating costs. It is possible to reduce the

又、第3図は流用制御装置(5)として、熱搬送媒体の
温度に応l、て形状が変化する可逆性形状記憶合金をセ
ンサeアクチュエータとして用いたところを示す。この
流咽制御装@(5)はセンサ、電磁比例弁、電源を必要
とぜず配管径程度の太さで構成できるので、コンパクト
で経済性の高いと共に運転コストの血からも市、力を必
要とせす、信頼性の面からも温度に対して正確に作動す
るので有利なものとなる。n」逆形状記憶合金(9)は
低温になれは伸びるバネ形状を有し、弁(lO)と流通
目的jとのキャップをコントロールしている。第4図に
示す可逆形状記憶合金(9)は高温側では第4図(イ)
のように粗なバネ形状を、低温側では第4区1(olの
ように乱着したバネ形状を示し、バネのすき間をコント
ロールする方式で流量制御している。
Further, FIG. 3 shows a diversion control device (5) in which a reversible shape memory alloy whose shape changes depending on the temperature of the heat transfer medium is used as a sensor actuator. This pharyngeal control device (5) does not require sensors, electromagnetic proportional valves, or power supplies, and can be configured with a size similar to the diameter of a pipe, so it is compact and highly economical, and it also saves power from operating costs. It is also advantageous in terms of reliability because it operates accurately with respect to temperature. The inverse shape memory alloy (9) has a spring shape that expands when the temperature becomes low, and controls the valve (lO) and the cap for the flow purpose j. The reversible shape memory alloy (9) shown in Fig. 4 is
On the low temperature side, the spring shape is rough, as shown in Section 4 (OL), and the flow rate is controlled by controlling the gap between the springs.

発明の効果 り、上のように本発明によれば、複数の集熱器の一直列
配管m位毎及び/もしく+、1心並タ11配穆1F位群
イuの太陽エネルギー照射状態に几・じて、そイ]それ
の熱搬送媒体の流h】を加減し、m1定の五゛1度の熱
搬送媒体を循環させ集熱するようにしまたので、従来に
比べてより高温でVl、つ効率的な集熱かできるソーラ
システムを提供することかできる。又コスト面でもポン
プ及び熱交換器は共用できるので安価で経済性の高いも
のを得ることかできる。これらは部会等の日照条件の不
利な場所へのソーラシステムの設置や、複穎な構造の屋
根へ設置する場合だけですく、屋根の一体型のソーラシ
ステムを適用するにあたっても高い効率を有したソーラ
システムを提供することかできる。
Effects of the Invention As described above, according to the present invention, the solar energy irradiation state of each series pipe m of a plurality of heat collectors and/or +, 1-fiber parallel type 11 wires 1F group i u Accordingly, the flow rate of the heat transfer medium (h) is adjusted so that the heat transfer medium with a constant temperature of 5.1 degrees m1 is circulated and collected, so the temperature is higher than that of the conventional method. It is possible to provide a solar system that can efficiently collect heat. Also, in terms of cost, since the pump and heat exchanger can be shared, a low cost and highly economical product can be obtained. These are applicable only when installing a solar system in a place with unfavorable sunlight conditions such as a subcommittee, or when installing on a roof with a compound structure, but it is also highly efficient when applying a solar system integrated into the roof. Can provide solar system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明におげろ集熱器設置の一実施例を示すシ
ステム図、第2図は集熱器配管の一実施例を示すシステ
ム図、第3図は流量制御装置の一実施例を示す1仇面図
、第4図@)及O・(ロ)は町逆形状記1.0合金の作
動状態を示す断面図である。 (1)・・・集熱器、(2)・・・直列配管単位、+3
1・・・直並列配管■(つ群、(4)・・熱搬送媒体流
出口、(5)・流量制御装置、(6)・・ポンプ、(7
)・・貯湯槽、(8)・・熱交換器、(9)・・・旬逆
形状記障合金、(10)・・弁、ulJ・流通口。 代理人 弁理士人 島 −公 第1図 N 第2閑
Fig. 1 is a system diagram showing an example of installing a heat collector in the present invention, Fig. 2 is a system diagram showing an example of heat collector piping, and Fig. 3 is an example of a flow rate control device. Figures 4 and 4 are cross-sectional views showing the operating state of the 1.0 alloy. (1)... Heat collector, (2)... Series piping unit, +3
1...Series-parallel piping■(group, (4)...Heat carrier medium outlet, (5)-Flow rate control device, (6)...Pump, (7)
)...Hot water tank, (8)...Heat exchanger, (9)...Inverted profile alloy, (10)...Valve, ULJ/flow port. Agent Patent Attorney Shima - Ko No. 1 N No. 2 Kan

Claims (2)

【特許請求の範囲】[Claims] (1)  直列配管された複数の集熱器及び/もしく直
並列配管の一直列配管単位毎及び/もしくは直並列配管
単位群毎に、熱搬送媒体の流出口を設け、この熱搬送媒
体流出口の近傍に、肖り記熱搬送媒体の温度に応じて流
量を加減する流l”制御装置を設けたことを特徴とする
ソーラシステム。
(1) A heat transfer medium outlet is provided for each series piping unit of a plurality of series-piped heat collectors and/or series-parallel piping units and/or for each series-parallel piping unit group, and the flow of the heat transfer medium is 1. A solar system characterized in that a flow control device is provided near the outlet to adjust the flow rate according to the temperature of the heat transfer medium.
(2)  流量制御装置として、流路を絞って流量を直
接加減する機構を用い且つセンサーアクチュエータにi
」逆形状記憶合金を用いた特許請求の範囲第1項記載の
ソーラシステム。
(2) As a flow rate control device, use a mechanism that throttles the flow path and directly adjusts the flow rate, and also uses an i
” The solar system according to claim 1, which uses a reverse shape memory alloy.
JP57210475A 1982-11-29 1982-11-29 Solar system Pending JPS59100357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57210475A JPS59100357A (en) 1982-11-29 1982-11-29 Solar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57210475A JPS59100357A (en) 1982-11-29 1982-11-29 Solar system

Publications (1)

Publication Number Publication Date
JPS59100357A true JPS59100357A (en) 1984-06-09

Family

ID=16589952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57210475A Pending JPS59100357A (en) 1982-11-29 1982-11-29 Solar system

Country Status (1)

Country Link
JP (1) JPS59100357A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093061A (en) * 2010-10-28 2012-05-17 Noritz Corp Solar water heat system
JP2013079758A (en) * 2011-10-04 2013-05-02 Tokyo Gas Co Ltd Heat collecting system
JP2015081731A (en) * 2013-10-23 2015-04-27 矢崎エナジーシステム株式会社 Solar heat use system
JP2016176631A (en) * 2015-03-19 2016-10-06 株式会社東芝 Solar heat collection system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093061A (en) * 2010-10-28 2012-05-17 Noritz Corp Solar water heat system
JP2013079758A (en) * 2011-10-04 2013-05-02 Tokyo Gas Co Ltd Heat collecting system
JP2015081731A (en) * 2013-10-23 2015-04-27 矢崎エナジーシステム株式会社 Solar heat use system
WO2015060405A1 (en) * 2013-10-23 2015-04-30 矢崎エナジーシステム株式会社 Solar heat utilization system
JP2016176631A (en) * 2015-03-19 2016-10-06 株式会社東芝 Solar heat collection system

Similar Documents

Publication Publication Date Title
US4227515A (en) Dual phase solar water heater
US4143642A (en) High temperature thermal storage system utilizing solar energy units
US4117831A (en) Energy collector for collecting solar energy and the like
US3994279A (en) Solar collector with improved thermal concentration
US3996919A (en) System for collecting and storing solar energy
US3262493A (en) Means for heating and cooling a structure
US4117682A (en) Solar collector system
US4121566A (en) Sonia system
US4049195A (en) Solar heated building structure
US4294227A (en) Apparatus for heating water by solar heat
GB1524694A (en) Thermostatically colntrolled non-tracking type solar energy heating system
US4569331A (en) Solar heat powered plant
KR20180126941A (en) Control system for a solar assisted heat pump system with hybrid solar collectors
US3991937A (en) Solar-heated unit
KR20180086692A (en) air circulation preventing structure by using complex use of air heat and solar thermal and hybrid system using the same
JPS59100357A (en) Solar system
KR101888509B1 (en) A composite heat source solar collector using a sealing structure of an absorption plate integrated with a transparent body
GB1482150A (en) Solar heating apparatus
US4428363A (en) Environmental heating system
EP0002374A1 (en) Radiation collector
US4031880A (en) Method and device for collecting solar energy
Nábìlek et al. Performance of an unglazed textile-plastic solar absorber
Pause New textile-based hybrid photovoltaic/thermal (PV/T) system
CN105737303B (en) Automatic temperature-control selective cold storage self-circulation cooling system
JPH0119011Y2 (en)