JPS5896987A - Plate type heat exchanger - Google Patents

Plate type heat exchanger

Info

Publication number
JPS5896987A
JPS5896987A JP19536881A JP19536881A JPS5896987A JP S5896987 A JPS5896987 A JP S5896987A JP 19536881 A JP19536881 A JP 19536881A JP 19536881 A JP19536881 A JP 19536881A JP S5896987 A JPS5896987 A JP S5896987A
Authority
JP
Japan
Prior art keywords
heat transfer
plate
ports
distribution
pressure loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19536881A
Other languages
Japanese (ja)
Inventor
Junichi Nakamura
淳一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP19536881A priority Critical patent/JPS5896987A/en
Publication of JPS5896987A publication Critical patent/JPS5896987A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/083Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning capable of being taken apart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve heat transfer performance by a method wherein bead patterns having angular change are provided on the upper and lower distributing surfaces so that the pressure loss difference due to the angular difference between the beads offsets the pressure loss difference due to the distance difference of flow passages. CONSTITUTION:Efflux and influx ports of heat-exchange fluid 10a, 10b, 10c and 10d are formed at the four corners of each of heat transfer plates 8 and 9. The distributing surfaces 11a and 11b are formed at the upper and lower parts facing to the ports 10a, 10d and 10b, 10c of the plate 8, while the distributing surfaces 12a and 12b are also formed at the upper and lower parts facing to the ports 10a, 10d and 10b, 10c of the plate 9. The beads on the distributing surfaces 11a, 11b, 12a and 12b are formed so as to diverge from the ports 10a, 10b, 10c and 10d towards heating surfaces 13 and 15. In other words, the beads have angular change with respect to the ports 10a, 10b, 10c and 10d by forming the beads radially from one point lying on the center line of the width of the plates 8 and 9.

Description

【発明の詳細な説明】 ζO脅−はプレート式熱交換−〇改良に陶するもの′C
ある。
[Detailed description of the invention] ζO threat is useful for improving plate heat exchange.
be.

一蚊に%グレート式熱父鋏1ハ柚層させ穴伝熱プレート
陶に影F/iLされる空間にコ檎の熱交!I!t@流体
會諏過させて熱交換させるものτめる、伝熱プレート(
4)C8は第7因に示すように四隅に熱交換用流体の流
出入口(1m)(ll+)(1・X14)t−形成し、
−万の伝熱プレート(勾は&i1社分配面(ffia)
(lk)及び伝熱向($1 を形成して夫々に適切なビ
ードt*改してらる・そして、流出入口(11)(11
)を含めて分配面(la)(lb)及び伝熱[! 1!
+の外屑縁t、fスダット141にて囲続し、流出入口
(1・)(1りはそomit−ガスグツト(4&)にて
遮断させである。ま穴、他方の伝熱プレートに)を崗m
に分配面(Ia)(IIs)及び伝熱[(al t 形
[し、そC夫々に適切など一ドを形威しである。そして
、流出入口(1す(14)を含めて分配向(61X・b
)及び伝熱m偵1t)外崗縁tガスグツト(1)Kてt
m続し、流出入口C1m)(1m泗七の崗縁tガスグツ
ト(テa)にて遮断させである。尚、伝熱プレート(4
)と伝熱グレート−(至)とは−一形状に形成され、陶
−グレートの一万¥t/IO@FBJ転さぜるξtによ
)伝熱プレート(4)C伝熱i1 ta+及び分配th
]Cff1&X麿りと伝熱プレートに)の伝熱面慣)及
び分配向Cj&X・りとは対称ft−に構成される。そ
して、流人口(1a)t−流れる熱交換用流体は伝熱プ
レート(〜O分に面(鷹&)にて分配され、伝jlii
lNllk−1れ、分配向(禽))より流出口(1リヘ
排出され、流入口(1・)を流れる熱交換用体体は伝熱
プレート−)の分配向(墨&)にて分配され、伝熱面(
6)を流れ、分配面(6b)より流出口(1a)へ排田
され、伝熱面(S)(・)會撮れるWjAK両者間τ熱
交候が行なわれる・とζろで、上記伝熱プレート(勾に
)は各分配面Oビードは流出入口【中心とする一定1I
ilv4の略平行状に形成させているが、これ″11i
都交換用流体の圧力撫矢が全曲に亘って均一とならず、
アンバツンスとなる為に伝熱効率が低下していた。mち
、各分配面のと一ド會流出入口を中心とする一定l11
−のも平行状に形成し九〇で、熱交換用流体の流入口か
ら流出口へ至る流路は、流出入口から近いmm陰が短か
く、−遍く離れるml#iimが負く19、値って熱交
換用流体は流路の長さが長<1にる揚に流れの抵抗が大
龜(なるから、流出入口から近い部分″t’Fi比力償
矢が小さく、速く雁れる溶分では圧カー矢が太き(なり
、アンバランスな状態となる。S2図に示すように、−
見は伝熱プレート(4)にりいてJ11順の流−X、Y
、XI過定する。りまシ分配向(ia)(gb)K 款
vsてmmv長さi)E L、、謄z、(z、<4<L
、)0*路會決め、伝熱面(1)C流路の最さは金て工
、とし、流@xt流入口(1a)及び流出口(1−)か
ら近い流路(2工+14+シ、の長さ)、流−1を流出
入口(1m)(Am)$ら違い流路(XIS+Xl、+
L、 0 長さ)sm線ft−111E両者の中−C流
路(L、+Is、−)、0−にさ)とする・前述oni
m*ら流線XOC流路一#短かく、これよ多層に流路が
長くな夕、流線謳O流路が一番長くなる。ま次、一様に
伝熱プレート017についても諏線工′(シs+XIn
”sχ滝−r (LjI+L、+TJ、χ流線X’ (
Lx+L4+Ll ) t k M ’T J) mこ
む場合は逆に流出入口(l・)(14)K虹い諏纏嶌6
の流路が一番短を<、流i! X’O流路が一番長くな
り、fi1線Y′は七の中−となる、ζ0様な流路Ik
さVパラツキにより流体0圧力損失がik−に亘って均
一とならす、ζCC圧力欠失アンバツンスが伝熱性能に
大きく!#曽する40τある・この発明は上記従来O欠
虞に麺み、これt改良除去し大も0τ、上下分配面のビ
ートパターンに角度賃化をを次せ、−tO角屓羞による
圧力損失差で流路O距離差によゐ圧力損失差を相殺させ
て伝熱性能を向上せしめたものである。
Heat exchange the heat exchanger in the space where one mosquito is shaded F/iL with a hole heat transfer plate ceramic layer with 1% great type heat scissors! I! t@Things that exchange heat through fluid interaction τ include heat transfer plates (
4) As shown in factor 7, C8 is formed with inlet and outlet inlets (1m) (ll+) (1 x 14)t- for heat exchange fluid at the four corners,
-10,000 heat transfer plate (Koha & i1 company distribution surface (ffia)
(lk) and heat transfer direction ($1), respectively, and the appropriate bead t* is changed, and the inlet and outlet (11) (11
) including distribution surfaces (la) (lb) and heat transfer [! 1!
Surrounded by outer waste edges t and f of +, and connected by sudat 141, inlet/outlet (1・) (one is blocked by omit-gas grip (4&). Hole, on the other heat transfer plate) The scale
The distribution surfaces (Ia) (IIs) and the heat transfer [(al t shape] and the shape of the distribution surface (IIs) and the heat transfer surface (IIs) are respectively suitable for the distribution surfaces (Ia) and (IIs). (61X・b
) and heat transfer m) outer grating t gas grip (1)
The inlet and outlet C1m are connected to each other and are shut off by a gas gutter (tea) of 1m long.
) and heat transfer plate (to) are formed into a single shape and are rolled by ξt of ceramic plate (10,000 yen t/IO @ FBJ) heat transfer plate (4)C heat transfer i1 ta+ and distribution th
] Cff1 & Then, the flow rate (1a) t - The flowing heat exchange fluid is distributed on the heat transfer plate (~O) by the surface (hawk &), and the heat exchange fluid is
The heat exchange body flowing through the inlet (1) is distributed in the distribution direction (ink &) from the distribution direction (chicken) to the outlet (1), and the heat exchange body flowing through the inlet (1) is distributed in the distribution direction (ink &). , heat transfer surface (
6), the rice is discharged from the distribution surface (6b) to the outlet (1a), and heat exchange takes place between WjAK and the heat transfer surface (S). The heat plate (magnetic) has each distribution surface O bead has an inlet and an inlet
It is formed almost parallel to ilv4, but this "11i"
The pressure of the exchange fluid is not uniform throughout the song,
Heat transfer efficiency decreased due to imbalance. m, a constant l11 centered on the inlet and outlet of each distribution surface.
- The flow path from the inlet to the outlet of the heat exchange fluid is formed in a parallel shape with a value of 90. The flow path from the inlet to the outlet of the heat exchange fluid is short in mm near the inlet and - ml#iim far away from the inlet is negative 19. Therefore, when the length of the flow path is <1, the heat exchange fluid has a large flow resistance. At the minute, the pressure arrow becomes thick (becomes an unbalanced state. As shown in Figure S2, −
Look at the heat transfer plate (4) and flow in J11 order - X, Y
, XI is overdetermined. Rimashi distribution direction (ia) (gb) K section vs. mmv length i) E L,, order z, (z, < 4 < L
,)0*Route arrangement, heat transfer surface (1) The highest point of the C flow path is made of metal, and the flow path closest to the flow @xt inlet (1a) and outlet (1-) (2 +14 + length), flow-1 to outlet (1 m) (Am) $ different flow path (XIS+Xl, +
L, 0 length) sm line ft-111E -C flow path (L, +Is, -), 0-) ・The above oni
The streamline XOC flow path is the shortest, and the flow path is the longest when the flow path is multi-layered. Next, the heat transfer plate 017 is also uniformly
"sχ Waterfall - r (LjI+L, +TJ, χStreamlineX' (
Lx+L4+Ll ) t k M 'T J) If m is crowded, conversely, the inlet/outlet (l・) (14) K Rainbow Sumatosho 6
The shortest flow path is <, flow i! A ζ0-like flow path Ik where the X'O flow path is the longest and the fi1 line Y' is in the middle of seven.
The ζCC pressure drop imbalance, which makes the fluid zero pressure loss uniform over ik- due to the V variation, has a large effect on heat transfer performance! #There is 40τ. This invention solves the above-mentioned conventional O deficiency, improves and eliminates the large 0τ, and adds an angle change to the beat pattern of the upper and lower distribution surfaces, thereby reducing the pressure loss due to -tO angle deviation. The difference in pressure loss is offset by the difference in flow path O distance, thereby improving heat transfer performance.

以下こ0尭明の構at図面に示す実−例について説明す
ると次の過多である・ S3図に於いて、ts> mは伝熱プレートで、四隅に
熱交換用流体の流出入口(xoa)(1ob)(xss
)(10櫨)?形成し、こむ流出入口に而して上下に分
配面i) (xxa)(11b)と(l鳳a)(llb
)aN夫々形成すれている。そして、一方の伝熱グレー
ト(8)においては分配面(llb)(llb薫に適切
など一ドパターンtm成し喪伝熱thI賎が形訳され、
流出入口(108)(10k)會含めて分制面(l1m
)(llk)及び伝熱I[le岑の外崗縁會ガスゲット
Iτ日跣し、流出入口(xoa)(1oa)は七の崗i
tガスケット(14m)にて遮断させであるaVk、他
方の伝熱プレート;9)においても同様に分配面fI(
01&)(11り貢に適切なビードパターンt−構欧し
た伝に!4FEJ輌を形成しm−出入口(10・)(t
ea)會含めて分−向(1處り(1層b)及び伝熱面部
@O外崗縁tガスケットOじ1絖し、fM邑人口(16
&)(10&拒その周縁tガスケット(1・a)にて遮
断させである0以上Fi従来と一様であって、この発明
の従来と相員するところh分配面(xxa)(txb)
と(lffia)(11に+)0ビ一ド會滝輿入口(l
ea)(x@b)(xo・バ10鑞)から伝熱面輪重〜
に向って拡がるようKpII訳する。即ちビード【プレ
ー)−む中心線上に一15′ft中心とする放射状にI
II成すゐことにより、流出入口(10aン(1@k)
(1・・)(lOa)K対してと一ドに角度変化t%良
せゐtCである・ LDように分配向(l1m)(ll′b)と(1,Rm
)(11k)0ビードパターンに角挟翼化會も次せると
、七〇角度111による圧力損失差が生じ、これにより
距ll差による圧力損失差が相殺されて伝熱面部−にお
−て流体の均一な流れ分布t−4次ら丁ので伝熱性能が
向上する脅顧ち、my図に示すように今、伝熱プレート
(組のJ個所てに@xrz”1違定し、これらの分配面
(xxa)(xiりにおける折れ角t#1、−8、#、
(#、)#、)す)とすると、流入口(lOa)及び流
出口(zob)から近い流線X’(D折れ角−0は一書
大龜(な9、流出入口(loa)(10−庫ら違い流s
 Nの折れ角#31は一番小さくなり、加配内省の中間
の論−!°′の折れ角#8は七の中−となる・こCよう
に滝纏の折れ角は流出入口から近い程大勤(、遠く離れ
石程小さくな)、距離差により圧力損失とは逆に角度差
による圧力損失は流出入口から近い部分での圧力絢失は
火車く、違(lれ危部分の圧力損失は小さくなる。
The following is an explanation of the actual example shown in the diagram of the structure of Komei. (1ob) (xss
) (10 櫨)? The upper and lower distribution surfaces i) (xxa) (11b) and (10a) (llb
)aN are formed respectively. Then, in one heat transfer grade (8), the distribution surface (llb) (appropriate to the llb Kaoru) forms a one-dot pattern tm, and the expression ``moment transfer heat thI 賎'' is translated,
Inlet/outlet (108) (10k) Control surface (l1m) including the meeting
) (llk) and heat transfer I
aVk, which is cut off by the t gasket (14 m), and the distribution surface fI (9) on the other heat transfer plate;
01 &) (11) Appropriate bead pattern t-In the construction! 4FEJ is formed and m-Entrance/exit (10・)(t
ea) Including the meeting, the direction (1st layer (1st layer b) and the heat transfer surface part @O outer grating t gasket Oji1),
&) (10&) The peripheral edge of the t gasket (1・a) is used to shut off the 0 or more Fi, which is the same as the conventional method and is compatible with the conventional method of this invention.
(lffia) (11 +) 0 bid meeting waterfall entrance (l
ea) (x@b) (xo・ba10 wire) to heat transfer surface wheel load ~
Translate KpII so that it spreads toward. That is, I radially center 15'ft on the center line of the bead (play).
By forming II, the outflow inlet (10a (1@k)
(1...) (lOa) The angle change is t% good tC with respect to K. As in LD, the distribution direction (l1m) (ll'b) and (1, Rm
) (11k) When a 0 bead pattern is followed by a narrowed blade, a pressure loss difference due to the 70 angle 111 will occur, which cancels out the pressure loss difference due to the distance ll difference, and the heat transfer surface part - In order to improve the heat transfer performance due to the uniform flow distribution of the fluid t-4th order, as shown in my diagram, we now set the heat transfer plate (at distribution plane (xxa) (bending angle t#1, -8, #,
(#,)#,)su), then the streamline X' (D bend angle - 0 is 9, the outlet (loa) ( 10-Kura difference style
The bending angle #31 of N is the smallest, which is the middle theory of additive introspection! Bent angle #8 of °' is in the middle of 7. As shown in C, the closer the bend angle of the waterfall is to the inlet, the smaller the distance. As for the pressure loss due to the difference, the pressure loss in the area near the inlet and outlet is more likely to occur, and the pressure loss in the area where there is a risk of leakage is smaller.

従って、流出入口から近い部分ては距朧択差による圧力
損失は小さいか折れ月差による圧力損失は大きく、連(
■れた部分ては距1差によゐ圧力損失は大−一が折れ月
差による圧力損失は小さくなり、これによ)距−動によ
る圧力損失差か折れ月差による圧力損失差で相殺されて
なくなり、伝熱向での流体0流れ分布を均〜すムを次、
分配面(1xa)(xxb)と(lim)(xmすOビ
ード會プレート−の中心線上の一郁會中心とする放射状
にル威し7tc)で、伝熱プレート(8)の分配@ (
xxa)(1x麺)と伝熱プレート(9)の分配面(x
aa)(litりとは同一形状でしかも臼凸會幽返しに
してYl阪され、伝熱プレート(8+ (91會交互に
組合せてm層した際に、第5図に示すようにビードの保
さくd)のJ+&の高さく自)を刊する流路が形成され
、流路断m積か大きくなり、を危ぬれふち菱さt小さく
τ龜ることにより、従来のビートを交差させるものに比
べて圧力損失を大−に減少させることができるOUt、
分配面II(xxa)(xxb)と(lla)(11%
襖ビードをプレート−C中6線上の一部を中心とする放
射状に形成しfcので、流出入口(tea)(1ow)
(xos)(xoa)をプレート輻O中心纏上に款け1
を乏−じ効果が借られ、即ち、コ流体O温度差を充分に
伝熱に利用τ龜伝障性能を向上させ脅ゐことができる。
Therefore, in the area near the outflow inlet, the pressure loss due to the distance difference is small, the pressure loss due to the bending difference is large, and the continuous (
(1) In the part where the distance is 1, the pressure loss is large due to the difference in distance, but the pressure loss due to the difference in length is small, and this is offset by the difference in pressure loss due to distance movement or the difference in pressure loss due to the difference in length. The next step is to equalize the fluid flow distribution in the heat transfer direction.
Distribution surface (1xa) (xxb) and (lim) (xm) radially centered on the center line of the O bead plate (7tc), the distribution of the heat transfer plate (8) @ (
xxa) (1x noodles) and the distribution surface (x
aa) (lit) has the same shape as the heat transfer plate (8 + (91)), which has the same shape as the convex plate and is made with m layers, as shown in Figure 5. The flow path is formed, the cross section of the flow path becomes larger, and the edge of the flow path is made smaller, making it possible to cross the conventional beat. OUT, which can greatly reduce pressure loss compared to
Distribution plane II (xxxa) (xxb) and (lla) (11%
The fusuma beads are formed radially around a part of line 6 in plate-C, and as fc, the outflow inlet (tea) (1ow) is formed.
Draw (xos) (xoa) on the center of the plate radius 1
In other words, the co-fluid O temperature difference can be fully utilized for heat transfer to improve the interference performance.

以上説明したようにcの発明は、伝熱プレートの流体の
流出入口と中間域の伝熱向とのrsO分配面に、プレー
トIIIo中心線上を中心とする放射状Oビードパター
ンを影欧し、分起−Oビードパターンに角度賃化【を六
ぜ次から一分配向″CO距−差による圧力損失gltt
−角度差による圧力損失差で相殺することができ、これ
によ夕伝熱面での流体OtI&れ分布を均階することが
で龜、伝熱性誂を大輪に同上する。
As explained above, the invention c is based on a radial O bead pattern centered on the center line of plate IIIo on the rsO distribution surface between the fluid inlet and outlet of the heat transfer plate and the heat transfer direction in the intermediate region. The pressure loss due to the difference in the angle of the O-bead pattern [from the sixth direction to the first direction'' CO distance - gltt
- The difference in pressure loss due to the difference in angle can be canceled out, and this can equalize the distribution of the fluid OtI on the heat transfer surface, thereby increasing the heat transfer properties.

【図面の簡単な説明】[Brief explanation of the drawing]

1!/図は一般的なプレート式熱交換器に使用される伝
熱プレートの形状を示す平面図、第2図は流路C距離差
を説明する為の伝熱プレートO概略図、第3図はこの軸
−のプレート式熱交挟1iitK&用される伝熱プレー
トO形吠會示す平面図、艷V図は折れ月差會説明する為
の伝熱プレー)t)llli略図、第3図は伝熱プレー
トを積層し7を吠111に次ける分配向の断面斜視図で
ある。 181111 ” ” & 1111プレート、(xo
a)(lo城xoa)(xot)・・流…人口、(11
m)(11k)(lffiす(11!k)@ @分配−
1蓼零俵匈・・伝熱向、鵠Qlii−・ガスグツトe第
 1 図 k I¥3図 16.2 0I 第4図 2□ 手続補正書 昭和57年−月 3日 特許庁長官  島田春樹   殿 1、 事件の表示 昭和J4 年 特  許  #A 第 /りJJ41″
2、発明の名称 プレート式熱交1kIjk3、 補正
をする者 事件との関係   特許は■−人 名 称  株式会社 日数製作所 4、 代  理  人  〒550 住  所   大阪府大阪市西区江戸堀1丁目15番2
6号大阪商エビルア階 氏 名鱒理士(6458)江 原 省 吾5、  &r
旧。対象              (はか7名)図
   面 6、 補正の内容 し゛1面中、83図を別紙0通を補正すゐ。 第5図
1! / Figure is a plan view showing the shape of the heat transfer plate used in a general plate heat exchanger, Figure 2 is a schematic diagram of the heat exchanger plate O to explain the difference in flow path C distance, and Figure 3 is a A plan view showing the O-shaped heat transfer plate used in this shaft plate type heat exchanger. FIG. 3 is a cross-sectional perspective view of a stacked heat plate and a distribution direction in which heat plates 7 are placed next to heat plates 111; 181111 ” ” & 1111 plate, (xo
a) (lo castle xoa) (xot)...flow...population, (11
m) (11k) (lffisu (11!k) @ @ distribution -
1. 1. Heat transfer direction, 1. Figure k I 3 Figure 16.2 0I Figure 4 2 □ Procedural amendment dated 1981-Mon. 3 Haruki Shimada, Commissioner of the Japan Patent Office 1. Indication of the incident Showa J4 patent #A No. / JJ41''
2. Name of the invention: Plate type heat exchanger 1kIjk3.Relationship with the case of the person making the amendment: The patent is ■-Person name: Kichi Seisakusho Co., Ltd. 4, Agent: 550 Address: 1-15-2 Edobori, Nishi-ku, Osaka City, Osaka Prefecture
No. 6 Osaka Commercial Evil Aka Mr. Masu Rishi (6458) Ebara Sho Go 5, &r
Old. Subject (7 people) Drawing 6, contents of correction: Of 1 page, 83 drawings and 0 attached sheets were corrected. Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)伝熱プレー)Om体Ofi出入口と中間域O伝w
k向との陶の分配向に、プレート幅の中心−上を中心と
する放射状Vビードパターン10欧し、分配向のビート
パターンに角に’R化に4h次−1たことt特徴とする
プレート式熱交換参。
(1) Heat transfer plate) Om body Ofi entrance and exit and intermediate area O transfer w
The radial V-bead pattern centered on the center of the plate width is 10 mm in the distribution direction of the ceramic with the k direction, and the bead pattern in the distribution direction is characterized by a 4H order - 1 in the 'R' corner at the corner. Plate heat exchanger.
JP19536881A 1981-12-03 1981-12-03 Plate type heat exchanger Pending JPS5896987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19536881A JPS5896987A (en) 1981-12-03 1981-12-03 Plate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19536881A JPS5896987A (en) 1981-12-03 1981-12-03 Plate type heat exchanger

Publications (1)

Publication Number Publication Date
JPS5896987A true JPS5896987A (en) 1983-06-09

Family

ID=16340009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19536881A Pending JPS5896987A (en) 1981-12-03 1981-12-03 Plate type heat exchanger

Country Status (1)

Country Link
JP (1) JPS5896987A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216184A (en) * 1984-04-10 1985-10-29 Hisaka Works Ltd Plate type heat exchanger
JPS6162795A (en) * 1984-07-25 1986-03-31 ユニバ−シテイ オブ シドニイ Tabular heat exchanger
JPH11248376A (en) * 1998-02-27 1999-09-14 Daikin Ind Ltd Plate-type heat exchanger
WO2007036963A1 (en) * 2005-09-30 2007-04-05 Gianni Candio Method for manufacturing a plate heat exchanger having plates connected through melted contact points and heat exchanger obtained using said method
EP1899671A1 (en) * 2005-07-04 2008-03-19 Alfa Laval Corporate AB A heat exchanger plate, a pair of two heat exchanger plates, and plate package for a plate heat exchanger
WO2012063355A1 (en) 2010-11-12 2012-05-18 三菱電機株式会社 Plate heat exchanger and heat pump device
KR20220097537A (en) * 2019-11-26 2022-07-07 알파 라발 코포레이트 에이비 heat transfer plate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216184A (en) * 1984-04-10 1985-10-29 Hisaka Works Ltd Plate type heat exchanger
JPS6162795A (en) * 1984-07-25 1986-03-31 ユニバ−シテイ オブ シドニイ Tabular heat exchanger
JPH0439000B2 (en) * 1984-07-25 1992-06-26
JPH11248376A (en) * 1998-02-27 1999-09-14 Daikin Ind Ltd Plate-type heat exchanger
EP1899671A1 (en) * 2005-07-04 2008-03-19 Alfa Laval Corporate AB A heat exchanger plate, a pair of two heat exchanger plates, and plate package for a plate heat exchanger
EP1899671A4 (en) * 2005-07-04 2012-10-03 Alfa Laval Corp Ab A heat exchanger plate, a pair of two heat exchanger plates, and plate package for a plate heat exchanger
US8746329B2 (en) 2005-07-04 2014-06-10 Alfa Laval Corporate Ab Heat exchanger plate, a pair of two heat exchanger plates, and plate package for a plate heat exchanger
WO2007036963A1 (en) * 2005-09-30 2007-04-05 Gianni Candio Method for manufacturing a plate heat exchanger having plates connected through melted contact points and heat exchanger obtained using said method
WO2012063355A1 (en) 2010-11-12 2012-05-18 三菱電機株式会社 Plate heat exchanger and heat pump device
US9752836B2 (en) 2010-11-12 2017-09-05 Mitsubishi Electric Corporation Plate heat exchanger and heat pump apparatus
KR20220097537A (en) * 2019-11-26 2022-07-07 알파 라발 코포레이트 에이비 heat transfer plate

Similar Documents

Publication Publication Date Title
JPS5896987A (en) Plate type heat exchanger
AU2010356148B2 (en) A heat exchanger plate and a plate heat exchanger
SE505225C2 (en) Plate heat exchanger and plate for this
US3119446A (en) Heat exchangers
US20190003783A1 (en) Porthole gasket and assembly for a heat exchanger
JP2019517656A (en) Plate heat exchanger
US20110186274A1 (en) Plate heat exchanger
JP6706322B2 (en) Plates and heat exchangers for heat exchangers
NL9200698A (en) PLATE HEAT EXCHANGER AND METHOD FOR THE PRODUCTION THEREOF.
EP1456594A1 (en) A heat exchanger plate
US20170102193A1 (en) Alternating notch configuration for spacing heat transfer sheets
CN107525429A (en) For the heat exchanger plates of plate type heat exchanger and the plate type heat exchanger
US3231017A (en) Plate type heat exchangers
JP2000266479A (en) Plate heat exchanger
JP2003262487A (en) Heat exchange element
SE0102672L (en) Plate for heating and / or cooling ceilings
JPH04208392A (en) .plate type heat exchanger
JP4148080B2 (en) Heat exchanger
Kennedy et al. Cost analysis of solar reflective hard-coat materials deposited by ion-beam-assisted deposition
JPS5924195A (en) Member for heat exchanger and heat exchanger
CN113825970B (en) Plate heat exchanger and method for manufacturing a plate heat exchanger
JPH0443754Y2 (en)
CN214821501U (en) Novel film-coated color-coated sheet
JPH04371794A (en) Lamination type heat exchanger
JPS5849505Y2 (en) Heat exchanger