JPS58953A - Preparation of butyric acid derivative - Google Patents

Preparation of butyric acid derivative

Info

Publication number
JPS58953A
JPS58953A JP9829281A JP9829281A JPS58953A JP S58953 A JPS58953 A JP S58953A JP 9829281 A JP9829281 A JP 9829281A JP 9829281 A JP9829281 A JP 9829281A JP S58953 A JPS58953 A JP S58953A
Authority
JP
Japan
Prior art keywords
formula
acid
reaction
derivative
hydrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9829281A
Other languages
Japanese (ja)
Inventor
Haruyo Satou
治代 佐藤
Shinzo Imamura
今村 伸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9829281A priority Critical patent/JPS58953A/en
Publication of JPS58953A publication Critical patent/JPS58953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To prepare the titled compound useful as a synthetic intermediate of amino acid, with simplified process, in high yield, by reacting N-(diphenylmethylene)glycinonitrile with an acrylic acid ester. CONSTITUTION:The 4-cyano-4-diphenylmethyleneaminobutyric acid ester of formula III can be prepared by reacting N-(diphenylmethylene)glycinonitrile of formulaIwith an acrylic acid ester of formula II (R is 1-4 C alkyl) in a solvent, preferably in a binary-phase solvent system containing a phase-transfer catalyst, in the presence of a base at 0-80 deg.C, preferably 0-40 deg.C. The compound of formula III can be converted to 4-amino-4-cyanobutyric acid ester of formula IV by acid hydrolysis, and to 4-cyano-4-diphenylmethyleneaminobutyric acid of formula V by alkali hydrolysis. The 4-amino-4-cyanobutyric acid of formula VI can be obtained by the alkali hydrolysis of the former compound or by the acid hydrolysis of the latter compound.

Description

【発明の詳細な説明】 本発明は、アミノ酸製造用中間体の一種である酪酸誘導
体の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a butyric acid derivative, which is a type of intermediate for producing amino acids.

従来からアミノ酸を製造する方法として種々の方法が提
案されているがその多くは、種々の中間体を経由する方
法である。これらの方法は相応の効果をあげてはいる。
Various methods have been proposed to date to produce amino acids, and most of them involve various intermediates. These methods have shown some effectiveness.

が、なお次の点にお゛いて限りない改良が望まれている
。即ち(イ)中間体乃至は目的物の合成ステップを簡素
化すべきであること、幹)収率の向上をはかるべきであ
ること、′(ハ)y応条件を、より緩和してに応を安定
化させること、に)操作を簡単にすること、(ホ)副生
物を有効に利用できるプロセスであること及び(へ)省
資源的ないしは省エネルギー的プロセスであること等の
改良が望まれているのである。
However, endless improvements are desired in the following points. In other words, (a) the steps for synthesizing intermediates or target products should be simplified; (main) the yield should be improved; and (c) the reaction conditions should be further relaxed. Improvements are desired such as stabilization, (2) simplification of operation, (e) process that can effectively utilize by-products, and (f) resource-saving or energy-saving process. It is.

そこで、本発明者らは上記改良を目的tこアミノ酸及び
アミノ酸誘導体製造用中間体の製法を鋭意研究したとこ
ろ、極めて特異な中間体の製法を見い出し本発明に到達
した。
Therefore, the present inventors conducted intensive research into methods for producing intermediates for producing amino acids and amino acid derivatives with the aim of improving the above, and discovered a very unique method for producing intermediates, resulting in the present invention.

本発明の上記目的は、具体的には式(1)で示されるN
−(ジフェニルメチレン)グリyノニトリルと一般式(
2) OH■cyyaooa       −・・+(2)(
上記(2)式に於いて、Rは炭素原子数1〜4のアルキ
ル基を示す) で示されるアクリル酸エステルとを反応させることによ
って達成されるとの事実を見(1だした。
Specifically, the above object of the present invention is to achieve N
-(diphenylmethylene)glynonitrile and the general formula (
2) OH■cyyaooa -...+(2)(
In the above formula (2), R represents an alkyl group having 1 to 4 carbon atoms.

だに上記の方法によって得られた酪酸誘導体、即ち4−
シアノ−4−ジフェニルメチレンアミノ酪酸エステルを
酸または塩基の存在丁で段階的に、または連続的に加水
分解することtこよりアミノ酸またはアミノ酸誘導体製
造tこ有利な中間体が得られる。
However, the butyric acid derivative obtained by the above method, namely 4-
The stepwise or continuous hydrolysis of cyano-4-diphenylmethyleneaminobutyric acid ester in the presence of an acid or base provides an advantageous intermediate for the production of amino acids or amino acid derivatives.

以下、本発明を詳述する。The present invention will be explained in detail below.

rず、本発明に使用される出発原料を用意する。First, the starting materials used in the present invention are prepared.

上記・式(11で示されるN−(ジフェニルメチレン)
グリシノニトリルはグリシノニトリルとベンゾフェノン
との脱水反応によって得られる。
N-(diphenylmethylene) represented by the above formula (11)
Glycinonitrile is obtained by the dehydration reaction of glycinonitrile and benzophenone.

(Tetrahedron Lett、462.5 (
1978) )。
(Tetrahedron Lett, 462.5 (
1978) ).

他方、アクリル酸エステルは周知の方法によって得られ
る。
On the other hand, acrylic esters are obtained by well-known methods.

次に、この二種の原料を反応°させるO反応方法として
は均一溶媒系で反応させる方法と水相と有機相との間で
反応させる方法の2種力;あるが、操作及び拳離が簡単
であると(1つ理由で後者の反応法が好ましい。
Next, there are two types of O reaction methods for reacting these two types of raw materials: a method of reacting in a homogeneous solvent system and a method of reacting between an aqueous phase and an organic phase. The latter reaction method is preferred for one reason.

均一溶媒系で反応させる場合、溶媒としてエタノールな
どのアルコ−〃類、ジクロルメタンなどのハロゲン化炭
化水素類、エーテル類、ベンゼンなどの炭化水素類、ジ
メチルホルムアミドおよ゛、びジメチルスルホキシドな
どを単独、または2種以上混合して使用する。塩基とし
て(よ水酸化カリウムなどのアルカリ金属水酸化物、ナ
トリウムエチラートなどのアルカリ金属アルコラ−) 
、 、1.8−ジアザビシクロ(5,4,O)ウンデセ
ン−7などの有機塩基等が用いられる。
When reacting in a homogeneous solvent system, alcohols such as ethanol, halogenated hydrocarbons such as dichloromethane, ethers, hydrocarbons such as benzene, dimethylformamide, dimethyl sulfoxide, etc. may be used alone as a solvent. Or use a mixture of two or more. As a base (alkali metal hydroxides such as potassium hydroxide, alkali metal alcohols such as sodium ethylate)
, , 1,8-diazabicyclo(5,4,O)undecene-7 and other organic bases are used.

この時の塩基の添加量は通常、N−(ジフェニルメチレ
ン)グリシノニトリ/L/1モルに対し、101〜6モ
ル当量である。この反応は ツ、溶媒沸点、好ましくは
50℃以下でy応液を攪拌すれば円滑に進行する。
The amount of base added at this time is usually 101 to 6 molar equivalents per 1 mol of N-(diphenylmethylene)glycinonitrile/L. This reaction proceeds smoothly if the reaction solution is stirred at a temperature below the boiling point of the solvent, preferably 50°C.

2相間溶媒系で反応させる場合、K応溶媒として、ハロ
ゲン化炭化水素類、エーテル類、炭化水素類等の有41
!溶媒と水との混合溶媒を用いる。この場合、塩基とし
ては水酸化す) IJウム、炭酸ナトリウム、炭酸水素
ナトリウムなどのアルカリ金属の水酸化物、炭酸塩、炭
酸水素塩などを用いる。この反応で使用する塩基の量は
、通f、N−(ジフェニルメチレン)グリシノニトリル
1モルに対して、α01〜6モル当量である。この時p
K応湿温度使用する溶媒によって多少異なるが、一般的
には0〜80℃、通常は0〜40℃でに応を行なう。
When the reaction is carried out in a two-phase solvent system, halogenated hydrocarbons, ethers, hydrocarbons, etc. can be used as the K-reactive solvent.
! A mixed solvent of a solvent and water is used. In this case, the base used is an alkali metal hydroxide, carbonate, hydrogen carbonate, etc., such as hydroxide, sodium carbonate, or sodium hydrogen carbonate. The amount of base used in this reaction is 01 to 6 molar equivalents per 1 mole of N-(diphenylmethylene)glycinonitrile. At this time p
Humidification temperature: Although it varies somewhat depending on the solvent used, the reaction is generally carried out at 0 to 80°C, usually 0 to 40°C.

2相間溶媒系で反応させる場合、相聞移動触媒を使用し
なくても反応が進むが、より好ましく 1! N −(
!/フェニルメチレン)グリシノニトリ/L/1モル当
りa001〜1.0モル当量の相間移動触媒を用いる。
When the reaction is carried out in a two-phase solvent system, the reaction proceeds without using a phase transfer catalyst, but it is more preferable.1! N-(
! /phenylmethylene)glycinonitrile/L/1 mole of a001 to 1.0 molar equivalent of a phase transfer catalyst is used.

相関移動触媒としては、たとえば、テトフプチルアンモ
ニウム硫酸水素塩、ペンジルトリエチルアンモニウムク
ロフイド、ベンジルトリメチルアンモニウムヒドロキシ
ド、セシルトリメチルアンモニウムプロマイド、ドデシ
ルトリメチルアンモニウムクロフイド、テトフエチルア
ンモニウAヒドロキシドなどの4級アンモニウム塩、よ
り好ましくはテトフグチルアンモニウム硫酸水素壇、ベ
ンジルトリメチルアンモニウムヒドロキシド、テトフエ
チ!アンモニウムヒドロキシドが用いられる。
Examples of phase transfer catalysts include quaternary ammoniums such as tetofuptylammonium hydrogen sulfate, penzyltriethylammonium chloride, benzyltrimethylammonium hydroxide, ceyltrimethylammonium bromide, dodecyltrimethylammonium chloride, and tetofethylammonium A hydroxide. Salts, more preferably tetofugthylammonium hydrogen sulfate, benzyltrimethylammonium hydroxide, tetofuchylammonium hydroxide! Ammonium hydroxide is used.

上記いずれの反応も、原則として化学量論量の出発物質
が使用されるが、好ましくはN−(ジフェニルメチレン
)グリシノニトリル1モルtこっきL19〜1.1モル
の割合のアクリル酸エステルが使用される。
In principle, stoichiometric amounts of starting materials are used in all of the above reactions, but preferably 1 mol of N-(diphenylmethylene)glycinonitrile and 1.1 mol of acrylic ester are used. be done.

反応は、常圧、加圧、減圧と種々の圧力下で可能である
が、好ましくは常圧下で行なわれる。
The reaction can be carried out under various pressures such as normal pressure, increased pressure, and reduced pressure, but is preferably carried out under normal pressure.

反応には、回分式、連続式又は半連続式の任意の方式が
採用される。回分式で反応を行なわせる場合、通常5〜
60分で反応は終了する。
Any system such as batch, continuous or semi-continuous can be used for the reaction. When the reaction is carried out batchwise, usually 5 to
The reaction is completed in 60 minutes.

反応終了後生成物を公知の方法で分取すると次式で示す
れる4−シアノ−4−ジフェニルメチレンアミノ酪酸エ
ステル(以下単に誘導体(3)と称する)が得られる。
After completion of the reaction, the product is separated by a known method to obtain 4-cyano-4-diphenylmethyleneaminobutyric acid ester (hereinafter simply referred to as derivative (3)) represented by the following formula.

y応終了後、生成物を分離する方法としては公知の方法
が採用される。
After the completion of the reaction, a known method is employed to separate the product.

たとえば、相聞移動触媒を使用して2相間で反応させる
場合、反応後水相と分離された有機相から溶媒を除去し
、残留物をシリカゲルを充填したカラムに通す。この場
合相聞移動触媒を含む一部不純物がカラムに吸着される
ので、シクロヘキサン−酢酸エチルの混合溶媒で展開し
、溶媒を減圧除去すると精製された誘導体(3)力;得
られる。
For example, when a phase transfer catalyst is used to cause a reaction between two phases, after the reaction, the solvent is removed from the aqueous phase and the separated organic phase, and the residue is passed through a column packed with silica gel. In this case, some impurities including the phase transfer catalyst are adsorbed on the column, so the column is developed with a mixed solvent of cyclohexane and ethyl acetate, and the solvent is removed under reduced pressure to obtain a purified derivative (3).

本発明においては更に分取された精製誘導体(3)を、
又は、前記反応で得た誘導体(3)を含むに湿温合物を
酸またはアルカリの存在下で加水分解I応に処する。
In the present invention, the purified derivative (3) further fractionated is
Alternatively, the wet mixture containing the derivative (3) obtained in the above reaction is subjected to hydrolysis in the presence of an acid or an alkali.

酸で加水分解する場合、酸として硫酸、塩酸、リン酸等
の鉱酸や、酢酸、プロピオン酸、クエン酸、シュウ酸等
の有機カルボン酸またはスルホン酸基を有するイオン交
換樹脂等を選んで、水の存在下で、温度0〜50℃好ま
しくは20〜30℃で15〜10時間、好ましくは1〜
3時間に応させる。この、とぎ酸は、誘導体(3)1モ
ルにつき少なくとも1モル以上使用される。
When hydrolyzing with an acid, select mineral acids such as sulfuric acid, hydrochloric acid, phosphoric acid, organic carboxylic acids such as acetic acid, propionic acid, citric acid, oxalic acid, or ion exchange resins having sulfonic acid groups as the acid. In the presence of water, at a temperature of 0 to 50 °C, preferably 20 to 30 °C, for 15 to 10 hours, preferably 1 to
Make them respond to 3 hours. This formic acid is used in an amount of at least 1 mol or more per 1 mol of derivative (3).

かくして、酸の存在下で加水分解反応がなされると、次
式で示される4−アミノ−4−シアノ酪酸エステルとベ
ンゾフェノンが得られる。
Thus, when the hydrolysis reaction is carried out in the presence of an acid, 4-amino-4-cyanobutyric acid ester and benzophenone shown by the following formula are obtained.

(以下誘導体(5)と称する) NH。(Hereinafter referred to as derivative (5)) N.H.

加水分解y応生成物から公知の方法、例えば抽出法によ
り誘導体(5)とベンゾフェノンを分離すれば、本発明
の第2の目的物と副生物が得られる。
By separating the derivative (5) and benzophenone from the hydrolysis reaction product by a known method, such as an extraction method, the second objective product and by-product of the present invention can be obtained.

副生物であるベンゾフェノンは、公知の方法でN−(ジ
フェニルメチレン)グリシノニトリル製造用の原料とし
てリサイクル可能となり、この点にも本発明の一特徴が
ある。
The by-product benzophenone can be recycled as a raw material for producing N-(diphenylmethylene)glycinonitrile by a known method, which is another feature of the present invention.

他方、塩基の存在下で加水分解する場合、塩基としてN
aO[!、KOH%NH,0H1Na、Co、、CaC
0,、OR,COONa等を選んで水の存在下で、温度
0〜50℃好ましくは20〜30℃、1〜10時間、好
ましくは3〜5時間反応させる。
On the other hand, when hydrolyzing in the presence of a base, N
aO [! ,KOH%NH,0H1Na,Co,,CaC
0, OR, COONa, etc. are selected and reacted in the presence of water at a temperature of 0 to 50°C, preferably 20 to 30°C, for 1 to 10 hours, preferably 3 to 5 hours.

このとき、塩基は誘導体(3)1モルにつき少なくとも
1モル以上使用される。
At this time, at least 1 mol or more of the base is used per 1 mol of derivative (3).

K応終了すると、次式で示さする4−シアノ−4−ジフ
ェニルメチレンアミノ酪酸(以下単に誘導体(4)と称
する)が得られる。
Upon completion of the reaction, 4-cyano-4-diphenylmethyleneaminobutyric acid (hereinafter simply referred to as derivative (4)) represented by the following formula is obtained.

反応生成混合物から公知の方法、例えば、抽出法により
誘導体(4)を分離取得できる。
Derivative (4) can be separated and obtained from the reaction product mixture by a known method, for example, an extraction method.

なお、加水分解反応な誘導体(3)の単独物を原料とせ
ずに、言いかえればN−(ジフェニルメチレン)グリン
ノ二トリルへのアクリlvwlエステル付加反応生成混
合物をそのまま加水分解反応に供する場合、次の処方を
考慮する必要がある。
In addition, when the hydrolyzed derivative (3) alone is not used as a raw material, in other words, when the mixture produced by the addition reaction of acrylic lvwl ester to N-(diphenylmethylene)glynonitrile is directly subjected to the hydrolyzed reaction, the following It is necessary to consider the prescription of

まず酸による加水分解はy湿温液から水相を除去し、有
機相に酸を加える。この場合の酸は前記と同様である。
First, acid hydrolysis removes the aqueous phase from the wet and hot liquid and adds acid to the organic phase. The acid in this case is the same as above.

またアルカリによる加水分解は付加反応終了後、更に3
〜5時間反応を継続するだけでよい。
In addition, hydrolysis with alkali is performed for an additional 3 times after the completion of the addition reaction.
It is only necessary to continue the reaction for ~5 hours.

反応条件、分離方法は前記と同様である。The reaction conditions and separation method are the same as described above.

以上のように本発明法によると工業的に有利に得られる
出発原料を用いて誘導体(3) (4)又は(5)ヲ簡
素化されたステップを経て高収率で得られるとともに、
その副生物を再び出発原料製造用の原料として再使用可
能である。
As described above, according to the method of the present invention, derivatives (3), (4), or (5) can be obtained in high yield through simplified steps using industrially advantageously obtained starting materials, and
The by-products can be reused as raw materials for the production of starting materials.

本発明においては更に分取された精製誘導体(4ン又は
(句を加水分解反応を行なうか、(以下単に段階的加水
分解と称する。)又は誘導体(4)又は(6)を単離す
ることなく誘導体(3)かう連続的に加水分解反応に処
する。(以下単に連続的加水分解と称する。) 段階的加水分解を行なう場合、誘導体(4)は酸の存在
下、また誘導体(5)は塩基の存在下で行なう。
In the present invention, the purified derivative (4) or (6) is further isolated by performing a hydrolysis reaction (hereinafter simply referred to as stepwise hydrolysis) or the derivative (4) or (6). (hereinafter simply referred to as continuous hydrolysis). When performing stepwise hydrolysis, derivative (4) is subjected to a hydrolysis reaction in the presence of an acid, and derivative (5) is Perform in the presence of a base.

塩基の種類、酸の種類、反応条件は前記と同様である。The type of base, type of acid, and reaction conditions are the same as above.

誘導体(3)から連続的に加水分解を行なう場合は次の
処方を考慮する必要がある。
When hydrolyzing derivative (3) continuously, it is necessary to consider the following formulation.

まず誘導体(3)を有機溶媒に溶解せしめ酸または塩基
の存在下で加水分解反応したのち、有機層を除去する。
First, the derivative (3) is dissolved in an organic solvent and subjected to a hydrolysis reaction in the presence of an acid or a base, and then the organic layer is removed.

得られた水層に前段を酸加水分解した場合には塩基を、
また前段を塩基加水分解した場合は酸を加え更に加水分
解に応を行なう。この反応液から有機溶媒で副生物を抽
出すれば、水層からは目的物である4−アミノ−4−シ
アノ酪酸が得られる。(以下単に誘導体(6)と称する
。) ここで使用される有機溶媒は水と混じり合わず、かつ反
応に不活性のものなら何れでもよいが、例工ばジクロル
メタン等のハロゲン化度化水素類、ベンゼン、シクロヘ
キサン等の炭化水素類、ジエチルエーテル等が好ましい
。また、酸および塩基の種類、反応条件は前記と同様で
ある。
In the case of acid hydrolysis in the first stage, a base is added to the resulting aqueous layer.
In addition, when the first stage is subjected to base hydrolysis, an acid is added for further hydrolysis. By extracting the by-product from this reaction solution with an organic solvent, the target product, 4-amino-4-cyanobutyric acid, can be obtained from the aqueous layer. (Hereinafter, simply referred to as derivative (6).) The organic solvent used here may be any solvent as long as it is immiscible with water and inert to the reaction, but examples include halogenated hydrogen dihydride such as dichloromethane. , hydrocarbons such as benzene and cyclohexane, and diethyl ether. Furthermore, the types of acids and bases and reaction conditions are the same as above.

更に副生物を再び出発原料tR造用の[料として再使用
も同様に可能である。
Furthermore, it is also possible to reuse the by-products as raw materials for producing the starting material tR.

本発明の誘導体(6)は更に必要な反応に供することに
よって種々の有用な化合物へ変換可能である。
The derivative (6) of the present invention can be further converted into various useful compounds by subjecting it to necessary reactions.

例えば、更に酸の存在下、加熱して加水分解を行なえば
簡単にグルタミン酸が得られる。
For example, glutamic acid can be easily obtained by further hydrolyzing it by heating in the presence of an acid.

また、誘導体(6)をアルカリ金属水酸化物とケトン類
または過酸化水素の存在下、o℃〜50℃で加水分解反
応を行なうと、4−アミノ−4−n  ルA’ u 4
  ル酪酸即ちイソグルタミンが得られる。
Further, when the derivative (6) is subjected to a hydrolysis reaction at 0°C to 50°C in the presence of an alkali metal hydroxide and ketones or hydrogen peroxide, 4-amino-4-n A' u 4
Rubyric acid or isoglutamine is obtained.

また、誘導体(6)を炭酸アンモニウムと反応させると
、5−(β−カカルキシルエチJ′L/)ヒダントイン
を得ることができる。
Furthermore, when the derivative (6) is reacted with ammonium carbonate, 5-(β-cacarxylethyl J'L/)hydantoin can be obtained.

次に、本発明法を実施例をもって説明する。Next, the method of the present invention will be explained using examples.

実施例1 攪拌器、滴下ロートおよび還流管を装着した200dの
5つロフラスコにN−(ジフェニルメチレン)アミノグ
リシノニトリル11、Og((10s4ル)およびジク
ロルメタン100 #/を加え、氷水中で攪拌した。こ
の中へ3Q%水酸化ナトリウム水溶液115g(α1モ
ル)およびテトヲプチルアンモニウム硫酸水素塩0.3
g(1ミリモル)を加え、更に攪拌した。滴下ロートよ
りアクリル酸エチルエステルs、 Og(α05モル)
を滴下したのち、室温中で1時間攪拌した。y応後、反
応液からジクロルメタン層を分液し、1回水洗した。減
圧でジクロルメタンを除去して粗4−シアノー4−ジフ
ェニルメチレンアミノ酪酸エチルエステ)v1&2g得
た。
Example 1 N-(diphenylmethylene)aminoglycinonitrile 11, Og ((10s4l) and dichloromethane 100#/ were added to a 200d 5-bottle flask equipped with a stirrer, dropping funnel, and reflux tube, and stirred in ice water. Into this were added 115 g (α1 mol) of 3Q% aqueous sodium hydroxide solution and 0.3 tethoptylammonium hydrogen sulfate.
g (1 mmol) and further stirred. Acrylic acid ethyl ester s, Og (α05 mol) from the dropping funnel
was added dropwise, and the mixture was stirred at room temperature for 1 hour. After the reaction, the dichloromethane layer was separated from the reaction solution and washed once with water. Dichloromethane was removed under reduced pressure to obtain 1 & 2 g of crude 4-cyano-4-diphenylmethyleneaminobutyric acid ethyl ester.

粗生成物をシリカゲルカラムを使用し、シクロヘキサン
−酢酸エチル混合溶媒で展開して精製4−シアノ−4−
ジフェニルメチレンアミノ酪酸エチルエステル15.3
gを得た。収率は95、696であった。
The crude product was purified using a silica gel column and developed with a mixed solvent of cyclohexane and ethyl acetate.
Diphenylmethyleneaminobutyric acid ethyl ester 15.3
I got g. The yield was 95,696.

実施例2 攪拌器を装着した100dのフラスコにシクロヘキサン
!So、/、1規定塩酸20g/および4−シアノ−4
−ジブエニルメチレンアミノ酪酸エチρエステ/I/五
2g([100モル)を仕込み、室温中で3時間攪拌し
た。反応終了後、反応液を分液した。
Example 2 Cyclohexane in a 100 d flask equipped with a stirrer! So, /, 1N hydrochloric acid 20g / and 4-cyano-4
-Dibutenylmethyleneaminobutyric acid ethyl ρ-ester/I/5 (2 g ([100 mol)) was charged and stirred at room temperature for 3 hours. After the reaction was completed, the reaction solution was separated.

水mt:mアンモニア水10m1を加えて中和した後、
ジクロルメタン50dで2回抽出した。
Water mt: m After neutralization by adding 10 ml of ammonia water,
Extracted twice with 50 d of dichloromethane.

硫酸マグネシウムで脱水後、ジクロルメタンを減圧除去
すると粗4−アミノー4−シアノ酪酸x f /l/ 
t 53 gを得た。収率は9aOq6であった。
After dehydration with magnesium sulfate and removing dichloromethane under reduced pressure, crude 4-amino-4-cyanobutyric acid x f /l/
t 53 g was obtained. The yield was 9aOq6.

また、反応液のシクロヘキサン層を濃縮したところベン
ゾフェノンt 80 gを得た。回収率は99g6であ
った。
Furthermore, when the cyclohexane layer of the reaction solution was concentrated, 80 g of benzophenone t was obtained. The recovery rate was 99g6.

冥施例5 攪拌器を装着した1 00 mlのフラスコに、ベンゼ
ン50d、2規定水酸化ナトリウム20 mlおよび4
−シアノ−4−ジフェニルメチレンアミノ酪酸エチルエ
スデ/I’五2g(101モル)を仕込み、40℃で5
時間攪拌した。反応終了後、反応液を分液した。水層に
濃塩酸5露lを加え、1時間攪拌したのち、ベンゼン2
01B/で2回抽出した。
Example 5 In a 100 ml flask equipped with a stirrer, 50 d of benzene, 20 ml of 2N sodium hydroxide, and 4
-Cyano-4-diphenylmethyleneaminobutyric acid ethyl esde/I' was charged with 2 g (101 mol) and heated to 40°C.
Stir for hours. After the reaction was completed, the reaction solution was separated. Add 5 liters of concentrated hydrochloric acid to the aqueous layer, stir for 1 hour, and add 2 liters of benzene.
Extracted twice with 01B/.

水層を強力チオンイオン交換樹脂PK220(三菱化成
)のカフムに通液したのち、アンモニア水で溶出させ4
−アミノ−4−シアノ酪酸1、15 gを得た。収率は
8a2%であった。
The aqueous layer was passed through a cuff of strong ion exchange resin PK220 (Mitsubishi Kasei), and then eluted with aqueous ammonia.
1.15 g of -amino-4-cyanobutyric acid was obtained. The yield was 8a2%.

また、抽出したベンゼン層を濃縮してベンゾフェノン1
.75 gを得た。回収率は9!L1%であった。
In addition, the extracted benzene layer was concentrated and benzophenone 1
.. 75 g was obtained. Recovery rate is 9! L was 1%.

突施例4 攪拌器を装着した100 mlのフラスコに4−アミノ
−4−シアノ酪酸ブチルエステル1.84g((101
モル)および2規定水酸化カリウム10dを仕込み、4
0℃で3時間攪拌した。反応終了後、強力チオンイオン
交換樹脂PK220(三菱化成)に通液したのち、アン
モニア水で溶出すせ4−アミノ−4−シアノ酪酸t15
gを得た。収率は898優であった。得られた4−アミ
ノ−4−シアノ酪酸t15gをアセトン20w1および
1規定水酸化ナトリウム水溶液111に溶解し、室温中
で5時間攪拌した。反応液よりアセトンを減圧除去した
のち、強力チオン型イオン交換樹脂PK220 (三菱
化成)で同様に処理し、4−アミノ−4−1J +し・
Iぐ毛イル酪酸1.01 gを得た。収率は8115g
6であった。
Example 4 In a 100 ml flask equipped with a stirrer, 1.84 g of 4-amino-4-cyanobutyric acid butyl ester ((101
mol) and 10 d of 2N potassium hydroxide,
The mixture was stirred at 0°C for 3 hours. After the reaction is completed, the solution is passed through a strong ion exchange resin PK220 (Mitsubishi Kasei), and 4-amino-4-cyanobutyric acid t15 is eluted with aqueous ammonia.
I got g. The yield was 898. 15 g of the obtained 4-amino-4-cyanobutyric acid was dissolved in 20 w1 of acetone and 111 l of a 1N aqueous sodium hydroxide solution, and stirred at room temperature for 5 hours. After removing acetone from the reaction solution under reduced pressure, it was treated in the same manner with a strong ion-type ion exchange resin PK220 (Mitsubishi Kasei) to obtain 4-amino-4-1J +
1.01 g of Ilbutyric acid was obtained. Yield: 8115g
It was 6.

突施例5〜6  ′ アクリル酸エチルエステルのかわりにアクリル酸メチル
エステル、アクリル酸ブチルエステルを使用して、突施
例1と同様に反応させた。
Examples 5 and 6' Reactions were carried out in the same manner as in Example 1 except that methyl acrylate and butyl acrylate were used instead of ethyl acrylate.

結果は表に示した。The results are shown in the table.

Claims (1)

【特許請求の範囲】 1 式(1) で示されるN−(ジフェニルメチレン)グリシノニトリ
ルと一般式(2) %式%(2) (上記(2)式に於いて、Rは炭素原子数1〜4のアル
キル基を示す) で示されるアクリル酸エステルとを反応させることを特
徴とする一般式(3) (上記(3)式にルシ1て、Rは炭素原子数1〜4のア
ルキル基を示す) で示°される酪酸誘導体の製造法。 2 式(1) で示されるN−(ジフェニルメチレン)グリシノニトリ
ルと一般式(2) %式%(21 (上記(2)式に於いて、Rは炭素原子数1〜4のアル
キル基を示す) で示されるアクリル酸エステルとを反応させて一般式(
3) (上記(3)式に於いて、Rは炭素原子数1〜4のアル
キル基を示す) で示される酪酸誘導体を得、次いで該誘導体を塩基の存
在下で加水分解することを特徴とする式(4)で示され
る酪酸誘導体の製造法。 5 式(11 で示されるN−(ジフェニルメチレン)グリシノニトリ
ルと一般式(2) %式%(2) (上記(2)式に於いて、Rは炭素原子数1〜4のアル
キル基を示す) で示されるアクリル酸エステルとを反応させて一般1式
(3) (上記(3)式に於いて、Rは炭素原子数1〜4のアル
キル基を示す) で示される酪酸誘導体を得、次いで該誘導体を酸の存在
下で加水分解することを特徴とする一般式(5) (上記(5)式に於いて、Rは炭素原子数1〜4のアル
キル基を示す) で示される酪酸誘導体の製造法。 4 式(1) で示されるN−(ジフェニルメチレン)グリシノニトリ
ルと一般式(2) %式%() (上記(2)式に於、いて、Rは炭素原子数1〜4のア
ルキル基を示す) で示されるアクリル酸エステルとを反応させて一般式(
3) (上記(3)式に於いて、Rは炭素原子数1〜4のアル
キル基を示す) で示される酪酸誘導体を得、次いで該誘導体を酸または
塩基の存在下で加水分解し、5・最後に塩基または酸の
存在下で加水分解することを特徴とする式(6) で示される酪酸誘導体の製造法。
[Claims] 1 N-(diphenylmethylene)glycinonitrile represented by the formula (1) and the general formula (2) % formula % (2) (In the above formula (2), R is the number of carbon atoms General formula (3) (representing an alkyl group of 1 to 4 carbon atoms) A method for producing a butyric acid derivative represented by (indicating a group). 2 N-(diphenylmethylene)glycinonitrile represented by formula (1) and general formula (2) % formula % (21 (In formula (2) above, R represents an alkyl group having 1 to 4 carbon atoms. ) is reacted with an acrylic ester represented by the general formula (
3) (In the above formula (3), R represents an alkyl group having 1 to 4 carbon atoms) is obtained, and then the derivative is hydrolyzed in the presence of a base. A method for producing a butyric acid derivative represented by formula (4). 5 N-(diphenylmethylene)glycinonitrile represented by formula (11) and general formula (2) % formula % (2) (In formula (2) above, R represents an alkyl group having 1 to 4 carbon atoms. ) to obtain a butyric acid derivative represented by general formula 1 (3) (in the above formula (3), R represents an alkyl group having 1 to 4 carbon atoms). , and then hydrolyzing the derivative in the presence of an acid, represented by the general formula (5) (in the above formula (5), R represents an alkyl group having 1 to 4 carbon atoms) A method for producing a butyric acid derivative. 4 N-(diphenylmethylene)glycinonitrile represented by the formula (1) and the general formula (2) % formula % () (In the above formula (2), R is the number of carbon atoms (representing an alkyl group of 1 to 4) is reacted with an acrylic ester represented by the general formula (
3) Obtain a butyric acid derivative represented by (in the above formula (3), R represents an alkyl group having 1 to 4 carbon atoms), and then hydrolyze the derivative in the presence of an acid or a base to obtain 5 - A method for producing a butyric acid derivative represented by formula (6), which is finally hydrolyzed in the presence of a base or an acid.
JP9829281A 1981-06-26 1981-06-26 Preparation of butyric acid derivative Pending JPS58953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9829281A JPS58953A (en) 1981-06-26 1981-06-26 Preparation of butyric acid derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9829281A JPS58953A (en) 1981-06-26 1981-06-26 Preparation of butyric acid derivative

Publications (1)

Publication Number Publication Date
JPS58953A true JPS58953A (en) 1983-01-06

Family

ID=14215843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9829281A Pending JPS58953A (en) 1981-06-26 1981-06-26 Preparation of butyric acid derivative

Country Status (1)

Country Link
JP (1) JPS58953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267649A (en) * 1990-03-14 1991-11-28 Kubota Corp Air conditioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267649A (en) * 1990-03-14 1991-11-28 Kubota Corp Air conditioning system
JP2523203B2 (en) * 1990-03-14 1996-08-07 株式会社クボタ Air conditioning system

Similar Documents

Publication Publication Date Title
JP2959121B2 (en) Method for producing methacrylic acid
CA1077057A (en) Process for the preparation of acetic acid derivatives
US3733352A (en) Preparation of d-threo-1-p-methyl-sulfonylphenyl-2-dichloro-acet-amidopropane-1,3-diol
JPS6338035B2 (en)
JPS58953A (en) Preparation of butyric acid derivative
JPH04230241A (en) Process for synthesizing alpha-hydroxyester
US4334087A (en) Process for preparing α-ketocarboxylic acids
JPH0129786B2 (en)
JP3334206B2 (en) Method for producing 2,3,5,6-tetrafluoroaniline
JP3700876B2 (en) Process for producing N- (1,1-dimethyl-3-oxobutyl) acrylamide
JPS58954A (en) Preparation of propylamine derivative
JP3944876B2 (en) Method for producing citrate esters
JP3396097B2 (en) Method for producing 4-isopropylcyclohexanecarboxylic acid ester derivative
JP3254746B2 (en) Terminal acetylene compound and method for producing the same
JPS6334860B2 (en)
JPS58955A (en) Preparation of butyric acid derivative
JPH03275644A (en) Production of alpha-hydroxyisobutyric acid
JPS62164656A (en) Production of cyanoisophorone
JPH0558953A (en) Production of 2-hydroxyisobutyric acid ester
JPH0967297A (en) Production of bistrifluoromethylbenzoic acids
JPH0469362A (en) Preparation of acetoacetic acid l-menthyl ester
JP2720934B2 (en) Process for producing 3- (2-chloro-2- (4-chlorophenyl) -vinyl) -2,2-dimethylcyclopropanecarboxylic acid
JP3477915B2 (en) Method for producing 1,6-dioxyiminohexane
JPH07188140A (en) Production of phenoxybenzoylformic acid amide
JPS58150551A (en) N-(diphenylmethylene)serine and preparation thereof