JPS5889998A - Treatment of sludge - Google Patents

Treatment of sludge

Info

Publication number
JPS5889998A
JPS5889998A JP56189655A JP18965581A JPS5889998A JP S5889998 A JPS5889998 A JP S5889998A JP 56189655 A JP56189655 A JP 56189655A JP 18965581 A JP18965581 A JP 18965581A JP S5889998 A JPS5889998 A JP S5889998A
Authority
JP
Japan
Prior art keywords
gas
sludge
engine
weight
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56189655A
Other languages
Japanese (ja)
Inventor
Masuo Hasegawa
益男 長谷川
Minoru Morita
稔 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP56189655A priority Critical patent/JPS5889998A/en
Publication of JPS5889998A publication Critical patent/JPS5889998A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To recover electric energy effectively from sludge by scrubbing the combustible gas obtd. by thermal decomposition of the sludge dried to <=30wt% moisture to a refined gas and supplying the same as fuel to a gas engine. CONSTITUTION:The sewer sludge 1 concd. to 3-5wt% solids is dehydrated to 60wt% moisture with a primary dehydrator 2 and a secondary dehydrator 3. The dehydrated sludge 4 is dried in a dryer 6 to 30wt% moisture. The dried sludge 11 is supplied to a thermal decomposition furnace 12 of partial combustion type using air as an oxidizing agent. The gas 14 out from the furnace 12 is passed through a separator 15, by which coarse particles are separated to from a gas 17. Such gas is removed of harmful materials with a scrubbing and cooling device. After the combustible gas 25 cooled to about 40 deg.C is increased of pressure, the gas is cooled in a gas refining device 32, and the resultant refined gas 34 is supplied to a gas engine 35.

Description

【発明の詳細な説明】 本発明は、汚泥特に下水汚泥に好適な処理方法に関し、
さらに詳細には、汚泥を脱水、乾燥の後熱分解に処し、
生成する可燃ガスによってガスエンジンを駆動し発電す
ることにより、汚泥の保有エネルギーを電気エネルギー
として回収することができる汚泥の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a treatment method suitable for sludge, particularly sewage sludge,
More specifically, the sludge is dehydrated, dried, and then subjected to thermal decomposition.
The present invention relates to a method for treating sludge in which the energy retained in the sludge can be recovered as electrical energy by driving a gas engine to generate electricity using the generated combustible gas.

現在、汚泥特に下水汚泥は脱水処理の後そのまま埋立て
処分するか、衛生および減容化の観点から焼却を行った
後埋立てている。脱水汚泥を直接埋立て処分する場合に
は、汚泥中の有機物をできるだけ少なくするために、脱
水前の濃縮汚泥を嫌気性醗酵すなわち消化させてガス化
することも行わ扛ている。この場合に゛は、汚泥中の有
機物の約40重量%から50重量%がガス化し、このガ
スはメタンガスを50容量係から60容量多含有する消
化ガスとして取り出すことができるので、処理場内の燃
料として使用する場合もあるが、そのまま焼却廃棄さ扛
ることもある。最近では、この消化ガスを利用してガス
エンジンを駆動し、こ扛によって発電させ、一方エンジ
ンの排ガスのエネルギーを回収して消化槽の保温用熱源
として用いる消化ガス発電法が提案さnるようになって
きた。しかし、この方法では、減容化処理を行ってはい
るものの減容化の程度が十分でなく、また残った汚泥(
消化汚泥)中にば発生汚泥の半分以上の有機物が含まt
ているため衛生上も問題がある。このため、最近では、
汚泥を脱水処理した後、衛生的でありかつ減容化効果も
大きい焼却処理を行うことが多くなってきている。
Currently, sludge, particularly sewage sludge, is either directly disposed of in a landfill after dewatering treatment, or is incinerated and then landfilled from the viewpoint of hygiene and volume reduction. When dewatered sludge is directly disposed of in a landfill, the thickened sludge before dewatering is subjected to anaerobic fermentation, that is, digestion, and gasification in order to reduce the amount of organic matter in the sludge as much as possible. In this case, about 40% to 50% by weight of the organic matter in the sludge is gasified, and this gas can be extracted as a digestion gas containing 50 to 60 volumes of methane gas, so it can be used as a fuel in the treatment plant. In some cases, it is used as a waste, but in other cases, it is simply incinerated and disposed of. Recently, a digestion gas power generation method has been proposed that utilizes this digestion gas to drive a gas engine and generate electricity through the combustion process, while recovering the energy from the exhaust gas from the engine and using it as a heat source to keep the digestion tank warm. It has become. However, although this method performs volume reduction treatment, the degree of volume reduction is not sufficient, and the remaining sludge (
Digested sludge) contains more than half of the organic matter in the generated sludge.
This also poses a hygiene problem. For this reason, recently,
After dewatering sludge, incineration treatment is increasingly performed, which is both sanitary and highly effective in volume reduction.

現在の焼却方法は、生成した汚泥(生汚泥)、消化汚泥
、およびこnらが混合さrた混合汚泥のいすnの形態の
汚泥をも処理するものであるが、現在のところ脱水機に
よる汚泥の脱水は、最新式の高性能脱水機を用いて経済
的な脱水能力で脱水機を運転する場合で、汚泥中の水分
が75重量%から80重量%となる程度のものである。
Current incineration methods treat sludge in the form of sludge (raw sludge), digested sludge, and mixed sludge that is a mixture of these. The sludge is dehydrated using a state-of-the-art high-performance dehydrator that is operated at an economical dewatering capacity, and the water content in the sludge is about 75% to 80% by weight.

このため、脱水汚泥を焼却す、るのに自己の保有するエ
ネルギーだけでは十分でなく、A重油、灯油、都市ガス
などの燃料を補助燃料として用いている。−例を挙げ扛
ば、脱水汚泥を焼却するのに、水分が75重量%程度の
脱水汚泥の場合には、汚泥1トン当り灯油を35〜45
1使用している。さらに、焼却設備で使用している電力
は脱水汚泥1トン当り55〜5QKWである。このよう
に脱水汚泥を焼却処理するのに、多量のエネルギーを使
用しているのが現状であるO そこで、最近では、脱水汚泥の水分を自燃可能な程度(
約70重量%以下)まで下げることができるよう脱水機
の性能向上の研究が行わnている。脱水汚泥の水分が約
70重量%まで下げらnれば、第1図に示すようなシス
テムで汚泥を自燃させることができる。さらに汚泥の脱
水効率を上げ、脱水汚泥の水分を60重量%程度まで下
げることができれば、第2図に示すようなシステムによ
り、汚泥の持つエネルギーをスチームとして回収するこ
とができる。このように現在では、脱水汚泥の水分をで
きるだけ減少させ汚泥を自燃させることができるように
焼却システムを改善することが主流になってきている。
For this reason, the own energy alone is not sufficient to incinerate dehydrated sludge, and fuels such as A-heavy oil, kerosene, and city gas are used as auxiliary fuels. - For example, when incinerating dehydrated sludge, if the water content is about 75% by weight, 35 to 45% of kerosene is used per ton of sludge.
1 is used. Furthermore, the electricity used in the incineration facility is 55 to 5 QKW per ton of dehydrated sludge. At present, a large amount of energy is used to incinerate dehydrated sludge. Therefore, recently, the water content of dehydrated sludge has been reduced to a level that can be combusted (
Research is being conducted to improve the performance of dehydrators so that they can reduce the amount of water to about 70% by weight or less. If the water content of dewatered sludge is reduced to about 70% by weight, the sludge can be self-combusted using a system such as that shown in FIG. Furthermore, if the dewatering efficiency of sludge can be increased and the water content of dehydrated sludge can be lowered to about 60% by weight, the energy contained in sludge can be recovered as steam using a system as shown in Figure 2. As described above, it has now become mainstream to improve incineration systems so that the water content of dehydrated sludge can be reduced as much as possible and the sludge can self-combust.

しかし、このような方法では、汚泥の持っているエネル
ギーは、スチームの形でしか回収することができない。
However, with this method, the energy contained in the sludge can only be recovered in the form of steam.

一般に焼却設備の規模は比較的小さいため、スチームの
発生量も少ない。したがって、発生したスチームを用い
て発電を行うとしても、スチームタービンによる発電方
式は発電効率が悪く、設備費が割高になる欠点がある。
Generally, the scale of incineration equipment is relatively small, so the amount of steam generated is small. Therefore, even if the generated steam is used to generate electricity, the power generation method using a steam turbine has the drawbacks of poor power generation efficiency and relatively high equipment costs.

また、焼却設備の立地条件によっては、回収したスチー
ムを使用することができない所も多い。
Furthermore, depending on the location of the incineration facility, there are many places where it is not possible to use the recovered steam.

そこで、本発明の目的は、汚泥の持っているエネルギー
を汚泥処理設備の立地条件とは関係なく、電気エネルギ
ーの形で、有効に回収し利用することができる汚泥の処
理方法を提供することKある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a sludge treatment method that can effectively recover and utilize the energy possessed by sludge in the form of electrical energy, regardless of the location conditions of sludge treatment equipment. be.

本発明の目的は、汚泥を系内で完全に熱バランスがとn
るまで機械的に脱水し、ガスエンジンの駆動に必要な発
熱量を持った可燃ガスをできるだけ多量に回収するため
に乾燥処理し、熱分解に処して可燃ガスを回収し、この
ガスを精製してガスエンジンに供給し、ガスエンジンを
駆動して発電することにより達成できる。
The purpose of the present invention is to keep the sludge completely heat balanced within the system.
The combustible gas is mechanically dehydrated until it reaches its peak, then dried to recover as much combustible gas as possible, which has the calorific value necessary to drive a gas engine, and then subjected to pyrolysis to recover the combustible gas, which is then purified. This can be achieved by supplying the gas to a gas engine and driving the gas engine to generate electricity.

すなわち、本発明は、汚泥を機械的に脱水し、汚泥の水
分が30重量%以下になるまで乾燥し、乾燥さnた汚泥
を熱分解してガス中に含有される有害ガス、ダストおよ
び重質炭化水素類を除去して精製ガスとし、精製ガスを
燃料としてガスエンジンて供給することによりガスエン
ジンを駆動し、こnによって発電することを特徴とする
ものである。
That is, the present invention mechanically dehydrates sludge, dries it until the water content of the sludge becomes 30% by weight or less, and thermally decomposes the dried sludge to remove harmful gases, dust, and heavy gases contained in the gas. This system is characterized in that refined gas is produced by removing high quality hydrocarbons, and the purified gas is supplied as fuel to a gas engine to drive the gas engine, thereby generating electricity.

さらに本発明は、汚泥を嫌気性醗酵処理することにより
消化汚泥と消化ガスを生成し、消化汚泥を機械的に脱水
し、消化汚泥の水分が25重量%以下になるまで乾燥し
、乾燥さ扛た汚泥を熱分解して可燃性ガスを発生させ、
発生したガスを洗浄してガス中に含有される有害ガス、
ダストおよび重質炭化水素類を除去し゛(精製ガスとし
、この精製ガスと上記嫌気性醗酵処理において発生した
消化ガスを混合し、この混合ガスを燃料としてガスエン
ジンに供給し、エンジンを駆動することによって発電す
ることを特徴とするものである。
Furthermore, the present invention generates digested sludge and digested gas by subjecting sludge to anaerobic fermentation treatment, mechanically dewaters the digested sludge, dries the digested sludge until the water content becomes 25% by weight or less, and then dries the digested sludge. The sludge is thermally decomposed to generate flammable gas.
Harmful gases contained in the gas by cleaning the generated gas,
After removing dust and heavy hydrocarbons, the purified gas is mixed with the digestion gas generated in the anaerobic fermentation process, and this mixed gas is supplied as fuel to a gas engine to drive the engine. It is characterized by the fact that it generates electricity by

次に、本発明を図示の実施例に基いて詳細に説明する。Next, the present invention will be explained in detail based on illustrated embodiments.

第3図は本発明の一実施例を示す概要図である。この実
施例は、基本的には、汚泥の機械的な脱水処理、乾燥処
理、部分燃焼式熱分解炉による熱分解処理、生成可燃ガ
スの精製処理、ガスエンジンの駆動および発電、および
ガスエンジン排ガスからのスチーム回収の各工程から構
成さ扛る〇 各工程につき、さらに詳細に記載すると、濃縮槽で固形
物が3〜5重量%程度に濃縮さ扛た汚泥たとえば下水汚
泥1は、−次脱水機2で脱水さ扛、さらに二次脱水機3
で水分が約60重量優になるまで脱水さ扛る。−次脱水
機は、できるだけ動力が少なくかつ脱水効率のよい脱水
機、たとえば、ベルトプレス式脱水機または加圧圧搾式
脱水機が好ましい。−次脱水さ扛る汚泥に使用するr過
動剤としては、高分子凝集剤が好ましい。高分子凝集剤
を使用する場合には、原汚泥中の可燃分と灰分の比率は
ほとんど変らないが、無機系凝集剤を使用する場合には
、原汚泥量に対し添加量が30重量%から50重量%と
多量であるため、脱水さ扛た汚泥中の可燃分と灰分の比
率が大巾に変わる。このため無機系凝集剤の場合には、
脱水さnた汚泥の含有水分率は低下しても、含水分量は
多く、後記するように熱分解で重要な可燃分と水分の比
率が大巾に変わることになるので、無機系凝集剤の使用
は好ましくない。ところで下水処理で生成する汚泥には
2種類ある。すなわち、初沈槽で沈澱した汚泥と好気性
菌で処理した後終沈槽で沈澱した汚泥との混合汚泥、す
なわち、いわゆる生汚泥と、生汚泥をさらに嫌気性菌で
処理した汚泥、すなわち、いわゆる消化汚泥とである。
FIG. 3 is a schematic diagram showing an embodiment of the present invention. This embodiment basically covers mechanical dewatering of sludge, drying, thermal decomposition using a partial combustion pyrolysis furnace, purification of generated combustible gas, gas engine driving and power generation, and gas engine exhaust gas. To describe each step in more detail, the sludge, for example, sewage sludge 1, is concentrated to about 3 to 5% by weight of solids in a thickening tank. Dehydrated in machine 2, then secondary dehydrator 3
Dehydrate until the water content is about 60% by weight. - The secondary dehydrator is preferably a dehydrator that uses as little power as possible and has high dehydration efficiency, such as a belt press type dehydrator or a pressurization type dehydrator. - A polymer flocculant is preferable as the supermoving agent used for the sludge to be subjected to the subsequent dewatering. When using a polymer flocculant, the ratio of combustible content and ash in the raw sludge remains almost the same, but when using an inorganic flocculant, the amount added to the raw sludge starts from 30% by weight. Since the amount is as large as 50% by weight, the ratio of combustible content to ash content in the dehydrated sludge changes drastically. Therefore, in the case of inorganic flocculants,
Even if the water content of dehydrated sludge decreases, the water content is high, and as will be explained later, the ratio of combustible matter to water, which is important in thermal decomposition, will change drastically, so the use of inorganic flocculants is Use is not recommended. By the way, there are two types of sludge produced during sewage treatment. That is, mixed sludge of the sludge settled in the initial settling tank and sludge treated with aerobic bacteria and then settled in the final settling tank, that is, so-called raw sludge, and sludge obtained by further treating the raw sludge with anaerobic bacteria, that is, This is what is called digested sludge.

生汚泥には、一般に固形物中の可燃分が約60重量%あ
り、灰分は約40重量%であるが、消化汚泥では、固形
物中の可燃分は40〜50重量係であり、灰分は50〜
60重量係である。
Raw sludge generally has a combustible content of about 60% by weight in the solid matter, and an ash content of about 40% by weight, but in digested sludge, the combustible content in the solid matter is 40 to 50% by weight, and the ash content is about 40% by weight. 50~
60 weight class.

−次脱水機で汚泥の水分は概ね75重量%程度まで脱水
さ扛、この後汚泥は約100%G程度の圧力をかけた圧
搾式の脱水機たとえばスクリュ一式脱水機により、水分
が60重量%程度になるまでさらに゛脱水さnる〇 また濃縮汚泥に薬液例えば過酸化水素と硫酸第一鉄に硫
酸を添加し、スラリーのPHを3〜4にした後、−次脱
水機で脱水すると、水分約60重量%の脱水汚泥が得ら
nる。この脱水汚泥に中和用の消石灰(Ca(OH)z
 )を添加し、乾燥する。このような方法で脱水汚泥の
水分を約60重量%以下にしてもよい。
-Next, the water content of the sludge is dehydrated to about 75% by weight in a dehydrator, and then the sludge is dehydrated to about 60% by weight using a compression type dehydrator, such as a screw-type dehydrator, which applies a pressure of about 100% G. Further dehydration is performed until the slurry reaches a certain level.Additionally, chemical solutions such as hydrogen peroxide and sulfuric acid to ferrous sulfate are added to the thickened sludge to bring the pH of the slurry to 3 to 4, and then dewatered in a secondary dehydrator. Dewatered sludge with a water content of about 60% by weight is obtained. Slaked lime (Ca(OH)z) for neutralization is added to this dehydrated sludge.
) and dry. The water content of the dewatered sludge may be reduced to about 60% by weight or less by such a method.

二次脱水さ扛た汚泥4は、乾燥機6により、水分が約3
0重量%以下になるまで乾燥さ扛る。
The sludge 4 that has been subjected to secondary dewatering is dried by a dryer 6 to reduce the water content to about 3
Dry until it becomes 0% by weight or less.

乾燥さnた汚泥11の水分含有量は、後述するように、
生成する可燃ガスの発熱量および/または生成量に関係
し、その上限値は汚泥中の可燃分と灰分の比率によって
変わる。汚泥の熱分解を部分燃焼式熱分解法により行う
場合には、汚泥中の可燃分と水分の比率によって生成す
る可燃ガスの発熱量と生成量が変動する。ガスエンジン
を駆動するために必要な燃料ガスの最低発熱量は約75
014/mであることがら、汚泥の固形分中の可燃分が
約60重量%の生汚泥の場合には乾燥汚泥の水分の上限
値は30重量%である。一方、間接、加熱式熱分解方式
、たとえば、特許第871982号(特公昭51−35
467号)に記載の2塔流動層炉式熱分解法の場合には
、炉に供、給さnる汚泥中の水分によっては生成する可
燃性ガスの発熱量に変動はないが、エンジンに供給でき
るガス量が大巾に変わる。エンジンに供給できるガス量
を変動させないためには、分解炉に供給さnる汚泥の水
分は、汚泥の固形分中の可燃分が約60重量−のとき、
すなわち生汚泥の場合には、約30重量%である。消化
汚泥の場合には、汚泥の固形分中の可燃分が約40〜5
0重量%であるため、部分燃焼式熱分解法および間接加
熱式熱分解法のいす扛においても、乾燥汚泥の水分の上
限は25重量%である0 本実施例においては、乾燥機として、後述するスチーム
41を熱源とする間接加熱式乾燥機6が用いらnるが、
後に詳述する、熱風により直接乾燥を行う直接加熱式乾
燥機44(第4回)を用いてもよい。直接加熱式乾燥機
44では乾燥排ガスが多くしかもこのガスの脱臭処理に
多量のエネルギーを必要とする難点があり、一方、間接
加熱式乾燥機6では蒸発した水ペーパを機外へ排出する
キャリアガスも少量の空気5ですむので、こ扛らの点に
おいては、間接加熱式乾燥機6の方が好ましい。乾燥機
6から排出さnるガス7の温度は75〜80℃で水蒸気
が飽和しているので、スクラバー8を用いてガスを洗浄
し、同時に、冷却してガス温度を下げる。このガスは臭
気があり直接大気へ放出することができないため、脱臭
設備9で脱臭処理した後、後述するガスエンジン35の
熱回収後の排ガス39と共に大気へ放出する。乾燥機排
ガス用スクラバー8から出る廃水10は下水の原水へも
どさrる。
The water content of the dried sludge 11 is as described below.
It is related to the calorific value and/or amount of combustible gas produced, and its upper limit varies depending on the ratio of combustible content to ash content in the sludge. When thermal decomposition of sludge is performed by a partial combustion thermal decomposition method, the calorific value and amount of generated combustible gas vary depending on the ratio of combustible content and water in the sludge. The minimum calorific value of fuel gas required to drive a gas engine is approximately 75
014/m, the upper limit of the water content of dried sludge is 30% by weight in the case of raw sludge in which the combustible content in the solid content of the sludge is about 60% by weight. On the other hand, indirect and thermal pyrolysis methods, for example, Patent No. 871982 (Japanese Patent Publication No. 51-35
In the case of the two-column fluidized bed furnace pyrolysis method described in No. 467), the calorific value of the combustible gas produced does not vary depending on the moisture in the sludge supplied to the furnace, but the engine The amount of gas that can be supplied changes dramatically. In order to prevent fluctuations in the amount of gas that can be supplied to the engine, the water content of the sludge supplied to the cracking furnace must be adjusted to 60% by weight when the combustible content in the solid content of the sludge is approximately 60% by weight.
That is, in the case of raw sludge, it is about 30% by weight. In the case of digested sludge, the combustible content in the solid content of the sludge is approximately 40 to 5.
Therefore, the upper limit of the water content of dried sludge is 25% by weight even in the partial combustion pyrolysis method and the indirect heating pyrolysis method. Although an indirect heating dryer 6 using steam 41 as a heat source is used,
A direct heating type dryer 44 (fourth time) that performs direct drying with hot air, which will be described in detail later, may also be used. The direct heating type dryer 44 has the disadvantage of producing a large amount of dry exhaust gas and requiring a large amount of energy to deodorize this gas.On the other hand, the indirect heating type dryer 6 uses a carrier gas to discharge the evaporated water paper to the outside of the machine. In these respects, the indirect heating type dryer 6 is preferable because it requires only a small amount of air 5. Since the temperature of the gas 7 discharged from the dryer 6 is 75 to 80°C and is saturated with water vapor, the gas is cleaned using the scrubber 8, and at the same time, it is cooled to lower the gas temperature. Since this gas has an odor and cannot be directly released into the atmosphere, it is deodorized by the deodorizing equipment 9 and then released into the atmosphere together with exhaust gas 39 after heat recovery from the gas engine 35, which will be described later. Wastewater 10 discharged from the dryer exhaust gas scrubber 8 is returned to raw sewage water.

乾燥さnた汚泥11は、空気を酸化剤とした部分燃焼方
式の熱分解炉12に供給さnる。熱分解炉12の形式は
固定床式でも流動床式でもよいが、固定床式の場合には
、炉内のガス流に対する抵抗を少なくするための、熱分
解する汚泥をある程度の大きさ、たとえば1儂以上の大
きさ、好ましくは5crrL程度に造粒または成型する
必要がある。このため、熱分解炉の好ましい形式として
は、ある程度多量にしかも連続的に処理でき、気体と固
体の混合接触のよい流動床炉がよい。炉内圧力は、外部
からの空気の流入を防ぐために加圧状態とする。分解炉
12への乾燥汚泥の供給は、分解生成ガスの逆流を防ぐ
ために、ガスシール用パルプをつけた供給装置(図示せ
ず)により行う。乾燥汚泥11は供給装置により定量的
に熱分解炉12内に供給さn1熱分解炉12内で供給さ
扛た汚泥の水分の蒸発、昇温および熱分解が行わ扛る。
The dried sludge 11 is supplied to a partial combustion type pyrolysis furnace 12 using air as an oxidizing agent. The type of pyrolysis furnace 12 may be either a fixed bed type or a fluidized bed type, but in the case of a fixed bed type, the sludge to be pyrolyzed is heated to a certain size, e.g., in order to reduce the resistance to the gas flow in the furnace. It is necessary to granulate or mold it to a size of 1 ml or more, preferably about 5 crrL. For this reason, a preferred type of pyrolysis furnace is a fluidized bed furnace that can process large amounts of pyrolysis continuously and has good mixing contact between gas and solid. The pressure inside the furnace is increased to prevent air from entering from outside. The dry sludge is supplied to the decomposition furnace 12 by a supply device (not shown) equipped with a gas sealing pulp in order to prevent backflow of decomposed gas. The dried sludge 11 is quantitatively supplied into the pyrolysis furnace 12 by a supply device, and the water in the supplied sludge is evaporated, the temperature is increased, and the sludge is pyrolyzed in the n1 pyrolysis furnace 12.

炉12内の温度は供給する空気13の量によって調節さ
nる。
The temperature within the furnace 12 is regulated by the amount of air 13 supplied.

熱分解炉12から出るガス14は比較的粗大な流動砂粒
子やチャーを含んでいるので、こ扛らの粗大粒子をガス
から分離するためにサイクロンセパレータ15を通す。
Since the gas 14 coming out of the pyrolysis furnace 12 contains relatively coarse fluidized sand particles and char, it is passed through a cyclone separator 15 to separate these coarse particles from the gas.

ガスから分離さ扛た粗大粒子16は熱分解炉12へもと
さnる。粗大粒子16が除去さ扛たガス17は微粒の灰
、アンモニア、極微量の塩化水素、硫化水素、シアン化
水素などの有害ガス、重質炭化水素類(タール)を含ん
でいるので、ガス17の冷却(約40℃)を兼ねて、ガ
ス17゛中に含ま扛ている上述のような有害物をガス洗
浄・冷却装置により処理、除去する。ガス洗浄・冷却装
置は、ガス洗浄塔18と、洗浄液循環ポンプ19と循環
液冷却器20とから構成さ扛る。洗浄液21゜は凝縮液
を循環して再使用するが、ガスの性状により必要に応じ
てアルカリあるいは酸24を循環路中に送入する。凝縮
液は温度が高いため、循環系の途中に冷却器20を設置
し冷却水22を通すことにより、50〜80℃の温水2
3を回収することもできる。
The coarse particles 16 separated from the gas are returned to the pyrolysis furnace 12. The gas 17 from which the coarse particles 16 have been removed contains fine ash, ammonia, trace amounts of harmful gases such as hydrogen chloride, hydrogen sulfide, and hydrogen cyanide, and heavy hydrocarbons (tar), so the gas 17 must be cooled. (approximately 40° C.), and the above-mentioned harmful substances contained in the gas 17 are treated and removed by a gas cleaning/cooling device. The gas cleaning/cooling device includes a gas cleaning tower 18, a cleaning liquid circulation pump 19, and a circulating liquid cooler 20. The cleaning liquid 21° is reused by circulating the condensate, but an alkali or acid 24 is sent into the circulation path as required depending on the properties of the gas. Since the temperature of the condensate is high, by installing a cooler 20 in the middle of the circulation system and passing cooling water 22, hot water 2 at a temperature of 50 to 80°C can be generated.
3 can also be collected.

洗浄さ扛約40℃に冷却された可燃ガス25は、水素、
−酸化炭素、メタンなどの炭化水素類の可燃ガスを約1
3容量チ含んだ窒素と炭酸ガスを主成分とするもので、
発熱量は約750kcal/Nrrt以上である。この
可燃ガス25は、生成量と組成の瞬間的な変動を吸収す
るためのガスホルダー26に一時貯留さnる0ガスの洗
浄。
The combustible gas 25 that has been cleaned and cooled to about 40°C contains hydrogen,
-About 1 liter of combustible gas such as carbon oxide and hydrocarbons such as methane
The main components are nitrogen and carbon dioxide containing 3 volumes.
The calorific value is about 750 kcal/Nrrt or more. This combustible gas 25 is temporarily stored in a gas holder 26 to absorb instantaneous fluctuations in production amount and composition.

冷却装置から排出さ扛る廃水29は下水の原水にもどさ
扛る。一方、熱分解炉12内に蓄積した灰分は、炉底か
ら灰抜き出し装置27を介して抜き出さ扛投棄さnる2
8゜ ガスホルダー26に貯留さnfcガスは、ガスエンジン
に過給器がついている場合−は昇圧機30で0.6〜4
1Gに昇圧し、過給機のついていない場合には水柱数百
朋に加圧する。昇圧されたガス31はガス精製装置32
で冷却し、凝縮したドレーンをガスから分離し、さらに
ミストおよびダストを0.05 gr/Nm″以下の濃
度に除去し、精製ガス34としてガスエンジン35へ供
給する。ガスから除去されたミストおよびダスト33は
熱分解炉12へもどす。
The waste water 29 discharged from the cooling device is returned to the raw sewage water. On the other hand, the ash accumulated in the pyrolysis furnace 12 is extracted from the bottom of the furnace through an ash extraction device 27 and dumped.
If the gas engine is equipped with a supercharger, the NFC gas stored in the 8° gas holder 26 is 0.6 to 4 in the booster 30.
The pressure is increased to 1G, and if a supercharger is not installed, the pressure is increased to several hundred columns of water. The pressurized gas 31 is sent to a gas purification device 32
The condensed drain is separated from the gas, and the mist and dust are removed to a concentration of 0.05 gr/Nm'' or less, and the purified gas 34 is supplied to the gas engine 35. The mist and dust removed from the gas are The dust 33 is returned to the pyrolysis furnace 12.

ガスエンジン35には発電機36が連結さ【ており、汚
泥の保有するエネルギーを電気エネルギー37として回
収する。燃焼用空気38は過給器を通してエンジンのシ
リンダーに供給さnる0エンジン35の形式はデュアル
ツユエル方式の低発熱ガス燃料用のものが好適である。
A generator 36 is connected to the gas engine 35 and recovers the energy possessed by the sludge as electrical energy 37. Combustion air 38 is supplied to the cylinders of the engine through a supercharger.The type of engine 35 is preferably a dual fuel type engine for low heat generation gas fuel.

エンジンの点火方式としては、電気点火方式でもよいが
、ガスの発熱量が低いこと、ガスの組成が変動すること
すなわち燃料ガスの発熱量が変動する可能性があるため
電気点火方式では安定した点火ができない場合があるの
で電気点火方式よりデュアルツユエル点火方式の方が好
ましい。デュアルツユエル点火方式では、燃料のガス量
や発熱量の変動に対して安定した点火ができ、こnらの
変動に対して一定量9発電景が確保できる等の利点があ
る。ガスエンジンの熱的発電効率はエンジンの燃料入熱
に対して約30チである。
An electric ignition method may be used as an ignition method for the engine, but the electric ignition method provides stable ignition because the calorific value of the gas is low and the composition of the gas fluctuates, which means that the calorific value of the fuel gas may fluctuate. The dual twin ignition system is preferable to the electric ignition system because it may not be possible. The dual fuel ignition system has the advantage of being able to perform stable ignition despite fluctuations in fuel gas amount and calorific value, and ensuring a constant amount of power generation despite these fluctuations. The thermal power generation efficiency of a gas engine is approximately 30 degrees relative to the engine's fuel heat input.

ガスエンジンの排ガス39の温度は400〜500℃あ
るので、これを前述の脱水汚泥の乾燥熱源として使用す
る0第3図に示す実施例のように、間接加熱式乾燥機6
を使用する場合には、排ガス39の保鶴するエネルギー
を熱回収ボイラー40によシスチーム41として回収し
、このスチーム41により間接的に汚泥の乾燥を行う0
ガスエンジンからの排ガス39中の塩化水素、硫黄酸化
物等の凝縮性ガスの濃度は一般のボイラー排ガスと比較
して低く、ボイラー排ガス42の温度は、排ガスが白煙
化せず煙道の腐食を生じさせない最低の温度である15
0℃程度まで下げることができるoしたがって、より多
くの熱回収を行うことができる。ボイラー40を出た排
ガス42は、脱臭処理さnた乾燥機排ガス43と共に大
気中に排出さ扛る0なお、熱回収ボイラー40において
発生するスチーム41は間接加熱式乾燥機で使用さ扛る
ものであるので、乾燥機の伝熱面への汚泥の付着を防ぐ
ために圧力は7に!gG程度の飽和温度のものが必要で
ある。
Since the exhaust gas 39 of the gas engine has a temperature of 400 to 500°C, this is used as a heat source for drying the dehydrated sludge.As shown in the embodiment shown in FIG.
When using a system, the energy of the exhaust gas 39 is recovered as system steam 41 by a heat recovery boiler 40, and this steam 41 indirectly dries the sludge.
The concentration of condensable gases such as hydrogen chloride and sulfur oxides in the exhaust gas 39 from the gas engine is lower than that of general boiler exhaust gas, and the temperature of the boiler exhaust gas 42 is such that the exhaust gas does not turn into white smoke and corrodes the flue. 15, which is the lowest temperature that does not cause
The temperature can be lowered to about 0°C. Therefore, more heat can be recovered. The exhaust gas 42 that exits the boiler 40 is discharged into the atmosphere together with the deodorized dryer exhaust gas 43. Note that the steam 41 generated in the heat recovery boiler 40 is used in an indirect heating dryer. Therefore, the pressure is set to 7 to prevent sludge from adhering to the heat transfer surface of the dryer! It is necessary to have a saturation temperature of approximately gG.

ガスエンジン35からの排ガス39をスチーム41とし
て回収し、こnを汚泥乾燥の熱源として使用する構成と
するかわりに、第4図に示す通り、直接加熱式乾燥機4
4を用いて、400〜500℃のガスエンジン排ガス3
9をそのまま乾燥機44に送入することもできる。すな
わち、水分約60重量%まで脱水された汚泥は、乾燥機
44に供給され、゛ここでエンジン排ガス39と直接接
触して水分が蒸発さnて自ら乾燥する。乾燥さ扛た汚泥
の一部48は乾燥機から直接排出さ扛る。残りの比較的
細かい乾燥汚泥は排ガス45と共に飛ぶので、サイクロ
ンセパレータ46で補集され47、乾燥機44から直接
排出さnる上記乾燥汚泥48と共に乾燥汚泥11として
熱分解炉へ送ら扛る。乾燥機排ガス45はサイクロンセ
パレータ46で比較的粗大な粒子を除去した後、さらに
ガス中に含有さ扛る微粒子の除去と脱臭を行って大気に
放出する49゜ 乾燥機排ガスの他の処理方法としては、第5図に示すよ
うに、直接加熱式乾燥機排ガスおよび間接加熱式乾燥機
排ガスのいす扛からも排熱を温水として回収する方法が
ある。さらに詳細に述べれば、間接加熱式乾燥機の排ガ
ス7あるいは直接加熱式乾燥機の排ガス49をスクラバ
ー8fC,とえばスプレ一式洗浄・冷却塔に送入する。
Instead of recovering the exhaust gas 39 from the gas engine 35 as steam 41 and using this as a heat source for drying sludge, a direct heating dryer 4 is used as shown in FIG.
Gas engine exhaust gas at 400-500℃ using
9 can also be sent to the dryer 44 as is. That is, the sludge that has been dehydrated to about 60% water content is supplied to the dryer 44, where it comes into direct contact with the engine exhaust gas 39, evaporates the water content, and dries itself. A portion 48 of the dried sludge is directly discharged from the dryer. Since the remaining relatively fine dried sludge flies away together with the exhaust gas 45, it is collected 47 by a cyclone separator 46 and sent to the pyrolysis furnace as dried sludge 11 together with the dried sludge 48 directly discharged from the dryer 44. The dryer exhaust gas 45 is treated with a cyclone separator 46 to remove relatively coarse particles, and then the fine particles contained in the gas are removed and deodorized before being released into the atmosphere.As another method for treating the 49° dryer exhaust gas, As shown in FIG. 5, there is a method of recovering exhaust heat as hot water from the exhaust gas of a direct heating type dryer and an indirect heating type dryer exhaust gas. More specifically, the exhaust gas 7 of the indirect heating dryer or the exhaust gas 49 of the direct heating dryer is fed into a scrubber 8fC, for example, a spray cleaning/cooling tower.

凝縮液または水を洗浄液52として使用する。排ガスの
性状により必要に応じ、水、酸またはアルカリ53を添
加する。洗浄液52は循環ポンプ50により循環する。
Condensate or water is used as the cleaning liquid 52. Water, acid, or alkali 53 is added as necessary depending on the properties of the exhaust gas. The cleaning liquid 52 is circulated by a circulation pump 50.

循環系内に冷却器51を設けて冷却水54を通すことに
より、排ガス7または49のエネルギーを温水5.5と
して回収する。洗浄・冷却さnた排ガス56は脱臭・再
加熱等の処理を受けた後大気へ放出さ扛、洗゛浄廃水1
0は下水原水へもどさnる0間接加熱式乾燥機排ガスの
場合には、排ガス温度が80〜95℃であるので回収゛
できる温水O温度は約50℃であるが、直接加熱式乾燥
機排ガスの場合には、排ガスの温度が150〜250℃
あるため、約80℃と50℃の2種類の温水を回収する
ことができる。
By providing a cooler 51 in the circulation system and passing cooling water 54, the energy of the exhaust gas 7 or 49 is recovered as hot water 5.5. The cleaned and cooled exhaust gas 56 is deodorized, reheated, etc. and then released into the atmosphere.
In the case of indirect heating type dryer exhaust gas, the exhaust gas temperature is 80 to 95°C, so the temperature of hot water that can be recovered is approximately 50°C. In this case, the exhaust gas temperature is 150 to 250℃
Therefore, two types of hot water, approximately 80°C and 50°C, can be recovered.

上記実施例は被処理物として生汚泥を使用する場合のも
のであるが、生汚泥を嫌気性醗酵処理して生成した消化
汚泥を熱分解処理し、可燃性ガスを得てガスエンジンを
駆動し、発電を行う場合の実施例を第6図に基いて説明
する。
The above example uses raw sludge as the material to be treated, but the digested sludge produced by anaerobic fermentation of raw sludge is thermally decomposed to obtain flammable gas to drive a gas engine. , an embodiment in which power generation is performed will be described based on FIG. 6.

消化汚泥を用いて、上記実施例と同様の方法で熱分解を
行い可燃性ガスを発生させ、このガスを洗浄・冷却後ガ
スホルダー26に貯留させる。ガスホルダー26に貯留
さ扛たガスは、ガスホルダー出口で、生汚泥の嫌気性醗
酵処理工程において消化槽で発生した消化ガス57と混
合さn、混合ガス58として昇圧機30に供給さnる。
Using the digested sludge, thermal decomposition is performed in the same manner as in the above embodiment to generate flammable gas, and this gas is stored in the gas holder 26 after cleaning and cooling. The gas stored in the gas holder 26 is mixed with the digestion gas 57 generated in the digestion tank during the anaerobic fermentation process of raw sludge at the gas holder outlet, and is supplied to the booster 30 as a mixed gas 58. .

昇圧さ扛たガス31はガス精製装置32において冷却さ
n1凝縮したドレーン33から分離され、さらにミスト
およびダストを0.05 gr/’Nm以下の濃度まで
除去して、精製ガス34としてガスエンジン35へ供給
さnる。ガスエンジン35により発電機36を駆動し、
電気エネルギー37を回収する。ガスエンジン35の排
ガス39は熱回収ボイラー40へ送入さn1スチーム4
1としてそのエネルギーを回収し、約150℃の温度で
排ガス42として排出さnる。発生したスチーム41は
、一部は脱水汚泥の乾燥用熱源スチーム59として利用
さ扛、残りのスチーム60は消化槽の加熱用熱源スチー
ムとして利用される。
The pressurized gas 31 is cooled and separated from the condensed drain 33 in a gas purification device 32, and further, mist and dust are removed to a concentration of 0.05 gr/'Nm or less, and purified gas 34 is sent to a gas engine 35. supplied to. A generator 36 is driven by a gas engine 35,
Electrical energy 37 is recovered. Exhaust gas 39 from the gas engine 35 is sent to a heat recovery boiler 40 and is converted into steam 4.
The energy is recovered as 1 and exhausted as exhaust gas 42 at a temperature of about 150°C. Part of the generated steam 41 is used as heat source steam 59 for drying dehydrated sludge, and the remaining steam 60 is used as heat source steam for heating the digester.

次に、熱分解方式として、特許第871982号(4!
公昭51−35467号)において開示さnているよう
な2つの流動層炉を用いた間接加熱式熱分解方法を採用
する実施例を第7図に示す。
Next, as a thermal decomposition method, Patent No. 871982 (4!
FIG. 7 shows an embodiment employing an indirect heating type pyrolysis method using two fluidized bed furnaces as disclosed in Japanese Publication No. 51-35467).

第3図に示す実施例と同様の方法で得た乾燥汚泥11を
、ガスシール機構を備えた供給装置61を介して定量的
に熱分解炉62に供給する。
Dried sludge 11 obtained in the same manner as in the embodiment shown in FIG. 3 is quantitatively supplied to a pyrolysis furnace 62 via a supply device 61 equipped with a gas seal mechanism.

熱分解炉62には燃焼炉63から加熱さ扛た砂が循環し
て送給さnるようになっており、汚泥は砂から分解熱を
得て熱分解されガスとチャーになる。生成さnたチャー
は温度の下った砂と共に燃焼炉へ循環さ扛、空気7!5
により燃焼さnて砂に熱を与える。分解生成さflfc
チャーの燃焼熱のみによって分解熱を補給できるように
するためには、分解炉に供給する乾燥汚泥の水分は、上
記したように、生汚泥の場合には約30重量%、消化汚
泥の場合には約25重量%以下でなけしばな・らない6
分解生成した可燃性ガス64はガスに同伴する粗大粒子
を分離するためサイクロンセパレータ65に通さnる。
Heated sand from a combustion furnace 63 is circulated and fed to the pyrolysis furnace 62, and the sludge obtains decomposition heat from the sand and is thermally decomposed into gas and char. The generated char is circulated to the combustion furnace together with the sand whose temperature has decreased, and the air is pumped 7!5
It burns and gives heat to the sand. decomposition produced flfc
In order to be able to replenish decomposition heat only by the combustion heat of char, the water content of the dried sludge supplied to the cracking furnace must be approximately 30% by weight in the case of raw sludge and approximately 30% by weight in the case of digested sludge, as described above. Must be approximately 25% by weight or less6
The combustible gas 64 produced by decomposition is passed through a cyclone separator 65 to separate coarse particles accompanying the gas.

分離さ【た粒子66は熱分解炉62にもどし、サイクロ
ンセパレータ65を出たガス68はスチーム過熱器67
で流動用スチーム77を過熱し、約600℃の温度でガ
ス洗浄・冷却塔18に入り凝縮液により洗浄冷却さ扛る
。洗浄液21は循環ポンプ19で循環さ扛、循環系に設
けた冷却器20によりガスの潜熱および顕熱を50℃と
80℃の温水23として回収する。ガスの性状によって
は、洗浄液に酸またはアルカリ24を送入する。洗浄・
冷却塔18よシ出る廃水29は下水の原水へもどさnる
。洗浄さn約40 ’Cに冷却さnたガス69はガスホ
ルダー26に貯留さn7)−0 一方、燃焼炉63から出る燃焼排ガス70は、同伴する
粗大粒子を除去するためにサイクロンセパレータ71に
通さ扛粒子を分離する。分離された粒子72は炉63に
もどす。サイクロンセパレータ71を出たガス73の温
度はsoo〜850℃あるので、燃焼炉63へ供給する
空気75を空気予熱器74で約300〜4005℃に予
熱する。予熱器74を通った燃焼排ガス76は熱回収ボ
イラー40へ送入さ扛、そのエネルギーは同時にボイラ
ー40に送入さnるガスエンジン排ガス39のエネルギ
ーと共にスチーム41として回収さ扛る。発生するスチ
ーム41は、その一部77を熱分解炉62の流動用気体
として使用し、残#)85は乾燥機の熱源として利用す
る。熱回収ボイラー40を出る排ガス78の温度は、ガ
ス中に含有される塩化水素や硫黄酸化物の濃度が低いの
で150〜200℃まで下げることかできる。熱回収ボ
イラー40を出たガス78は、ガス中のダストを除去す
るためにマルチサイクロン79を通さnlさらに電気集
塵機80に通さ扛る0除去さ扛たダスト82は系外へ出
さ扛投棄さnる0ダストが除去さnた排友、ス81は大
気中に放出さ扛る。熱分解炉62および燃焼炉63の炉
底からはガスで飛ばない粗大粒子83.84が各々取り
出さ扛て系外へ投棄さ扛る。
The separated particles 66 are returned to the pyrolysis furnace 62, and the gas 68 exiting the cyclone separator 65 is sent to the steam superheater 67.
The fluidizing steam 77 is superheated at a temperature of about 600° C. and enters the gas cleaning/cooling tower 18 where it is cleaned and cooled by condensate. The cleaning liquid 21 is circulated by a circulation pump 19, and latent heat and sensible heat of the gas are recovered as hot water 23 at 50°C and 80°C by a cooler 20 provided in the circulation system. Depending on the properties of the gas, acid or alkali 24 is introduced into the cleaning liquid. Washing·
The wastewater 29 discharged from the cooling tower 18 is returned to the raw sewage water. The cleaned gas 69 cooled to about 40'C is stored in the gas holder 26. On the other hand, the combustion exhaust gas 70 coming out of the combustion furnace 63 is passed to a cyclone separator 71 to remove accompanying coarse particles. Separate the particles. The separated particles 72 are returned to the furnace 63. Since the temperature of the gas 73 exiting the cyclone separator 71 is soo~850°C, the air 75 to be supplied to the combustion furnace 63 is preheated to about 300~4005°C by the air preheater 74. The combustion exhaust gas 76 that has passed through the preheater 74 is sent to the heat recovery boiler 40, and its energy is recovered as steam 41 together with the energy of the gas engine exhaust gas 39 that is simultaneously sent to the boiler 40. A portion 77 of the generated steam 41 is used as a fluidizing gas for the pyrolysis furnace 62, and the remainder 85 is used as a heat source for the dryer. The temperature of the exhaust gas 78 exiting the heat recovery boiler 40 can be lowered to 150 to 200°C because the concentration of hydrogen chloride and sulfur oxide contained in the gas is low. The gas 78 that has exited the heat recovery boiler 40 is passed through a multi-cyclone 79 to remove dust in the gas, and then passed through an electrostatic precipitator 80 where it is removed.The collected dust 82 is taken out of the system and dumped. When the dust is removed, the sulfur 81 is released into the atmosphere. Coarse particles 83 and 84 that are not blown away by gas are taken out from the bottoms of the pyrolysis furnace 62 and the combustion furnace 63 and thrown out of the system.

ガスホルダー26に貯留さ扛た可燃性ガスは前述した方
法で昇圧さ扛、ガスエンジンの燃料に適するように精製
さnた後、ガスエンジン35に供給さ扛る0間接加熱力
式の熱分解では分解生成ガスの発熱量は450 (1〜
5000 Km/Nmあり、またガスの発熱量および供
給量とも安定しているので、ガスエンジンの形式は補助
燃料を使用せずガス燃料だけの電気点火方式がよい。
The combustible gas stored in the gas holder 26 is pressurized by the method described above, purified to be suitable as fuel for a gas engine, and then supplied to the gas engine 35 for pyrolysis using indirect heating power. Then, the calorific value of the decomposition gas is 450 (1~
5000 Km/Nm, and the calorific value and supply amount of the gas are stable, so it is preferable for the gas engine to use an electric ignition system that uses only gas fuel without using auxiliary fuel.

ガスエンジンの排ガス39は燃焼炉63の排ガスと共に
熱回収ボイラー40に送入さ扛る0場合によっては、燃
焼炉排ガスの熱回収ボイラーを設けてもよい。
The exhaust gas 39 of the gas engine is sent to the heat recovery boiler 40 together with the exhaust gas of the combustion furnace 63. Depending on the case, a heat recovery boiler for the combustion furnace exhaust gas may be provided.

次に、本発明の効果を実施例により説明する。Next, the effects of the present invention will be explained using examples.

実施例1(生汚泥を部分燃焼式熱分解法で処理し発電し
た実施例) 固形分106.3kg/ hrを4重量%含有した濃縮
汚泥に高分子凝集剤を固形分に対して0.5重量%の比
率で加えた後、プレスロール型脱水機で一次脱水して水
分76重量%の脱水汚泥を得た。
Example 1 (Example in which raw sludge was treated with a partial combustion pyrolysis method to generate electricity) A polymer flocculant was added to thickened sludge containing 4% by weight of solids of 106.3kg/hr at a rate of 0.5% of the solids content. After adding at a ratio of % by weight, primary dehydration was performed using a press roll type dehydrator to obtain dehydrated sludge with a water content of 76% by weight.

さらに、この脱水汚泥を圧搾式加圧脱水機により10(
IGの圧力を加えて二次脱水し、水分60重量%の脱水
汚泥を得た。脱水汚泥の量は265.6に9/hrであ
った。組成は、可燃分24.0重量%、灰分16,0重
量%、水分60,0重量%であり、この汚泥の低位発熱
量は960 Katl/kgであった。
Furthermore, this dehydrated sludge was processed by a pressurized pressure dehydrator for 10 (
Secondary dehydration was performed by applying IG pressure to obtain dehydrated sludge with a water content of 60% by weight. The amount of dewatered sludge was 265.69/hr. The composition was 24.0% by weight of combustible matter, 16.0% by weight of ash, and 60.0% by weight of water, and the lower calorific value of this sludge was 960 Katl/kg.

この脱水汚泥をディスク型間接加熱乾燥機に供給して、
圧カフ%G、温度170℃のスチームで加熱し、水分が
30重量%になるまで乾燥した。乾燥汚泥の量は、15
1.8に9/hrであり、その組成は可燃分42.0重
量%、灰分28.0重量%、水分30重量%であり、低
位発熱量は2130Kcat/に9であった。所要熱量
は約9.0万Km/hrでおり、排ガス量は411.8
に9/ hrであり、湿度は27.6重量%であった0
この排ガスをスクラバーで洗浄し40℃まで冷却した。
This dehydrated sludge is supplied to a disc-type indirect heating dryer,
It was heated with steam at a pressure cuff %G and a temperature of 170°C, and dried until the moisture content was 30% by weight. The amount of dried sludge is 15
The composition was 42.0% by weight of combustible matter, 28.0% by weight of ash, and 30% by weight of moisture, and the lower heating value was 2130 Kcat/hr. The amount of heat required is approximately 90,000 Km/hr, and the amount of exhaust gas is 411.8
9/hr and the humidity was 27.6% by weight.
This exhaust gas was cleaned with a scrubber and cooled to 40°C.

廃水は993kg/hr発生したが、こtは下水の原水
へもどした0 乾燥さnた汚泥は供給ホッパーに貯留さnl一定量づつ
切り出さnて、ロータリーパルプ式ガスシール機構を備
えた二段スクリューコンベア式供給装置により流動床式
熱分解炉へ供給さrt*。熱分解炉は4号けい砂で流動
床が形成さ扛ており、流動床の温度は熱分解炉の下部か
ら送入する空気量を調節することにより700°Cに維
持さnた。流動床に送入した空気は分解生成ガスの熱で
約400℃に予熱したものを用い、その量は326kl
?/hrであった。熱分解炉から排出するガス温度は6
50℃であり、ガスに同伴する比較的大きな粒子は炉出
ローでサイクロンセパレータにより捕集し熱分解炉にも
どした0粗粒子を除去した分解生成ガスは、燃焼空気を
予熱量、スクラバーで洗浄さn、ガス中に含有するアン
モニア、塩化水素、硫化水素、シアン化水素、ダスト、
タール等のガスエンジン燃料として不適当な物質を除去
し、40℃に冷却された。冷却さnたガス量は348k
g/ hr (297,3Nrrt/hr )であり、
発熱量は約750 m/Ndであった。
993 kg/hr of wastewater was generated, but this was returned to the raw sewage water.The dried sludge was stored in a supply hopper, cut out in fixed amounts, and transferred to a two-stage screw pump equipped with a rotary pulp type gas seal mechanism. rt* is supplied to a fluidized bed pyrolysis furnace by a conveyor type feeder. A fluidized bed was formed in the pyrolysis furnace using No. 4 silica sand, and the temperature of the fluidized bed was maintained at 700°C by adjusting the amount of air introduced from the bottom of the pyrolysis furnace. The air fed into the fluidized bed was preheated to about 400℃ using the heat of decomposition product gas, and the amount of air was 326kl.
? /hr. The temperature of the gas discharged from the pyrolysis furnace is 6
The temperature is 50℃, and the relatively large particles accompanying the gas are collected by a cyclone separator at the furnace exit raw and returned to the pyrolysis furnace.The decomposition product gas with coarse particles removed is preheated from the combustion air and cleaned by a scrubber. Ammonia, hydrogen chloride, hydrogen sulfide, hydrogen cyanide, dust contained in the gas,
Materials unsuitable as gas engine fuel, such as tar, were removed, and the mixture was cooled to 40°C. The amount of cooled gas is 348k
g/hr (297,3Nrrt/hr),
The calorific value was approximately 750 m/Nd.

このガスはエンジンの燃料とするためガスホルダーに貯
留した。
This gas was stored in a gas holder to be used as fuel for the engine.

このガスを過給器のないガスエンジンに燃料として使用
するため、60011111水柱の圧力に昇圧し、冷却
してガス中の凝縮物質を除去した後、さらにガス中のミ
ストを除去してエンジンに供給した。エンジンに供給し
たガスの温度は40°Cであった。ガスの組成およびガ
ス中の可燃ガスの組成を第1および2表にそ扛ぞ扛示す
0第  1  表 第  2  表 ガスエンジンの形式はデュアルツユエル方式であり、ガ
ス燃料とは別にA重油を2.51/hr供給した。ガス
エンジンに供給さ扛た全熱量は24.5万Kc111.
/hrであった。発電量ハ85 Kw テアリ、ガスエ
ンジン発電機としての熱効率は約30チであった。エン
ジンの燃焼用空気の使用量は640kl?/hr (4
96Nm”/hr)であった。エンジンの排ガス温度は
500 ’C1排ガス量は約75ONm/hrであった
。この排ガスを熱回収ボイラーに送入して排ガスの有す
るエネルギーを7kg/iG、170℃のスチームとし
て160kg/hr量回収した。このスチームは全て乾
燥機の熱源として用い、スチームドレーンは再び熱回収
ボイラーへもどさ扛た。
In order to use this gas as fuel in a gas engine without a supercharger, it is pressurized to a pressure of 60011111 water columns, cooled to remove condensed substances in the gas, and then the mist in the gas is removed before being supplied to the engine. did. The temperature of the gas supplied to the engine was 40°C. The composition of the gas and the composition of the combustible gas in the gas are shown in Tables 1 and 2.The type of gas engine is a dual fuel type, which uses heavy oil A in addition to the gas fuel. 2.51/hr was supplied. The total amount of heat supplied to the gas engine was 245,000 Kc111.
/hr. The power generation capacity was 85 Kw, and the thermal efficiency as a gas engine generator was approximately 30 inches. Is the amount of combustion air used by the engine 640kl? /hr (4
The exhaust gas temperature of the engine was 500'C1 and the amount of exhaust gas was approximately 75ONm/hr.This exhaust gas was sent to a heat recovery boiler and the energy of the exhaust gas was reduced to 7kg/iG and 170℃. 160 kg/hr of steam was recovered.All of this steam was used as a heat source for the dryer, and the steam drain was returned to the heat recovery boiler.

実施例2(消化汚泥を部分燃焼式熱分解法で処理し発電
した実施例) 固形酸106.3kg/hrを4重量%含有した濃縮汚
泥を消化槽で処理して汚泥中の有機分の40重量%を消
化した後、洗浄、濃縮し、実施例1と同様の条件で脱水
して202kg/hrの脱水汚泥を得た。脱水汚泥の組
成は、可燃分18.9重量%、灰分21.1重量%、水
分60.0重量%であり、発熱量は680 Kctd/
kgであった。この脱水汚泥をディスク型間接加熱式乾
燥機に供給し、圧カフkg/dG、温度170℃のスチ
ームで加熱して水分が25重量%になるまで乾燥した。
Example 2 (Example in which electricity was generated by treating digested sludge with a partial combustion pyrolysis method) Thickened sludge containing 4% by weight of solid acid 106.3 kg/hr was treated in a digestion tank to reduce the organic content in the sludge to 40% by weight. After digesting the weight percent, it was washed, concentrated, and dehydrated under the same conditions as in Example 1 to obtain 202 kg/hr of dehydrated sludge. The composition of the dehydrated sludge is 18.9% by weight of combustible content, 21.1% by weight of ash, and 60.0% by weight of moisture, and the calorific value is 680 Kctd/
It was kg. This dehydrated sludge was supplied to a disk-type indirect heating dryer, heated with steam at a pressure cuff of kg/dG and a temperature of 170°C, and dried until the water content was 25% by weight.

乾燥汚泥の量は107.7kg/hrで、その組成は可
燃分35,5重量%、水分25.0重量%であり、発熱
量は1803Kca17kgであった。乾燥機の所要熱
量は6.4万Km/hr、排ガス量は267.2kg/
h r 、湿度は35.3重量%であった0この排ガス
をスクラバーで洗浄し、40℃まで冷却した。廃水は8
5.9kg/hr発生し、こnは下水の原水へもどさ扛
た。
The amount of dried sludge was 107.7 kg/hr, its composition was 35.5% by weight of combustible matter, 25.0% by weight of water, and the calorific value was 1803 Kca 17 kg. The amount of heat required for the dryer is 64,000 Km/hr, and the amount of exhaust gas is 267.2 kg/hr.
h r and humidity was 35.3% by weight.The exhaust gas was cleaned with a scrubber and cooled to 40°C. Waste water is 8
5.9 kg/hr was generated, and this was returned to the raw sewage water.

乾燥さnた汚泥は、実施例1と同様の設備によシ同様の
条件で熱分解さ扛た。生成したガスはスクラバーで洗浄
さn140℃まで冷却された。洗浄・冷却さ扛たガス量
は209kl?/h r (178,7Nrrt/hr
)であり、発熱量は約750 Km/Nmであった。こ
のガスばガスホルダーに貯留さn、ガスエンジンの燃料
として使用するため600xx7に柱まで昇圧さ扛た後
、冷却によりガス中に含まnている凝縮物質を除去し、
さらにガス中のミストを除去した。エンジンに供給した
ガスの組成は第1および2表に示すものと同様であう’
i’c。
The dried sludge was pyrolyzed in the same equipment as in Example 1 under the same conditions. The generated gas was cleaned with a scrubber and cooled to 140°C. The amount of gas washed and cooled was 209kl? /hr (178,7Nrrt/hr
), and the calorific value was approximately 750 Km/Nm. This gas is stored in a gas holder and is pressurized to 600x7 to be used as fuel for a gas engine. After that, the condensed substances contained in the gas are removed by cooling.
Furthermore, the mist in the gas was removed. The composition of the gas supplied to the engine will be similar to that shown in Tables 1 and 2.
i'c.

ガスエンジンの形式はデュアルツユエル方式で、ガス燃
料の他にA重油を3゜07/hr供給した0ガスエンジ
ンに供給さnた熱量は16.1万Kcat/hrであり
、発電量は56 KWで、−ガスエンジン発電機として
の熱効率は約3(lであ、つた。
The type of gas engine is a dual fuel type, and the amount of heat supplied to the gas engine is 161,000 Kcat/hr, which supplies A heavy oil at 3°07/hr in addition to gas fuel, and the amount of power generated is 56,000 kcat/hr. KW, the thermal efficiency as a gas engine generator is approximately 3 (l).

エンジンの排気温度は500℃で、排気量は約48ON
m”/hrであった0この排ガスを熱回収ボイラーに送
入して排ガスの持っているエネルギーを7kg/ff1
G、 170℃のスチームの形で151に9/hr回収
した。このスチームは全て乾燥機の熱源に用いら扛、ス
チームドレインは再び熱回収ボイラーへもどさt′した
Engine exhaust temperature is 500℃, displacement is approximately 48ON
This exhaust gas was sent to a heat recovery boiler and the energy of the exhaust gas was reduced to 7kg/ff1.
G, recovered in the form of steam at 170° C. at 151 9/hr. All of this steam was used as a heat source for the dryer, and the steam drain was returned to the heat recovery boiler.

実施例3(生汚泥を二基流動層式間接熱分解炉で処理し
発電した実施例) 実施例1において使用したものと同じ乾燥汚泥を、ガス
レール機構を備えた定量供給装置から二基流動層式間接
熱分解炉へ152kg/hrの割合で供給した0熱分解
炉の流動層は4号けい砂で形成し、燃焼炉より785℃
の砂を熱分解炉の下部に循環し、炉下部に3kl?/c
rlG、 200℃に過熱さ【たスチームを40に9/
hrの割合で送入した0熱分解は700〜710℃の温
度で行った。熱分解生成ガスは44 N m”7時の割
合で発生しftoこの熱分解生成ガスはサイクロン七ノ
(レータでダストを除去した後、二段の洗浄冷却塔で洗
浄、40℃まで冷却さnたO洗浄液のPHU9.2〜9
5であっfc、o洗浄後のガスの組成は第3表に示す通
りであり、ガスの発熱量は約5 、 OOOKm/Nm
’であった0第  3  表 このガスはガスエンジンの燃料とするためガスホルダー
に貯留し7′c。
Example 3 (Example in which raw sludge was treated in a two-bed fluidized bed indirect pyrolysis furnace to generate electricity) The same dried sludge used in Example 1 was transferred to a two-bed fluidized bed from a quantitative feeder equipped with a gas rail mechanism. The fluidized bed of the 0-pyrolysis furnace, which was supplied to the indirect pyrolysis furnace at a rate of 152 kg/hr, was made of No. 4 silica sand, and the temperature was 785°C from the combustion furnace.
of sand is circulated to the bottom of the pyrolysis furnace, and 3kl? /c
rlG, steam heated to 200°C, 40 to 9/
Zero pyrolysis, fed at a rate of hr, was carried out at a temperature of 700-710°C. Thermal decomposition gas is generated at a rate of 44 N m''7. After removing dust with a cyclone rotor, it is washed in a two-stage cleaning cooling tower and cooled to 40°C. PHU9.2-9 of O cleaning solution
The composition of the gas after cleaning is as shown in Table 3, and the calorific value of the gas is approximately 5, OOOKm/Nm.
0Table 3 This gas was stored in a gas holder to be used as fuel for the gas engine.7'c.

一方、分解生成したチャーは熱分解炉の上部よシ砂と共
にオーバーフローして循環)(イブを通って燃焼炉の下
部へ移動し、下部より供給さnる300℃に予熱さnた
空気41Nηhrにより一部燃焼さnながら炉の上部へ
流動状態で移動し、上部の燃焼部分に供給さ扛る300
℃に予熱さnた空気129 Nm/h rで完全に燃焼
し、砂の温度を785℃に上昇させた0燃焼ガスは83
0℃で炉の上部から排出さ扛、サイクロン七)(レーダ
でダストを除去した後、空気予熱器を通さn、550℃
の温度で熱回収ボイラーに送入さnた。熱回収ボイラー
にはガスエンジンからの排ガスをも加えて520℃85
ONηhrの割合で排ガスが送入さnたo 7 kg/
CIIG 1170℃のスチームが180kg/hrの
割合で発生した0このうち40に9/hrのスチームは
”熱分解炉へ供給し、140kg/hrのスチームは乾
燥機へ供給した0ガスホルダーに貯留されたガスは60
0mmAgGに加圧、冷却してドレーンとミストを分離
した後ガスエンジンに供給した。ガスエンジンに供給さ
扛たガスの温度は40℃で、その組成は第4表に示す通
りであった。
On the other hand, the decomposed char overflows and circulates together with the sand from the upper part of the pyrolysis furnace (passes through the tube to the lower part of the combustion furnace, and is heated by 41 Nηhr of air preheated to 300°C supplied from the lower part). While being partially burned, it moves to the upper part of the furnace in a fluid state and is supplied to the upper combustion part.300
The air preheated to 129 Nm/h combusted completely at 83 °C, raising the temperature of the sand to 785 °C.
Discharged from the top of the furnace at 0 °C, cyclone 7), then passed through an air preheater (after removing dust with radar), 550 °C
was fed into the heat recovery boiler at a temperature of n. The exhaust gas from the gas engine is also added to the heat recovery boiler, and the temperature reaches 520℃85.
Exhaust gas is fed in at a rate of ON 7 kg/
CIIG 1170℃ steam was generated at a rate of 180 kg/hr. Of this, 40% of the steam at 9/hr was supplied to the pyrolysis furnace, and 140 kg/hr of steam was stored in the gas holder, which was supplied to the dryer. gas is 60
The mixture was pressurized to 0 mmAgG and cooled to separate the drain and mist, and then supplied to a gas engine. The temperature of the gas supplied to the gas engine was 40°C, and its composition was as shown in Table 4.

第  4  表 比較例 実施例1において使用したものと同じ脱水汚泥(成分:
可燃424.o重量%、灰分16.0重量%、水分60
.0重量%、発熱量: 960 K(ilt/kg )
を265.6kg/h rの割合で流動床焼却炉で焼却
した0炉からの燃焼排ガス温度は900℃あり、この排
ガスのエネルギーを回収するため、排ガスを熱回収ボイ
ラーに送入した。ボイラーからの排ガ′スの温度を25
0℃とした時、圧力16kf?/dG。
Table 4 Comparative Examples The same dehydrated sludge as used in Example 1 (components:
Flammable 424. o weight%, ash 16.0% by weight, moisture 60%
.. 0% by weight, calorific value: 960 K (ilt/kg)
The temperature of the combustion exhaust gas from the 0 furnace, which was incinerated at a rate of 265.6 kg/hr in a fluidized bed incinerator, was 900°C. In order to recover the energy of this exhaust gas, the exhaust gas was sent to a heat recovery boiler. The temperature of exhaust gas from the boiler is 25
When the temperature is 0℃, the pressure is 16kf? /dG.

温度260℃のスチームを280kg/hrの割合で回
収できた。このスチームでタービンを駆動し発電したと
ころ、約30KWの電力を得た。
Steam at a temperature of 260°C could be recovered at a rate of 280 kg/hr. When this steam was used to drive a turbine to generate electricity, approximately 30KW of electricity was obtained.

対象人口30万人の下水汚泥を水分60重量%まで脱水
し、熱分解処理した場合と焼却処理した場合の、共通部
分を除いた設備の消費電力、回収電力、補助燃料使用量
および設備費の比較を第5表に示す乃なお、消化汚泥の
場合は、消化槽および消化汚泥洗浄設備を含み、回収電
力には消化ガス発電量を含む。
Power consumption, recovered power, auxiliary fuel consumption, and equipment costs excluding common parts when sewage sludge from a target population of 300,000 is dehydrated to a water content of 60%, thermally decomposed, and incinerated. A comparison is shown in Table 5. In the case of digested sludge, the digester and digested sludge cleaning equipment are included, and the recovered power includes the digested gas power generation amount.

第  5  表 第5表から明らかな通り、汚泥の処理方法としては、焼
却処理に依るよりも、熱分解により可燃性ガスを生成し
、生成ガスを燃料としてエンジンを駆動し発電させる方
法がエネルギーの回収の点で有利であり、本発明方法に
よ扛ば、ガスエンジンを安定に運転して汚泥の保有する
エネルギーを効率よく電気エネルギーとして回収するこ
とができる。
Table 5 As is clear from Table 5, the method of treating sludge that generates combustible gas through thermal decomposition and uses the generated gas as fuel to drive an engine to generate electricity is more energy efficient than incineration. This is advantageous in terms of recovery, and by using the method of the present invention, the gas engine can be operated stably and the energy held by the sludge can be efficiently recovered as electrical energy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は汚泥を自燃可能な水分まで脱水した場合の焼却
方法を示す概要図、第2図は汚泥の脱水をさらに進めて
汚泥の焼却によりエネルギーを回収する方法を示す概要
図、第3図は生汚泥を部分燃焼式熱分解法により処理し
発電する本発明による方法を示す概要図、第4図は本発
明に用いることができる直接加熱式乾燥機を示す概要図
、第5図は乾燥機排ガスの処理方法を示す概要図、第6
図は消化汚泥を熱分解処理する本発明による方法の一部
概要図、第7図は生汚泥を二基流動層炉式熱分解法によ
り処理する本発明による方法を示す概要図である01・
・濃縮汚泥     2・・−次脱水機3・・二次脱水
機     6・・間接加熱式乾燥機8・・スクラバー
    ′12・・部分燃焼式熱分解炉18・・ガス洗
浄冷却塔    26・・ガスホルダー30・・昇圧機
      32・・ガス精製装置35・・ガスエンジ
ン   36・・発電機40・・熱回収ボイラー   
 41・・スチーム44・・直接加熱式乾燥機    
57・・消化ガス62・・熱分解炉     63・・
燃焼炉特許出願人  月島機械株式会社
Figure 1 is a schematic diagram showing an incineration method when sludge is dehydrated to a water content that can self-combust. Figure 2 is a schematic diagram showing a method to further dehydrate sludge and recover energy by incinerating the sludge. Figure 3 Figure 4 is a schematic diagram showing a method according to the present invention for generating electricity by treating raw sludge by partial combustion pyrolysis, Figure 4 is a schematic diagram showing a direct heating dryer that can be used in the present invention, and Figure 5 is a drying method. Schematic diagram showing the treatment method for machine exhaust gas, No. 6
Figure 7 is a partial schematic diagram of the method according to the present invention for thermally decomposing digested sludge, and Figure 7 is a schematic diagram showing a method according to the present invention for treating raw sludge by a two-unit fluidized bed furnace type thermal decomposition method.
・Thickened sludge 2...-Secondary dehydrator 3...Secondary dehydrator 6...Indirect heating dryer 8...Scrubber '12...Partial combustion type pyrolysis furnace 18...Gas cleaning cooling tower 26...Gas Holder 30... Booster 32... Gas refiner 35... Gas engine 36... Generator 40... Heat recovery boiler
41...Steam 44...Direct heating dryer
57...Digestion gas 62...Pyrolysis furnace 63...
Combustion furnace patent applicant Tsukishima Kikai Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)汚泥を機械的に脱水し、汚泥の水分が30重量%
以下になるまで乾燥し、乾燥された汚泥を熱分解して可
燃性ガスを発生させ、発生したガスを洗浄してガス中に
含有さ扛る有害ガス、ダストおよび重質炭化水素類を除
去して精製ガスとし、精製ガスを燃料としてガスエンジ
ンに供給することによりガスエンジンを駆動し、これに
よって発電することを特徴とする汚泥の処理方法。 (2)上記汚泥乾燥の熱源として、ガスエンジンの排ガ
スの保有熱を熱回収ボイラーによりスチームとして回収
したものを使用する仁とを特徴とする特許請求の範囲第
1項に記載の汚泥の処理方法。 (3)上記汚泥乾燥の熱源として、ガスエンジンからの
排ガスを直接使用することを特徴とする特許請求の範囲
第1項に記載の汚泥の処理方法。 (4)汚泥を嫌気性醗酵処理することにより消化汚泥と
消化ガスを生成し、消化汚泥を機械的に脱水し、消化汚
泥の水分が25重量%以下になるまで乾燥し、乾燥さ扛
た汚泥を熱分解して可燃性ガスを発生させ、発生したガ
スを洗浄してガス中に含有さ扛る有害ガス、ダストおよ
び重炭化水素類を除去して精製ガスとし、この精製ガス
と上記嫌気性醗酵処理において発生した消化ガスを混合
し、m この混合ガスを燃料としてガスエンジンに仲給し、エン
ジンを駆動することによって発電することを特徴とする
汚泥の処理方法0(5)上記消化汚泥乾燥の熱源として
、ガスエンジンの排ガスの保有熱を熱回収ボイラーによ
りスチームとして回収したものを使用することを特徴と
する特許請求の範囲第4項に記載の汚泥の処理方法0 (6)上記消化汚泥乾燥の熱源として、ガスエンジンか
らの排ガスを直接使用することを特徴とする特許請求の
範囲第4項に記載の汚泥の処理方法。
[Claims] (1) Mechanically dewatering sludge to reduce the water content of the sludge to 30% by weight.
The dried sludge is thermally decomposed to generate flammable gas, and the generated gas is cleaned to remove harmful gases, dust, and heavy hydrocarbons contained in the gas. A method for treating sludge, characterized in that the purified gas is converted into purified gas, and the purified gas is supplied to a gas engine as fuel to drive the gas engine, thereby generating electricity. (2) The sludge treatment method according to claim 1, characterized in that the heat source for drying the sludge uses heat retained in the exhaust gas of a gas engine that is recovered as steam using a heat recovery boiler. . (3) The sludge treatment method according to claim 1, wherein exhaust gas from a gas engine is directly used as a heat source for drying the sludge. (4) Digested sludge and digestion gas are generated by subjecting sludge to anaerobic fermentation treatment, and the digested sludge is mechanically dehydrated and dried until the water content of the digested sludge becomes 25% by weight or less. is thermally decomposed to generate flammable gas, and the generated gas is cleaned to remove harmful gases, dust, and heavy hydrocarbons contained in the gas to produce purified gas, and this purified gas and the above anaerobic gas are purified. Sludge treatment method 0 (5) above-mentioned digested sludge drying characterized by mixing digested gas generated in the fermentation process, supplying this mixed gas as fuel to a gas engine, and driving the engine to generate electricity. The sludge treatment method according to claim 4, characterized in that the heat source of the gas engine exhaust gas is recovered as steam using a heat recovery boiler. (6) The digested sludge 5. The sludge treatment method according to claim 4, wherein exhaust gas from a gas engine is directly used as a heat source for drying.
JP56189655A 1981-11-26 1981-11-26 Treatment of sludge Pending JPS5889998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56189655A JPS5889998A (en) 1981-11-26 1981-11-26 Treatment of sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56189655A JPS5889998A (en) 1981-11-26 1981-11-26 Treatment of sludge

Publications (1)

Publication Number Publication Date
JPS5889998A true JPS5889998A (en) 1983-05-28

Family

ID=16244945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56189655A Pending JPS5889998A (en) 1981-11-26 1981-11-26 Treatment of sludge

Country Status (1)

Country Link
JP (1) JPS5889998A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160133A (en) * 2005-12-09 2007-06-28 Ngk Insulators Ltd Method for utilizing sewage sludge
JP2007167782A (en) * 2005-12-22 2007-07-05 Nippon Steel Engineering Co Ltd Waste treatment method
CN102190415A (en) * 2010-03-15 2011-09-21 株式会社东芝 Sludge drying method
JP2012157835A (en) * 2011-02-02 2012-08-23 Chisaki:Kk Dry gasifier for swage sludge
JP2019013908A (en) * 2017-07-11 2019-01-31 株式会社神鋼環境ソリューション Waste disposal system and waste disposal method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160133A (en) * 2005-12-09 2007-06-28 Ngk Insulators Ltd Method for utilizing sewage sludge
JP2007167782A (en) * 2005-12-22 2007-07-05 Nippon Steel Engineering Co Ltd Waste treatment method
CN102190415A (en) * 2010-03-15 2011-09-21 株式会社东芝 Sludge drying method
JP2011189290A (en) * 2010-03-15 2011-09-29 Toshiba Corp Sludge drying method
JP2012157835A (en) * 2011-02-02 2012-08-23 Chisaki:Kk Dry gasifier for swage sludge
JP2019013908A (en) * 2017-07-11 2019-01-31 株式会社神鋼環境ソリューション Waste disposal system and waste disposal method

Similar Documents

Publication Publication Date Title
KR101243605B1 (en) Waste to energy by way of hydrothermal decomposition and resource recycling
FI85597C (en) FOERFARANDE FOER UTVINNING AV ANVAENDBAR GAS UR AVFALL.
KR101668549B1 (en) Wastewater treatment system and combined power generation equipment
US5000099A (en) Combination of fuels conversion and pressurized wet combustion
JPWO2006117934A1 (en) Organic waste treatment facility and treatment method
JP2007510533A (en) Organic matter processing method and processing apparatus
CZ291558B6 (en) Process for gasifying a particulate solid carbonaceous fuel, apparatus for carrying out the process as well as integrated process for the production of power
WO2018018615A1 (en) Method and system for preparing fuel gas by utilizing organic waste with high water content
JP2009028672A (en) Treatment method of high water-content waste and treatment apparatus
CN211170408U (en) Sludge mixing drying pure combustion power generation system
CN110606648A (en) Sludge mixing drying pure combustion power generation system and working method thereof
FI87092C (en) FOERFARANDE FOER BEHANDLING AV SVARTLUT
US5976387A (en) Method for feeding wastes into a boiler
JPS5889998A (en) Treatment of sludge
JP2010149079A (en) Treatment method of waste containing highly hydrous waste and treatment device used for the same
JP2009096888A (en) Gasification system effectively utilizing steam produced during drying of high-water content fuel
CN1863738A (en) Method and apparatus for treating organic matter
KR101872428B1 (en) Sewagee sludge treatment system
NO174002B (en) PROCEDURE AND PLANT FOR RECOVERY OF RECOVERABLE GASFLE SOAPLE BY PYROLYSE
JPH0366040B2 (en)
KR102330066B1 (en) Energy self-sufficient complex waste processing system linked sewage processing facilities
CN217763445U (en) Industry is useless admittedly and mud processing system
JPH0223598B2 (en)
CN216584888U (en) Garbage carbonization treatment system based on thermal cracking
JPS59123600A (en) Treatment of organic hydrous material