JPS5887232A - Direct heat treatment for hot rolled steel wire rod - Google Patents

Direct heat treatment for hot rolled steel wire rod

Info

Publication number
JPS5887232A
JPS5887232A JP18496781A JP18496781A JPS5887232A JP S5887232 A JPS5887232 A JP S5887232A JP 18496781 A JP18496781 A JP 18496781A JP 18496781 A JP18496781 A JP 18496781A JP S5887232 A JPS5887232 A JP S5887232A
Authority
JP
Japan
Prior art keywords
cooling
wire
coils
temperature
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18496781A
Other languages
Japanese (ja)
Other versions
JPS6219489B2 (en
Inventor
Tsuneo Seto
瀬戸 恒雄
Kimio Mine
峰 公雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18496781A priority Critical patent/JPS5887232A/en
Publication of JPS5887232A publication Critical patent/JPS5887232A/en
Publication of JPS6219489B2 publication Critical patent/JPS6219489B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To obtain products having uniform mechanical strength among the coils of wire rods and within the coils in the stage of transferring and cooling the wire rods in the state of superposed rings by changing cooling conditions according to the components of the billets in one lot of a converter and the finishing temp. within one lot. CONSTITUTION:A conveyor 8 for cooling is divided to, for example, 6 parts, and the respective conveyors are made independently drivable and continuously variable and controllable in speed. Blowers 20 and mist coolers 24 are provided to the respective conveyors. In order to eliminate the variation in the strength among wire rod coils, the billets in one lot are divided to the groups having the same chemical components as far as possible, and the constant temp. transformation curves corresponding to the analyzed values of the components of the respective groups are determined. On the other hand, cooling rate patterns are selected from the equationsI-VI among the tensile strength sigmatkg/mm.<2> of the wire rods, Cwt%, wind pressure Pmm.Aq. of blowers, finishing temp. T deg.C, cooling rate Cv deg.C/sec of coils, speed Vm/sec of conveyor, and mist amount Mdl/cm<2>.min. Thereafter, in order to eliminate the variation in the strength in the coils, the P, v and the mist concn. are controlled in such a way that the temp. during cooling and T by each N division of overall length of the coils coincide with the above-described patterns.

Description

【発明の詳細な説明】 本発明は熱間圧延鋼線材の直接熱処理方法に係り、%に
圧鷺後の加工熱を利用した線材コイル間および線材フィ
ル内の機械的強度のばらつきの少いオンライン熱処種方
法に#14する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for direct heat treatment of hot-rolled steel wire rods, which utilizes processing heat after rolling to reduce the variation in mechanical strength between coils of wire rods and within wire rod fills. Heat treatment method #14.

ビレットから圧電された纏材鯛品は、ビレットの製鋼段
階における2001前後に達する転炉の1チヤ一ジ分に
相当する10ツトを全く同一成分にすることは至難であ
り、そのため500〜2000kg範囲のビレット毎忙
圧延された線材製品は圧延終了後の熱処理を同一条件で
行っても、その機械的強度が異なることとなる。また1
ビレツト内においても仕上り温度が異なることもあって
同一強度を得るためには線材の仕上り温jijK応じた
冷却速度パターンをとる必要がある。
It is extremely difficult to make 10 pieces of sea bream piezoelectrically produced from billets have exactly the same composition, which corresponds to one charge of a converter that reaches around 2001 in the steelmaking stage of billets, so it is in the range of 500 to 2000 kg. Wire rod products produced by busy rolling of billets will have different mechanical strengths even if they are heat-treated under the same conditions after rolling. Also 1
In order to obtain the same strength, it is necessary to adopt a cooling rate pattern that corresponds to the finishing temperature of the wire rod, since the finishing temperature may vary within the billet.

従来の熱間圧延鋼線材のオンライン熱処理方法を第1図
によって説明する。仕上圧延機2に’C圧延された線材
4は通常ステル毫ア法と称される直接加工熱処理装置の
水冷シー76にて温[調整された後相ムなったリング状
層でコンベア8にて搬送中に下部からブロア10によっ
て冷風を吹込み強制空冷処理を行なういわゆるエアパテ
ンティングにより強靭なノルバイト組織が形成され高品
質の縁材製品が祷られる。しかし従来の上記熱処理は同
一サイズ、同一ロット内においては同一の冷却条件で実
施されるために、線材;イル関および線材コイル内で均
一な機械的強度を得ることが困―であり、そのため伸線
工sにおいて破断等の欠陥を生ずる場合もある。更にエ
アパテンティング尾端は空気による強制冷却であるため
冷却速度に限界があり、広範囲の冷却速度を得ることが
できないとい5問題もある。
A conventional online heat treatment method for hot rolled steel wire will be explained with reference to FIG. The wire rod 4 that has been C-rolled by the finishing mill 2 is heated in a water-cooled sheath 76 of a direct processing heat treatment device, which is usually called the stell roll method, and then transferred to a conveyor 8 in a ring-shaped layer. A strong norbite structure is formed through so-called air patenting, in which cold air is blown from the bottom by a blower 10 during transportation to perform a forced air cooling process, resulting in a high-quality edge material product. However, since the conventional heat treatment described above is performed under the same cooling conditions for the same size and the same lot, it is difficult to obtain uniform mechanical strength within the wire rod and wire coil. Defects such as breakage may occur in the linework s. Furthermore, since the air patenting tail end is forcedly cooled by air, there is a limit to the cooling rate, and there is another problem in that a wide range of cooling rates cannot be obtained.

本発明の目的は上記従来技術の欠点を克服し、線材コイ
ル間および線材コイル内で機械的強度のばらつきがない
均一強度の線材製品を得ることかできる直接熱処理方法
を提供するKある。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned drawbacks of the prior art and to provide a direct heat treatment method capable of obtaining a wire product with uniform strength without variations in mechanical strength between wire coils and within a wire coil.

本発明の要旨とするところは次の如(である。The gist of the present invention is as follows.

すなわち、熱関圧鷺された線材をコンベア上に相貫なり
合ったリング状態で載置しコンベアにて移送しながら冷
却し線材コイル間および線材コイル内の機械的性質を均
一とする熱関圧延騙材の直接熱処理方法において、lレ
ット内の前記線材木材ビレツ)t−はぼ同一化学成分を
有する群毎に区分する工程と、前記ビレットの成分分析
値、融材の圧駕仕上り温度および冷却速度と機械的強度
との下記関係式より前記各群の冷却速度パターンな選定
する工程と、前記各ビレットからの線材コイルの全長な
値数に等分割し各区分毎の冷却工程中の温度および仕上
り温度を前記冷却速度パターンに合致するように冷却風
蓋、コンベア送り速度およびミストa度を制御する工程
と、を有して成ることを特徴とする熱間圧延鋼線材の直
接熱処理方法である、 記 σt=11Z5xc+30     −・・(1)σt
はZOCマ+84      −・・偉)σt−0.2
5P+72       ・・・(3)σ電工0.01
2T+87     −(4)cv−17,4マ+1.
4        −(5)Md Cy−933e   −8al  B     −(8
)(1)、(2)、(3)、(4)、(5)、(6)弐
において、σt:抗張力(”g/、dl) C:ビレット中のC含有量(重量%) P ニブ胃ア風圧(mi水柱) T :仕上り@度(℃) Cv:線材コイルの冷却速度(℃/5ee)マ :コン
ベア速度(℃/see) Md:ミスト蓋(’/aM ・min )本発明の詳細
な説明および実施態様を添付図面を参照して説明する。
In other words, hot rolled wire is placed on a conveyor in the form of interlocking rings and cooled while being transferred by the conveyor to make the mechanical properties uniform between wire coils and within the wire coil. In the method for direct heat treatment of fake lumber, the step of dividing the wire rod wood billets in Llets into groups having approximately the same chemical composition, the component analysis values of the billets, the compaction finishing temperature of the melted material, and the cooling. The process of selecting the cooling rate pattern for each group from the following relational expression between speed and mechanical strength, and dividing the wire rod coil from each billet into equal numbers of total length values, and determining the temperature during the cooling process for each section. A method for direct heat treatment of hot-rolled steel wire, comprising the steps of: controlling a cooling air cover, conveyor feed rate, and mist a degree so that the finishing temperature matches the cooling rate pattern. , σt=11Z5xc+30 −...(1) σt
is ZOC ma+84 -... great) σt-0.2
5P+72 ... (3) σ Electric Works 0.01
2T+87-(4)cv-17,4ma+1.
4-(5)Md Cy-933e-8al B-(8
) (1), (2), (3), (4), (5), (6) 2, σt: Tensile strength ("g/, dl) C: C content in billet (wt%) P Nib gastric wind pressure (mi water column) T: Finish @ degree (°C) Cv: Cooling rate of wire coil (°C/5ee) M: Conveyor speed (°C/see) Md: Mist lid ('/aM ・min) Invention A detailed description and embodiments of the invention will now be described with reference to the accompanying drawings.

先ず、線材コイル間の機械的強度のばらつきをなくすた
め200  前後の転炉の1チヤ一ジ分に相当する10
ツト内のビレットを可能な限り同一化学成分を有するP
K区分する0次に各群毎にビレットでの成分分析を行な
い、その結果から各成分分析値に応じた第2EK示す如
き恒温変態曲線を決定する。一方、熱間圧延鋼線材の直
接熱処理時において、線材の抗張力u tと線材の0%
、冷却速度Cv、ブロア風圧P、仕上り温度Tとの閾に
は、それぞれ縞3図囚、(ロ)、0.0に示す如き関係
があり、冷却速度Cvとコンベア速度Vおよびミスト蓋
Mdとの関にはそれぞれ■、0に示す如き関係がある。
First, in order to eliminate variations in mechanical strength between the wire coils, we used 1000 yen, which is equivalent to one charge in a converter of around 200 yen.
P having the same chemical composition as possible for the billets in the tube
A component analysis is performed on the billet for each group divided by K, and from the results, a constant temperature transformation curve as shown in the second EK is determined according to each component analysis value. On the other hand, during direct heat treatment of hot-rolled steel wire, the tensile strength u t of the wire and 0% of the wire
, the thresholds of the cooling rate Cv, the blower wind pressure P, and the finishing temperature T have a relationship as shown in Figure 3, (b), and 0.0, respectively, and the cooling rate Cv, conveyor speed V, and mist lid Md have the following relationships. There are relationships as shown in ■ and 0, respectively.

すなわちC−α3〜1.0%の範囲におい【(1)式が
成立し、Cy”6〜b におイテ(2J式が成立し、P = 100〜160 
pMl水柱の範li!8において(3)式が成立し、T
−850〜1000℃の範囲において(4)式が成立し
、CマとVとの関において(5)式が成立し、CマとM
4との間において(6)式が成立する。これらの関係お
よび前記恒温変態曲線から第4図A曲11にて示す如ぎ
基準となるべき冷却速度パターンを設定する。
That is, in the range of C-α3 to 1.0%, [Equation (1) holds true, and it holds true for Cy''6 to b (2J formula holds, P = 100 to 160
pMl water column range li! 8, equation (3) holds true, and T
Equation (4) holds true in the range of -850 to 1000°C, and equation (5) holds true between Cma and V.
4, equation (6) holds true. Based on these relationships and the isothermal transformation curve, a cooling rate pattern to be used as a reference is set as shown in curve A 11 of FIG. 4.

次に同一ビレットによる線材コイル内の機械的強度のば
らつきを無くすため、線材;イル全長を複数に等分割し
、例えば全長なN分割し、各lハ長さ毎に代表温度を仕
上げ圧電直後および;イル冷却搬送途中の各ゾーン毎に
測温し、設定した基準となる冷却速度パターンに合致す
るように冷却風蓋、コンベア送り速度および々スト濃度
をフィードバック、フィードフォワード制御を行なう。
Next, in order to eliminate variations in mechanical strength within the wire coil made of the same billet, the entire length of the wire is divided into multiple equal parts, for example, divided into N parts, and the representative temperature is determined for each length. ; The temperature is measured in each zone during the cooling conveyance, and feed forward control is performed by feeding back the cooling air cover, conveyor feeding speed and density so as to match the set standard cooling rate pattern.

上記制御を行なうために第1図に示した従来のクーリン
グコンベア8上の搬送中の融材4に対し強制空冷処理を
行なうフロア100代りに可変電圧および可変周波数制
御(VVVFII′Q御)を行い得る第5図に示す如き
空気冷却プ訪ア20を設け、風量を任意にロエ変とする
In order to perform the above control, variable voltage and variable frequency control (VVVFII'Q control) is performed instead of the floor 100 that performs forced air cooling on the melt 4 being conveyed on the conventional cooling conveyor 8 shown in FIG. An air cooling fan 20 as shown in FIG. 5 is provided, and the air volume is arbitrarily varied.

更に冷却プロア20の吐出側ダクト22の側方もしくは
下部に?スト冷却装置24を設け、吐出側ダクト22中
に噴霧状ミストの吹込みを行ない、従来装置以上に強冷
却を行うことができるよう圧した。このミスト冷却装置
24は、吹込む2スト量はプロア20よりの風量に対応
して増減できる比例制御および搬送する線材4の温度、
成分分析1’[K応じてミスF濃度を制御し得る機能を
有している。
Furthermore, on the side or lower part of the discharge side duct 22 of the cooling prower 20? A mist cooling device 24 was installed, and atomized mist was blown into the discharge side duct 22 under pressure to achieve stronger cooling than conventional devices. This mist cooling device 24 has proportional control in which the amount of two strokes blown can be increased or decreased in accordance with the air volume from the proar 20, and the temperature of the wire rod 4 to be conveyed.
Component analysis 1' [K has a function of controlling the MisF concentration according to K.

次に本発明では線材コイルの1ビレット分全長なN分割
し、線材コイル内の機械的強度のばらつきを無くすため
クーリングコンベアなN分割し、各コンベアの速度制御
方式はワードレオナード制御を行ない連続的に速度変動
が行い得る機構とした。第5図には従来のクーリングコ
ンベア8を6分割し各々単独で駆動され、それぞれ前記
ブロア2G、ミスト冷却装置24を有する;/ベア8A
Next, in the present invention, the wire rod coil is divided into N parts each having the full length of one billet, and in order to eliminate variations in mechanical strength within the wire rod coils, it is divided into N parts using cooling conveyors, and the speed control method of each conveyor is Ward Leonard control. The mechanism was designed to allow speed fluctuations. In FIG. 5, a conventional cooling conveyor 8 is divided into six parts, each of which is driven independently, and each has the blower 2G and a mist cooling device 24; / Bear 8A
.

8B、8C,8D、8E、gFを設けた実施例を示した
An example in which 8B, 8C, 8D, 8E, and gF were provided was shown.

かくの如くして冷却工程中の分割された各コンベア8°
A〜8F上を搬送される線材4の温度および仕上り温度
を第4図に示す如き冷却速度パターン人に合致するよう
に各コンベアにて冷却風量、ミスト#度およびワードレ
オナード制御による;ンペア速度を制御することにより
冷却速度パターンAに極めて近似する制御冷却曲線Bを
得ることができ、線材;イル関および線材コイル内の機
械的強度のばらつきを最少限に抑制することができた。
In this way, each divided conveyor 8° during the cooling process.
The temperature and finish temperature of the wire rod 4 conveyed on A to 8F are controlled by the cooling air volume, mist degree, and Ward Leonard control on each conveyor to match the cooling rate pattern shown in Figure 4. By controlling it, it was possible to obtain a controlled cooling curve B that was very close to the cooling rate pattern A, and it was possible to suppress variations in mechanical strength within the wire rod and wire coil to a minimum.

本発明の実施練機を更に詳細KIIv4する。線材製品
の木材ビレット1童をW−とする、線材;イル4の温度
測定はラインの全長に夏って行なうが、この線材コイル
4の全長なN等分し、W/N毎の平均温度を図示しない
計算機で求め、その値を代表値とする。温度測定は第1
図に示す如く、圧電の仕上り温度を温度針12で測定し
、水冷ゾーン6を通過した線材4の温度は温度計14で
測定する。
The practicing machine of the present invention will be described in further detail KIIv4. The temperature of the wire rod 4 is measured along the entire length of the wire rod product, where the wood billet 1 of the wire rod product is designated as W-. is calculated using a calculator (not shown), and that value is taken as the representative value. Temperature measurement is the first
As shown in the figure, the finished temperature of the piezoelectric is measured with a temperature needle 12, and the temperature of the wire 4 that has passed through the water cooling zone 6 is measured with a thermometer 14.

本発明により6分割されたtIi5図で示す実施例では
コイル搬送コンベア8A〜8Fで搬送されつつ強制冷却
が行なわれている線材;イル4の温度はそれぞれ各分割
コンベア8A〜8Fの出側の温度計16A、 1 gI
B、 16C,1@D、 1 sg、tsPKよって測
温される。不発11においても第1図に示す仕上圧延機
2にて圧延された線材4がステル毫ア法による水冷ゾー
ン6にて温度調整されるまでの装置および工程は従来法
と同一であり、温度計12により水冷ゾーン6の水量制
御が行なわれ、水冷ゾーン6出儒における線材コイル4
の温度は一定に保たれる。しかし、水冷シー76出側の
850〜900℃範囲の温度域における温度のばらりt
は線材製品の機械的強度に影響しない。
In the embodiment shown in FIG. tIi5, which is divided into six according to the present invention, the wire is forcedly cooled while being conveyed by coil conveyors 8A to 8F; the temperature of coil 4 is the temperature at the exit side of each divided conveyor 8A to 8F Total 16A, 1 gI
B, 16C, 1@D, 1 sg, tsPK temperature is measured. In misexplosion 11, the equipment and process until the wire rod 4 rolled in the finishing mill 2 shown in FIG. 12 controls the amount of water in the water cooling zone 6, and the wire coil 4 in the water cooling zone 6 is
temperature is kept constant. However, the temperature variation in the temperature range of 850 to 900°C on the exit side of the water cooling seam 76
does not affect the mechanical strength of wire products.

最も重要なことは第2図にて示される直接)(テンテイ
ンダ(DP)および空気パテンティング(AP)の冷却
曲線において、800〜450℃の範囲の温度履歴であ
って、これが線材の機械的強度を決定する要因となるこ
とは周知のとおりである。
The most important thing is the temperature history in the range of 800 to 450°C in the cooling curves of direct (DP) and air patenting (AP) shown in Figure 2, which determines the mechanical strength of the wire. It is well known that this is a determining factor.

仕上圧延機2の最終スタンドのロール回転数をパルスイ
ネレータ−18で測定し、製品サイズに応じてW/N 
(kg ) K相当する長さを検出し、温度計14で連
続的に測定している温度から計算機により平均温fを求
めてN分割された長さの部分W/N (Ilg )部の
温度とする。かくの如くして線材の全長のW/N (k
g )毎の平均温度をtl、t8・・・1)(とじて検
出する。同様にN分割されたフィル搬送コンベア8^〜
8Pにおいて、各分割コンベアの出側に設けたそれぞれ
の温度計16A〜16Fで連続的に測温している温度よ
り計算機によりW/N(−)毎の平均温度を求め制御信
号として出す。
The roll rotation speed of the final stand of the finishing rolling mill 2 is measured by the pulse generator 18, and the W/N is adjusted according to the product size.
(kg) Detect the length corresponding to K, calculate the average temperature f using a computer from the temperature continuously measured with the thermometer 14, and calculate the temperature of the part W/N (Ilg) of the length divided into N. shall be. In this way, the total length of the wire W/N (k
tl, t8...1) (closed and detected. The fill conveyor 8^~ which is similarly divided into N parts)
At 8P, the average temperature for each W/N (-) is determined by a computer from the temperatures continuously measured by the respective thermometers 16A to 16F provided on the exit side of each divided conveyor, and is output as a control signal.

制御信号を出す時間間隔なΔT (lee )とし、分
割コンベア長さ  :jl(m) コイル直径     =D(鵬) コイルピッチ    :P(m) コンベア搬送速[:マ(m/1ec) 線材直径      :d(謙) 1分割分の線材長さ :L(m) コンベア上の1分割分のコイルリング数 二IIW/N
冨W(−)とすれば、 ただしρ:*材の比重     L ΔT 3I、 Xπ−”’ 従って16A〜16Fの各温襄計味、線材コイル4の先
端を検出後ΔT(Sec)のピッチ毎に平均温度を制御
信号として出せばよいこととなる。
The time interval for issuing the control signal is ΔT (lee), and the divided conveyor length: jl (m) Coil diameter = D (peng) Coil pitch: P (m) Conveyor conveyance speed [:ma (m/1ec) Wire diameter: d (ken) Wire length for 1 division: L (m) Number of coil rings for 1 division on the conveyor 2IIW/N
If the thickness is W (-), then ρ: *Specific gravity of material L ΔT 3I, All that is required is to output the average temperature as a control signal.

更に既に説明した如く線材コイルの機械的強度σtK及
ぼすC含有量、冷却速度Cv、ブロアの風圧P1仕上り
温度Tとの関係はそれぞれ(1)、(2)、(a)、 
(4)式にて示され、冷却速度Cvとコンベア速度Vと
の関係は俤)式で、冷却速Keyとミスト量Mdとの関
係は(62式で表わされるので、これらの関係式を用い
て第4図で示される選定された蓬準冷却曲−AK可能な
限り近似するように冷却速度を制御し制御冷却−dBを
得るものである。
Furthermore, as already explained, the relationships between the mechanical strength σtK of the wire coil, the C content, the cooling rate Cv, the blower wind pressure P1 and the finishing temperature T are (1), (2), (a), respectively.
The relationship between the cooling rate Cv and the conveyor speed V is expressed by Equation (4), and the relationship between the cooling rate Key and the mist amount Md is expressed by Equation (62), so using these relational expressions, The cooling rate is controlled to approximate the selected standard cooling curve -AK as much as possible, as shown in FIG. 4, to obtain a controlled cooling -dB.

第6図はミスト量およびミスト濃度制御装置を示す模式
図である。すなわち、各コンベア8A〜8Fの下方の冷
却プμア200側方もしくは下部にミスト発生装置24
を設は両者なiキ?−26で水と空気の割合すなわちミ
スト濃度が設定値になるように混合してずスト28とし
てダクト22に送り込むものであって、ダクト22には
空気、ミストのいずれか単独でも送り込めるようにダン
パー30が設けられている。
FIG. 6 is a schematic diagram showing a mist amount and mist concentration control device. That is, the mist generator 24 is installed on the side or below the cooling pool 200 below each conveyor 8A to 8F.
Should both be set up? -26, the ratio of water and air, that is, the mist concentration, is mixed to the set value, and then the mixture is sent to the duct 22 as a mist 28, and either air or mist can be sent to the duct 22 alone. A damper 30 is provided.

上記線材コイルの冷却速度の制御方法を具体的に説明す
る。
The method for controlling the cooling rate of the wire coil will be explained in detail.

ビレットの化学成分および線材直径dより上記計算機か
ら所定の機械的強度を得るべき基準冷却曲線Aが指示値
として与えられる。圧地終了後および水冷ゾーン6によ
る水冷後の温度がそれぞれ温度計12および14より出
力されるが、温度針14の出力値より本発明による冷却
曲線の制御が開始される。コイル先端よりΔTl (1
lec )経過後の線材4の温度が温度計16Aで測温
され、図示されていない計算機でΔT1間の平均温度が
出力されるので第4図で示される晶準冷却曲@A上の温
7116At、と測定した平均温度16At、を比較す
る。乙の時の温度差Δt、”1 sAtm−1sAt、
に応じて先ず次の搬送コンベア8Bのオス) IIi[
Mdで制御できるか否かな前記(6)式と設備能力より
判断しΔt1が正であれば冷却速Jf Cvを緩やかk
する方向、すなわち第6図に示す叱キサ−26に入って
来る水と空気の量を流量制御弁20A、24Aを絞るこ
とにより減少させるか、または水と空気の比を変えるた
めKいずれかの弁を絞る。このミスト量の制御で制御し
得ない範囲の温度差であると、次の制御因子としてコン
ベア速度Vおよびブロア風圧Pを(5)および(3)式
を用い【制御する。すなわち、Δ11が正であればコン
ベア速度Vおよびプロア風圧Pを減少させる。この値は
Δ1.の値に応じて冷却−線制御用コンピュータにプロ
グラミングされており、Δt1および仕上り温[TIK
応じて出力される。このコンピュータにて計算された値
は出力としてコイル搬送コンベア88に与えられる。
Based on the chemical composition of the billet and the wire diameter d, the reference cooling curve A for obtaining a predetermined mechanical strength is given as an instruction value by the above-mentioned calculator. The temperature after completion of compaction and after water cooling in the water cooling zone 6 is output from the thermometers 12 and 14, respectively, and the control of the cooling curve according to the present invention is started from the output value of the temperature needle 14. ΔTl (1
lec) The temperature of the wire 4 after the lapse of time is measured by the thermometer 16A, and the average temperature during ΔT1 is output by a calculator (not shown), so the temperature on the crystal quasi-cooling curve @A shown in FIG. 4 is 7116At. , and the measured average temperature of 16 At. Temperature difference Δt at time B, “1 sAtm-1sAt,
IIi[
Judging from equation (6) above and the equipment capacity whether or not it can be controlled by Md, if Δt1 is positive, the cooling rate Jf Cv should be moderated k
In order to reduce the amount of water and air entering the squirter 26 shown in FIG. 6 by throttling the flow control valves 20A and 24A, or to change the ratio of water and air, Squeeze the valve. If the temperature difference is in a range that cannot be controlled by controlling the amount of mist, the conveyor speed V and blower wind pressure P are controlled as the next control factors using equations (5) and (3). That is, if Δ11 is positive, the conveyor speed V and the proer wind pressure P are decreased. This value is Δ1. The cooling line control computer is programmed according to the value of Δt1 and the finishing temperature [TIK
will be output accordingly. The value calculated by this computer is given to the coil conveyor 88 as an output.

次に温度針168ICて#Ji!されたコイル先端から
ΔT、(Scc)間の平均温巻が計算機より出力され、
同様に第4図で示される基準冷却曲巌A上の1Mf16
nt1と測定した平均温[16Bt、とを比較し、その
温度差Δtl−15atl−168ftが正であれば上
記と同様の制御が行なわれ、その計算値がコイル搬送コ
ンベア8CK指示される。
Next, temperature needle 168IC #Ji! The average temperature winding from the tip of the coil to ΔT, (Scc) is output from the computer,
Similarly, 1Mf16 on the standard cooling curve A shown in FIG.
nt1 and the measured average temperature [16 Bt] are compared, and if the temperature difference Δtl-15atl-168ft is positive, the same control as above is performed, and the calculated value is instructed to the coil conveyor 8CK.

反対にΔhが負であると前記制御要素の建スト蓋Md、
:yyベア速fV、プロア風圧Pを逆)値、すなわち冷
却を強める方向に制御する。この値&ま上記温度差△t
!、仕上り@度T!に応じて冷却曲線制御用コンピュー
タにて計算され出力される。
On the other hand, if Δh is negative, the control element's erected lid Md,
:yy Bear speed fV and Proa wind pressure P are controlled to inverse) values, that is, in a direction that strengthens cooling. This value & the above temperature difference △t
! , Finish @ degree T! The cooling curve control computer calculates and outputs the cooling curve accordingly.

かくの如(、各温度計16A〜16Fの温度検出が制御
すべき温度域450℃以下になるまで継続され、指示値
として与えられた第4図で示す基準冷却曲線人に実績値
が各温度測定点で合致するようにミスト量Md、コンベ
ア速度マおよびプロア風圧Pな制御する。上記制御によ
りビレットの成分分析値および熱間仕上り温度Tのばら
つきを線材コイル4の冷却速度を制御することKより吸
収し、均一な機械的強度を有する線材;イルを得ること
が可能となった。
As described above, the temperature detection of each thermometer 16A to 16F continues until the temperature range to be controlled falls below 450°C, and the actual value is determined by the standard cooling curve shown in Figure 4 given as the indicated value for each temperature. The mist amount Md, conveyor speed Md, and proer wind pressure P are controlled so that they match at the measurement points.The above control controls the variation in the component analysis value of the billet and the hot finishing temperature T by controlling the cooling rate of the wire coil 4. It has become possible to obtain a wire rod that absorbs more water and has uniform mechanical strength.

上記実施態様より明らかな如く、線材コイルの熱処坤は
従米同−サイズ、同−四ット内では同一の冷却条件で実
施していたが、実際は同一ロット内でも線材成分分析値
および熱間仕上り温度にばらつきがあり、従って日ット
全体として均一な機械的強度を保証し得なかった欠点を
、不発f!AKよる方法によって解消することができ、
同一ロット内の線材コイル間および縁材コイル内で機械
的強度のばらつきの極めて少い線材を供給することがで
きる効果を収めた。
As is clear from the above embodiment, the heat treatment of wire rod coils was carried out under the same cooling conditions within the same size and four tons, but in reality, even within the same lot, the wire rod component analysis value and the hot temperature The disadvantage of not being able to guarantee uniform mechanical strength as a whole due to variations in the finishing temperature is due to unexploded f! It can be resolved by the AK method,
We have achieved the effect of being able to supply wire rods with very little variation in mechanical strength between wire rod coils and within edge material coils in the same lot.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱間圧延鋼線材の直接熱処理の従来方法および
装置を示す模式断面図、第2図は蔦炭素鋼の恒温妾変態
曲線ならびに線材に圧延彼の冷却速度パターンの一例を
示す線図、第3図(イ)、(B)、(qlo、(勾、(
ト)はそれぞれ線材の直接熱処理時の抗張力と含有C%
、抗張力と冷却速度、抗張力とプロア風圧、抗張力と仕
上り温度、線材冷却時の冷却速度とコンベア速度、冷却
速度とンスト菫との関係を示す線図、第4図は本発明の
線材のik接熟熱処理方法実施例における冷却制御方法
を示す冷却曲線、第5図は本発明による熱間圧延鋼線材
の直接熱処理方法の実施装置を示す模式断面図、1g6
図は本発明の実施に使用するミスト発生器の構成および
作用を示す説明図である。 2・−仕上げ圧延機、4・・・線材 6・−水冷ゾーン、 8・・・縁材搬送コンベア8A、
8B、80,8D、8E、8F・・・分割コンベア10
・・・空冷プロア 12.14.16A116B% 1@C,1sD。 16E、16F・・・眞度計 20・・・空冷プロア、24・・・オスト発生器26・
・・ミキサー、  28・・・ミスト代理人  中 路
 武 雄 第1図 Iり 第2図 時間(聞C)
Figure 1 is a schematic cross-sectional view showing a conventional method and apparatus for direct heat treatment of hot-rolled steel wire, and Figure 2 is a diagram showing an example of the isothermal transformation curve of carbon steel and the cooling rate pattern of the wire rod. , Figure 3 (A), (B), (qlo, (gradient, (
g) are the tensile strength and C% content during direct heat treatment of the wire rod, respectively.
, a diagram showing the relationship between tensile strength and cooling rate, tensile strength and proa wind pressure, tensile strength and finishing temperature, cooling rate and conveyor speed during wire cooling, cooling rate and instant violet, Figure 4 shows the ik contact of the wire of the present invention. Cooling curve showing the cooling control method in the embodiment of the ripe heat treatment method, FIG. 5 is a schematic cross-sectional view showing the implementation apparatus of the direct heat treatment method for hot rolled steel wire according to the present invention, 1g6
The figure is an explanatory diagram showing the configuration and operation of a mist generator used in implementing the present invention. 2.-Finish rolling machine, 4.-Wire rod 6.-Water cooling zone, 8..Edge material conveyor 8A,
8B, 80, 8D, 8E, 8F...Divided conveyor 10
...Air-cooled Proa 12.14.16A116B% 1@C, 1sD. 16E, 16F... Accuracy meter 20... Air cooling proa, 24... Ost generator 26.
...Mixer, 28...Mist agent Takeo Nakaji Figure 1 Figure 2 Time (Library C)

Claims (1)

【特許請求の範囲】[Claims] (1)  熱間圧延された線材をコンペア上に相重な。 り合ったリング状態で載置しコンペアにて移送しながら
冷却し線材コイル間および線材フィル内の機械的性質を
均一とする熱間圧延線材の直接熱処理方法において、1
0ツト内の前記線材素材ビレットをほぼ同一化学成分を
有する群毎に区分する工程と、前記ビレットの成分分析
値、線材の圧嶌仕上り温度および冷却速度と機械的強度
との下記関係式より前記各群の冷却速度パターンを選定
する工程と、前記各ビレットからの線材コイルの全長を
複数に等分割し各区分毎の冷却工程中の温度および仕上
り温度を前記冷却速度パターンに合致するように冷却風
量、コンベア送り速度およびオス)ml&な制御する工
程と、を有しズ成ることを特徴とする熱間圧延鋼線材の
直接熱処理方法。 配 ff1−1 1zsxc+ao       ・ (1
)σt−ZOCv+84          +・・(
2)σi−0.25P+72         ・・・
(3)C重 ■ α012T+87         
 ・・・(4)Cv−17,4Y+14       
 −(5)4 Cy=913 e   −8113・・・(6)(11
,h(2)、(3)、(4)、(5)、(6)式におい
て、#t:抗張力(”g/−) C:ビレット中のC含有量(重量%) P ニブロア風圧(−水柱) T :仕上り温iE(℃) Cv:線材コイルの冷却速度(℃/ Iec )マ :
3ノベア速度(17口() Md : #スト量(’/all・min )
(1) Hot-rolled wire rods are stacked on a comparer. In a direct heat treatment method for hot-rolled wire rods, in which the mechanical properties between the wire coils and within the wire rod fill are made uniform by cooling the wire rods by placing them in a matched ring state and transferring them by a comparer.
From the step of dividing the wire material billets in the 0-piece into groups having almost the same chemical composition, and the following relational expression between the component analysis value of the billet, the compression finishing temperature and cooling rate of the wire material, and the mechanical strength, A process of selecting a cooling rate pattern for each group, dividing the entire length of the wire rod coil from each billet into multiple equal parts, and cooling the temperature during the cooling process and finishing temperature of each division to match the cooling rate pattern. 1. A method for direct heat treatment of hot-rolled steel wire, comprising a step of controlling air volume, conveyor feed rate, and (m). Distribution ff1-1 1zsxc+ao ・ (1
) σt-ZOCv+84 +...(
2) σi-0.25P+72...
(3) C weight ■ α012T+87
...(4)Cv-17,4Y+14
-(5)4 Cy=913 e -8113...(6)(11
, h (2), (3), (4), (5), (6) where #t: Tensile strength (''g/-) C: C content in billet (wt%) P Niblower wind pressure ( - water column) T: Finished temperature iE (°C) Cv: Cooling rate of wire coil (°C/Iec) Ma:
3 Novea speed (17 mouths () Md: #Stroke amount ('/all・min)
JP18496781A 1981-11-18 1981-11-18 Direct heat treatment for hot rolled steel wire rod Granted JPS5887232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18496781A JPS5887232A (en) 1981-11-18 1981-11-18 Direct heat treatment for hot rolled steel wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18496781A JPS5887232A (en) 1981-11-18 1981-11-18 Direct heat treatment for hot rolled steel wire rod

Publications (2)

Publication Number Publication Date
JPS5887232A true JPS5887232A (en) 1983-05-25
JPS6219489B2 JPS6219489B2 (en) 1987-04-28

Family

ID=16162478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18496781A Granted JPS5887232A (en) 1981-11-18 1981-11-18 Direct heat treatment for hot rolled steel wire rod

Country Status (1)

Country Link
JP (1) JPS5887232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775251B1 (en) * 2001-12-24 2007-11-12 주식회사 포스코 Apparatus for moving and cooling alloy steel in softening heat treating process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775251B1 (en) * 2001-12-24 2007-11-12 주식회사 포스코 Apparatus for moving and cooling alloy steel in softening heat treating process

Also Published As

Publication number Publication date
JPS6219489B2 (en) 1987-04-28

Similar Documents

Publication Publication Date Title
CN109694946A (en) The quickly apparatus and method of heating cold-strip steel
JPS60174833A (en) Cooling method of hot steel sheet
US4060428A (en) Process for forming ferrous billets into finished product
KR101149195B1 (en) Accelerated cooling control apparatus for hot rolled steel sheets and method thereof
CN108136458A (en) Endless rolling device and method
JPS5887232A (en) Direct heat treatment for hot rolled steel wire rod
JPH0566209B2 (en)
US3281918A (en) Continuous cladding system for bimetallic rod
JPH0653285B2 (en) Method of controlling product tension in rolling mill
JPS60243226A (en) Method and device for controlling quality of hot rolled material
JP3081729B2 (en) Temperature control method in thermomechanical treatment of seamless steel pipe
JP2002126814A (en) Hot rolling method
JPH0115324B2 (en)
JPS61266524A (en) Method for controlling cooling of steel product
JPH0857523A (en) Controlled cooling method
JPS6410571B2 (en)
JP4964061B2 (en) Control method for steel wire rod cooling
KR100451823B1 (en) Slow Cooling Method For Hot Rolled Wire Rod
RU2040558C1 (en) Method of treatment of rolled products of carbon and low-alloy steels
JPS63118008A (en) Cooling method for high temperature steel plate
JPS59226125A (en) Build-up preventive device for hearth roll in continuous annealing furnace
JPS62240722A (en) Device for direct cooling and recuperating wire bar after rolling
JPS5850296B2 (en) Uniform cooling method for steel pipes
JPS5927641B2 (en) Manufacturing method and equipment for small diameter wire
JPS6235014Y2 (en)