JPS588383B2 - Separate method for obtaining glycine or alanine - Google Patents

Separate method for obtaining glycine or alanine

Info

Publication number
JPS588383B2
JPS588383B2 JP10662574A JP10662574A JPS588383B2 JP S588383 B2 JPS588383 B2 JP S588383B2 JP 10662574 A JP10662574 A JP 10662574A JP 10662574 A JP10662574 A JP 10662574A JP S588383 B2 JPS588383 B2 JP S588383B2
Authority
JP
Japan
Prior art keywords
acid
glycine
alanine
aqueous solution
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10662574A
Other languages
Japanese (ja)
Other versions
JPS5134112A (en
Inventor
古屋修
三原允武
保崎吉彦
和田紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP10662574A priority Critical patent/JPS588383B2/en
Priority to GB3822275A priority patent/GB1472840A/en
Priority to FR7528619A priority patent/FR2285375A1/en
Priority to DE19752541677 priority patent/DE2541677C3/en
Priority to NL7511023A priority patent/NL183184C/en
Publication of JPS5134112A publication Critical patent/JPS5134112A/en
Publication of JPS588383B2 publication Critical patent/JPS588383B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、グリシンまたはアラニン及びイミノジカルボ
ン酸をアルカリ又はアルカリ士類金属塩の形で含有する
水溶液から、中和工程及び加熱濃縮、冷却による分別結
晶工程を経てグリシンまたはアラニンを分別取得する方
法において、該分別結晶工程で排出される母液に特定の
処理を施した後これを循環使用することにより効率よく
且つ操作上の困難をなくしてグリシンまたはアラニンを
分別取得する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to producing glycine or alanine from an aqueous solution containing glycine or alanine and iminodicarboxylic acid in the form of an alkali or alkali metal salt through a neutralization process, heating concentration, and fractional crystallization process by cooling. A method for fractionally obtaining alanine, in which the mother liquor discharged in the fractional crystallization step is subjected to a specific treatment and then recycled, thereby efficiently and without operational difficulties. Regarding.

グリシンまたはアラニンは、対応するアミン二トリルを
水性媒体中でアルカリ(またはアルカリ土類)金属水酸
化物により加水分解し、この液を無機酸で中和すること
によって生成させ、次いで分別結晶により副生物から分
別して取得することができる。
Glycine or alanine is produced by hydrolyzing the corresponding amine nitrile with an alkali (or alkaline earth) metal hydroxide in an aqueous medium, neutralizing this liquor with an inorganic acid, and then by fractional crystallization. It can be obtained by separating it from living organisms.

グリシイまたはアラニン及びイミノジカルボン酸をアル
カリ(またはアルカリ士類)金属塩の形で含有する水溶
液は、上記加水分解工程の結果として得られるが、該イ
ミノジカルボン酸成分はニトリルの加水分解時にその2
分子から脱アンモニア反応によって副生ずる物質である
ことが見出された。
An aqueous solution containing glycyol or alanine and iminodicarboxylic acid in the form of alkali (or alkaline metal) metal salts is obtained as a result of the above hydrolysis step, the iminodicarboxylic acid component being dissolved during the hydrolysis of the nitrile.
It was discovered that this substance is a by-product of the deammoniation reaction from molecules.

以下本発明を更に詳しく説明する。The present invention will be explained in more detail below.

記述を具体的に且つ簡単にするため、アルカリ(または
アルカリ十類)金属水酸化物として苛性ソーダ、中和用
無機酸として硫酸を使用してグリシンを分別取得する場
合を例にとり説明する。
In order to make the description concrete and simple, an example will be described in which glycine is obtained by fractionation using caustic soda as an alkali (or alkaline class 10) metal hydroxide and sulfuric acid as a neutralizing inorganic acid.

グリシノニトリル(これは例えばホルマリンと青酸とを
反応させてグリコロニトリルをつくり、次いでアンモニ
アを用いアミン化することにより水溶液の形で得ること
ができる)に化学量論量乃至僅かに過剰の苛性ソーダを
加え水溶液中でアルカリ加水分解すると、グリシンのナ
トリウム塩及び副生物として少量のイミノジ酢酸ナトリ
ウム塩が生成され、これらを含む水溶液が得られる。
Glycinonitrile (which can be obtained in the form of an aqueous solution, for example, by reacting formalin with hydrocyanic acid to form glycolonitrile, followed by amination with ammonia) with a stoichiometric amount to a slight excess of caustic soda. When added and subjected to alkaline hydrolysis in an aqueous solution, a sodium salt of glycine and a small amount of sodium iminodiacetic acid salt are produced as by-products, and an aqueous solution containing these is obtained.

この水溶液に硫酸を加えてpH約6〜7に中和すると、
遊離のグリシン、硫酸ナトリウム及びイミノジ酢酸モノ
ナトリウム塩を含む水溶液が得られる。
When sulfuric acid is added to this aqueous solution to neutralize it to a pH of approximately 6 to 7,
An aqueous solution containing free glycine, sodium sulfate and iminodiacetic acid monosodium salt is obtained.

次いでこれを加熱濃縮して硫酸ナトリウムを晶出させ、
熱時涙過し、沢液を冷却してグリシンを晶出させこれを
分別取得することができる。
Next, this is heated and concentrated to crystallize sodium sulfate,
When hot, the lachrymal fluid is filtered and cooled to crystallize glycine, which can be obtained separately.

(その方法は本願と同日付出願に係る「グリシンの分別
取得方法」と題する明細書中に詳しく説明されている。
(The method is explained in detail in the specification entitled "Method for Separately Obtaining Glycine" filed on the same date as the present application.

)さて、上記分別結晶工程で排出される母液中には、な
おグリシン及び硫酸ナトリウムが残存しているから、こ
の母液を循環して原水溶液と合し繰返して分別結晶工程
に付することか考えられる。
) Now, since glycine and sodium sulfate still remain in the mother liquor discharged in the above fractional crystallization process, I am thinking of circulating this mother liquor, combining it with the raw aqueous solution, and repeatedly subjecting it to the fractional crystallization process. It will be done.

然るに実際には、母体をそのまま循環すると分別結晶工
程で種々の支障が起りうまくいかない。
However, in reality, if the parent material is recycled as it is, various problems will occur in the fractional crystallization process and it will not work.

その原因を探策したところ、母液中には溶解度の大きい
イミノジ酸酸モノナトリウム塩のほぼ全量が溶解残存し
ており、これが母液の循環使用により次第に液中に蓄積
されてゆき、硫酸ナトリウム及びグリシンの分別晶出に
悪い影響を与えることが判った。
When we investigated the cause, we found that almost all of the highly soluble monosodium iminodiacid salt remained dissolved in the mother liquor, and as the mother liquor was used in circulation, this gradually accumulated in the solution, resulting in sodium sulfate and glycine. It was found that this had a negative effect on the fractional crystallization of

即ちイミノジ酢酸モノナトリウム塩の液中濃度が例えば
約6%以上になると、硫酸ナトリウム及びグリシンの溶
解度に著しい変化を来たし、一回の分別晶出操作で取得
されるグリシンの取得率が低下すること、晶出速度が遅
くなり過飽和度が大きくなること、及び結晶粒径が排常
に細かにガってろ過操作を困難ならしめることが見出さ
れた。
That is, when the concentration of iminodiacetic acid monosodium salt in the liquid becomes, for example, about 6% or more, the solubility of sodium sulfate and glycine changes significantly, and the acquisition rate of glycine obtained in one fractional crystallization operation decreases. It was found that the crystallization rate becomes slow and the degree of supersaturation increases, and the crystal grain size becomes extremely fine, making filtration operations difficult.

原水溶液中の副生イミノジ酢酸モノナトリウム塩の含有
量は通常6%以下であり、上記母体の循環合流によって
その蓄積濃度を過大ならしめないためには、母体の一部
を排棄すればよいわけであるが、それでは母液中のグリ
シン残存量も損失することになる。
The content of by-product iminodiacetic acid monosodium salt in the raw aqueous solution is usually 6% or less, and in order to prevent the accumulated concentration from becoming excessive due to the circulation and merging of the parent substances, it is sufficient to discard a part of the parent substance. However, in this case, the remaining amount of glycine in the mother liquor will also be lost.

そこで本発明者らは更に研究を進めた結果、イミノジ酢
酸モノナトリウム塩水溶液の液性を酸性にするとモノナ
トリウム塩は遊離のイミノジ酢酸となり、そしてこのイ
ミノジ酢酸はモノナトリウム塩よりも水に対する溶解度
が小さく且つその溶解度は液のpHによって可成り変化
する事実を見出した。
As a result of further research, the present inventors found that when the aqueous solution of iminodiacetic acid monosodium salt was made acidic, the monosodium salt became free iminodiacetic acid, and this iminodiacetic acid had a higher solubility in water than the monosodium salt. It has been found that the solubility is small and its solubility varies considerably depending on the pH of the liquid.

イミノジ酢酸の各種pHの水に対する溶解度(20℃)
を実測した結果は次の通りである。
Solubility of iminodiacetic acid in water at various pHs (20°C)
The results of the actual measurements are as follows.

上記の結果から、中和点はpH2.4付近であること、
そしてこの中和点付近、例えば29〜1.9即ち2.4
±0.5においては、殊にその溶解度が著しく小さいこ
とが判る。
From the above results, the neutralization point is around pH 2.4,
Near this neutralization point, for example, 29 to 1.9 or 2.4
It can be seen that especially at ±0.5, the solubility is extremely low.

これはイミノジプロピオン酸においても同様である。This also applies to iminodipropionic acid.

かくして、上記分別結晶工程から排出される母液を、イ
ミノジ酢酸の中和点付近まで酸性化すれば、含有モノナ
トリウム塩は遊離酸の形で相当多量に析出しこれを除去
しうろことを知った。
Thus, we learned that if the mother liquor discharged from the above-mentioned fractional crystallization step is acidified to a point close to the neutralization point of iminodiacetic acid, a considerable amount of the monosodium salt contained therein will precipitate in the form of free acid, which can then be removed. .

一方グリシンは、その溶解度に殆ど変化が起らず、その
際同時に晶出して損失するようなことはないことが認め
られた。
On the other hand, it was found that glycine showed almost no change in its solubility and was not simultaneously crystallized and lost.

但し硫酸ナトリウムはこの際飽和しているので、イミノ
ジ酢酸モノナトリウムから遊離したナトリウム分だけ新
たに硫酸ナトリウムが生成するのでその生成分が析出す
る。
However, since the sodium sulfate is saturated at this time, new sodium sulfate is generated by the amount of sodium liberated from monosodium iminodiacetate, and this product precipitates.

更にこの酸性化によって母液中に含まれる他の微量の不
純分もイミノジ酢酸と共に析出除去される。
Furthermore, by this acidification, trace amounts of other impurities contained in the mother liquor are also precipitated and removed together with iminodiacetic acid.

こうしてイミノジ酢酸及びその他の不純分の含有量が低
下された母液を、原水溶液即ちグリシンとイミノジ酢酸
とをナトリウム塩の形で含む水溶液へ添加合流し、液中
のイミノジ酢酸成分の濃度を高めることなしに中和工程
、分別結晶工程を円滑に繰返し実施することができるの
である。
The mother liquor whose content of iminodiacetic acid and other impurities has been reduced in this way is added to the raw aqueous solution, that is, an aqueous solution containing glycine and iminodiacetic acid in the form of sodium salts to increase the concentration of the iminodiacetic acid component in the liquid. The neutralization step and the fractional crystallization step can be smoothly and repeatedly carried out without the need for oxidation.

なお、母液は必ずしもその全量を酸性化処理する必要は
なく、中和工程に付されるべき液中のイミノジ酢酸成分
の濃度が過大にならない範囲において、母液の一部をと
り酸性化処理してもよい。
In addition, it is not necessarily necessary to acidify the entire amount of the mother liquor; a portion of the mother liquor may be acidified as long as the concentration of the iminodiacetic acid component in the liquid to be subjected to the neutralization process does not become excessive. Good too.

上記イミノジ酢酸成分除去のため酸性化に使用された硫
酸量は、そのまま損失するのではなく、ほぼ全量が原水
溶液中へ持ち越されるのであるから、中和工程で使用さ
れるべき硫酸の量はその分だけ少くてよいことになり、
全体として使用される硫酸が無駄になることはない。
The amount of sulfuric acid used for acidification to remove the iminodiacetic acid component is not lost as is, but almost all of it is carried over into the raw aqueous solution, so the amount of sulfuric acid that should be used in the neutralization process is It will be better if there is less
The sulfuric acid used in total is not wasted.

以上母液を循環し原水溶液中へ加えて行なう連続方式の
場合について記述したが、母液だけを同様に酸性化処理
して、グリシンの晶出が可能な限り繰返し実施しうろこ
とはもちろんである。
The case of a continuous method in which the mother liquor is circulated and added to the raw aqueous solution has been described above, but it goes without saying that only the mother liquor can be acidified in the same manner and the crystallization of glycine can be repeated as many times as possible.

以上グリンンについて説明したが、アラ二ンの場合も事
情は全く同様であり、同じ方法を適用することができる
Although the explanation has been given above regarding green, the situation is exactly the same in the case of alanine, and the same method can be applied.

アラニンの場合、対応するイミノジカルボン酸成分は、
イミノジプロピオン酸である。
In the case of alanine, the corresponding iminodicarboxylic acid component is
It is iminodipropionic acid.

実施例 1 グリコロニトリル水溶液(グリコロニトリル48,9重
量%、青酸0,2重量%、残り水)とアンモニアから常
法( J.Am, Chem.Soc , 5 6、2
1 9 7 ( 1 9 3 4. ) )に従って
グリシノニトリル水溶液を製造した。
Example 1 From a glycolonitrile aqueous solution (48.9% by weight of glycolonitrile, 0.2% by weight of hydrocyanic acid, remaining water) and ammonia (J. Am, Chem. Soc, 56, 2)
An aqueous glycinonitrile solution was prepared according to 197 (1934.).

得られた僅かに褐色の水溶液を常圧に戻して未反応アン
モニアを除いた後、苛性ソーダ48.0重量%の水溶液
を、グリシノニトリル1モル当り1.05モルの割合で
加え、100℃で1時間反応させて、次の組成のグリシ
ンナトリウム塩水溶液を得た。
After returning the resulting slightly brown aqueous solution to normal pressure and removing unreacted ammonia, an aqueous solution of 48.0% by weight of caustic soda was added at a ratio of 1.05 mol per 1 mol of glycinonitrile, and the mixture was heated at 100°C. After reacting for 1 hour, an aqueous glycine sodium salt solution having the following composition was obtained.

グリシンナトリウム塩 34.4重量%イミノジ
酢酸ジナトリウム塩 1.1〃苛性ソーダ
1.3〃水 63
.2重量%この水溶液を原液として用い、グリシンを分
別取得するため次の連続工程にかけた。
Glycine sodium salt 34.4% by weight Iminodiacetic acid disodium salt 1.1 Caustic soda
1.3 Water 63
.. This 2% by weight aqueous solution was used as a stock solution and subjected to the next continuous process to fractionally obtain glycine.

第1図はこの工程を示すフローシートである。FIG. 1 is a flow sheet showing this process.

A.中和王程: 上記原液と下記の分別晶出工程及び母液処理工程を経て
得られる循環母液とを合し、これに98%硫酸を加えて
pH6〜7に中和する。
A. Neutralization process: The above stock solution and the circulating mother liquor obtained through the following fractional crystallization process and mother liquor treatment process are combined, and 98% sulfuric acid is added thereto to neutralize to pH 6-7.

B.分別晶出工程: 上記中和液を沸点で加熱濃縮し先ず硫酸ナトリウムを晶
出させ、グリシンが晶出し初める直前で濃縮を止め、熱
時遠心分離して晶出硫酸ナトリウムを除き、ろ液を約3
4℃まで冷却してグリシンを晶出させ、これを遠心分離
取得し、ろ液として分別晶出母液を得る。
B. Fractional crystallization step: The above neutralized solution is heated and concentrated at the boiling point to first crystallize sodium sulfate, the concentration is stopped just before glycine begins to crystallize, centrifugation is performed while hot to remove the crystallized sodium sulfate, and the filtrate is Approximately 3
Cool to 4°C to crystallize glycine, which is centrifuged to obtain a fractionated crystallization mother liquor as a filtrate.

C.母液処理工程: 上記母液の一部に98%硫酸を加えてpH約2.4まで
酸性化し、析出するイミノジ酢酸及び硫酸ナトリウムを
P別し、沢液を母液の残部と併せ循環母液とする。
C. Mother liquor treatment step: Add 98% sulfuric acid to a portion of the mother liquor to acidify it to pH approximately 2.4, separate the precipitated iminodiacetic acid and sodium sulfate with P, and combine the slurry with the remainder of the mother liquor to form a circulating mother liquor.

これを原液と合し上記A.中和工程にかける。Combine this with the stock solution and proceed as described in A above. Subject to neutralization process.

上記各工程は円滑に行なわれ、これら工程における物質
収支は表1に示1通りであった。
Each of the above steps was carried out smoothly, and the material balance in these steps was as shown in Table 1.

表1中のライン番号は第1図中に示したライン番号に対
応し、そして表中の数値はkg/hrで表わした各物質
の送給速度であり、カツコ内の数値は%で表わした液中
のそれぞれの物質の濃度である。
The line numbers in Table 1 correspond to the line numbers shown in Figure 1, and the numbers in the table are the feed rates of each substance expressed in kg/hr, and the numbers in brackets are expressed in %. It is the concentration of each substance in the liquid.

実施例 2 ラクトニトリルの80%水溶液とアンモニアとを反応さ
せてα−アミノプロピオニトリル水溶液をつくり、未反
応アンモニアを除去した後、実施例1と同様に苛性ソー
ダで加水分解してα−アラ二ンナトリウム塩の水溶液を
つくり、これを原液として用い、以下実施例1の記載と
同様にして、アラニンを分別取得する工程にかげた。
Example 2 An 80% aqueous solution of lactonitrile and ammonia were reacted to create an aqueous α-aminopropionitrile solution, and after removing unreacted ammonia, it was hydrolyzed with caustic soda in the same manner as in Example 1 to obtain α-alanitrile. An aqueous solution of alanine sodium salt was prepared, and this was used as a stock solution, and the same procedure as described in Example 1 was carried out to carry out the step of fractionating and obtaining alanine.

各工程は極めて順調に行なわれた。Each process was carried out extremely smoothly.

実施例1と同様の各工程における物質収支は表2に示す
通りであった。
The material balance in each step similar to Example 1 was as shown in Table 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の工程の一伊リを示すフローシート
である。
FIG. 1 is a flow sheet showing one step of the process of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1(a)グリシンまたはアラ二ン成分及びイミノジカル
ボン酸成分をいずれもアルカリ(またはアルカリ士類)
金属塩の形で含有する原水溶液にその液性をpH6〜7
まで中和するのに必要量の無機酸を加えて中和し、(b
)得られたグリシンまたはアラニン、無機酸のアルカリ
(またはアルカリ士類)金属塩及びイミノジカルボン酸
モノアルカリ(またはアルカリ十類)金属塩を含有する
水溶液を加熱濃縮し該無機酸塩を晶出させ次いで冷却し
グリシンまたはアラニンを晶出させることから成る分別
結晶工程に付してグリシンまたはアラニンを分別取得す
る方法において、(b)の分別結晶工程で得られるなお
残存量のグリシンまたはアラニン、無機酸塩及びイミノ
ジカルボン酸モノアルカリ(またはアルカリ士類)金属
塩を含有する分別結晶母液を、上記(a)の中和工程で
用いられる中和に必要量の無機酸の一部を用いて該イミ
ノジカルボン酸成分が遊離酸の形で存在する中和点付近
のpH2.4±0.5まで酸性化し、その際遊離酸の形
で析出するイミノジカルボン酸成分を沢去して液中のイ
ミノジカルボン酸成分の含有量を低下させ、この沢液を
循環して上記(a)工程の原水溶液に合し、これに上記
中和に必要量の無機酸の残部を加えてpH6〜7に中和
し、中和液を再び(b)の分別結晶工程に付してグリシ
ンまたはアラニンを晶出させることを特徴とする、グリ
シンまたはアラニンの分別取得法。
1(a) Glycine or alanine component and iminodicarboxylic acid component are both alkali (or alkali)
Adjust the pH of the raw aqueous solution containing the metal salt to pH 6 to 7.
Neutralize by adding the necessary amount of inorganic acid to neutralize up to (b
) The obtained aqueous solution containing glycine or alanine, an alkali (or alkali metal) metal salt of an inorganic acid, and a monoalkali (or alkali metal 10) metal salt of iminodicarboxylic acid is heated and concentrated to crystallize the inorganic acid salt. In a method for fractionally obtaining glycine or alanine by subjecting it to a fractional crystallization step consisting of subsequent cooling and crystallization of glycine or alanine, the remaining amount of glycine or alanine obtained in the fractional crystallization step (b), the inorganic acid The fractionated crystallization mother liquor containing the monoalkali (or alkali metal) metal salt of iminodicarboxylic acid is treated with a portion of the inorganic acid in the amount necessary for neutralization used in the neutralization step (a) above. The dicarboxylic acid component is acidified to pH 2.4±0.5 near the neutralization point where it exists in the form of free acid, and the iminodicarboxylic acid component that precipitates in the form of free acid is washed away and the iminodicarboxylic acid in the liquid is removed. Reduce the content of the acid component, circulate this solution and combine it with the raw aqueous solution in step (a) above, and add the remainder of the inorganic acid in the amount necessary for the above neutralization to neutralize it to pH 6 to 7. and then subjecting the neutralized solution to the fractional crystallization step (b) again to crystallize glycine or alanine.
JP10662574A 1974-09-18 1974-09-18 Separate method for obtaining glycine or alanine Expired JPS588383B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10662574A JPS588383B2 (en) 1974-09-18 1974-09-18 Separate method for obtaining glycine or alanine
GB3822275A GB1472840A (en) 1974-09-18 1975-09-17 Method of separating and purifying glycine
FR7528619A FR2285375A1 (en) 1974-09-18 1975-09-18 A-AMINOACID SEPARATION AND PURIFICATION PROCESS
DE19752541677 DE2541677C3 (en) 1974-09-18 1975-09-18 Process for the production of glycine
NL7511023A NL183184C (en) 1974-09-18 1975-09-18 PROCESS FOR FRACTIONING AND EXTRACTING GLYCINE FROM A SOLUTION OF GLYCINE, SODIUM SULPHATE AND MONSODIUM IMINODIACETATE IN WATER.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10662574A JPS588383B2 (en) 1974-09-18 1974-09-18 Separate method for obtaining glycine or alanine

Publications (2)

Publication Number Publication Date
JPS5134112A JPS5134112A (en) 1976-03-23
JPS588383B2 true JPS588383B2 (en) 1983-02-15

Family

ID=14438279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10662574A Expired JPS588383B2 (en) 1974-09-18 1974-09-18 Separate method for obtaining glycine or alanine

Country Status (1)

Country Link
JP (1) JPS588383B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109776344B (en) * 2017-11-13 2022-01-18 秦皇岛华恒生物工程有限公司 Method for separating L-alanine and lactic acid by electrodialysis

Also Published As

Publication number Publication date
JPS5134112A (en) 1976-03-23

Similar Documents

Publication Publication Date Title
RU2176240C2 (en) Method of synthesis of d,l-methionine or its salt (variants)
CN106349131B (en) A kind of isolation and purification method of methionine
US3393234A (en) Purification of an alkali metal salt of nitrilotriacetic acid
US5312973A (en) Process for producing n-phosphono-methyl-imino-diacetic acid
US4299978A (en) Process for separating iminodiacetic acid from aqueous glycine solution
JPH0219820B2 (en)
US3215736A (en) Preparation of amino acids
JPS588383B2 (en) Separate method for obtaining glycine or alanine
US5587512A (en) Process for obtaining [S,S]-ethylenediamine-n,n'-disuccinic acid from a salt solution of such acid and l-aspartic acid
KR950001631B1 (en) Process for preparing glycine
JP3932755B2 (en) Process for producing 2-hydroxy-4-methylthiobutanoic acid
US4560516A (en) Process for the production of ethylenediamine tetraacetonitrile
US3931307A (en) Process for the stabilization of methionine
US2178510A (en) Removal of chlorides from solutions of amino acids
JPS6120539B2 (en)
JPS588384B2 (en) Separation method of glycine and iminodiacetic acid
JPS6327472A (en) Manufacture of sodium salt aqueous solution of methionine
US4066688A (en) Chemical process
JPS6129331B2 (en)
JP2801781B2 (en) Glycine production method
US3174986A (en) Process for resolving zinc racemic glutamate
US3355485A (en) Preparation of sodium cyclohexyl sulfamate free of sulfate ions
US3917684A (en) Recovery of lysine values by removal of ammonium chloride from lysine containing liquors
JPS6127979A (en) Preparation of hydroxyflavan compound
SU446511A1 (en) Chlorophos cleaning method