JPS5879644A - Control method of air-fuel ratio in internal combustion engine - Google Patents

Control method of air-fuel ratio in internal combustion engine

Info

Publication number
JPS5879644A
JPS5879644A JP17672981A JP17672981A JPS5879644A JP S5879644 A JPS5879644 A JP S5879644A JP 17672981 A JP17672981 A JP 17672981A JP 17672981 A JP17672981 A JP 17672981A JP S5879644 A JPS5879644 A JP S5879644A
Authority
JP
Japan
Prior art keywords
output voltage
fuel ratio
air
value
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17672981A
Other languages
Japanese (ja)
Inventor
Takatoshi Masui
孝年 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17672981A priority Critical patent/JPS5879644A/en
Publication of JPS5879644A publication Critical patent/JPS5879644A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1474Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method by detecting the commutation time of the sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve accuracy of air-fuel ratio control, by measuring output voltage of an oxygen sensor, calculating duty ratio, controlling air-fuel ratio with a constant and changing the constant in such a manner that the duty ratio is controlled to within a certain range. CONSTITUTION:Various sensors of an oxygen sensor 32 and the like, and a controller of a fuel injection device 34 and ignition device 36 are connected to a digital computer, comprising a central processing unit (CPU)10, random access memory (RAM)12 and read only memory (ROM)14 and the like. Then maximum and minimum values of duty ratio D and reference voltage V'R, compared with output voltage of the oxygen sensor 32, are set to a prescribed value. The CPU10 measures a time from the maximum value to the minimum value and from the minimum value to the maximum value of the output voltage of the oxygen sensor 32 to calculate the duty ratio D, if smaller than the prescribed minimum value, a value V'R, is used as new reference voltage while if larger than the maixmum value, a value VR, subtracted with 1 from the reference voltage V'R, is used as the new reference voltage, and air-fuel ratio is controlled approximately to theoretical air-fuel ratio.

Description

【発明の詳細な説明】 本発明は、車両の内燃機関の排気ガス中の特定成分#に
縦を検出し基準値と比較して計算機によル内燃機関の空
燃比を制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the air-fuel ratio of an internal combustion engine using a computer by detecting the height of a specific component in exhaust gas from an internal combustion engine of a vehicle and comparing it with a reference value.

内燃機関から排出される排気カス中に杜、窒素酸化物(
NOx)、−酸化炭素(CO)の#1か未燃焼成分でめ
ゐ炭化水素(HC)等が含まれている。これらの成分社
有害であるところから、三元触媒コンバータを使用して
排気ガスを汁化する↓うにしている。そして、仁の三元
触媒コンバータによ)前記NOx、CO,HCの浄化率
を^めるために祉、内燃機−の空燃比を堆−空燃比の近
くに制御する必要がある。そこで、従来Vi併気ノノス
中のall素績*を検出し、その出力電圧會基準愉(基
準電圧)と比較して空燃比をフィートノシック制御する
方法が一般的に採用されている。ところか、排気カス中
の酸素11Mを検出する該木セン1と(。
Mori, nitrogen oxides (
NOx), carbon oxide (CO) and unburned components, including major hydrocarbons (HC). Since these components are harmful, a three-way catalytic converter is used to convert the exhaust gas into liquid. In order to improve the purification rate of NOx, CO, and HC using the three-way catalytic converter, it is necessary to control the air-fuel ratio of the internal combustion engine to be close to the air-fuel ratio of the combustion engine. Therefore, conventionally, a method has been generally adopted in which the all performance * in the Vi combination is detected and compared with the output voltage reference value (reference voltage) to perform foot-nosic control of the air-fuel ratio. However, the wood sensor 1 detects 11M of oxygen in the exhaust gas (.

て一般的に使用されている安定化ジルコニア本子又祉チ
タニア素子勢扛、各繊素センナ間の駒体ムが大きく率に
酸素センサの出力電圧を基準−と比較するだ轄で祉、空
燃比の十分な劃−を朽うことができない。即ち、空燃比
が埋鵬空燃比にス1L、てリーン側からリッチ側に変化
した揚台、又ケゴリッチ儒からり一ン餉に変化した場合
に、排気カス中の酸素一度が変化して酸素センサの出力
°龜圧凌仝燃比の変化に対応してリーン側からリップ簡
に、リッチ側からリーン側に変化するか、との↓巳、答
峙件で制御したので線制御ずれが生ずる。
Generally used stabilized zirconia and titania elements are used, and the gap between each element sensor is large, so it is in charge of comparing the output voltage of the oxygen sensor with the reference level, and the air-fuel ratio. I can't get enough of it. That is, when the air-fuel ratio changes from the lean side to the rich side, or when the air-fuel ratio changes from the lean side to the rich side, the oxygen in the exhaust gas changes and the oxygen In response to changes in sensor output, pressure, fuel ratio, etc., the lip simply changes from the lean side to the rich side to the lean side.Since control was performed based on the response condition, line control deviation occurs.

また第1図に示すように酸素センナは、リーンを示す極
小の出力電圧からリッチを示す極大出力電圧に到達する
応答時間TLI又はこの逆のリッチからり一ンに到達す
る応答時間TILが新しいものと使用されて劣化し九も
のとでは異なって>1、しかも応答時間TL鳳と応答時
間TILとは同一でない。この新しい酸素センナと劣化
した酸素センサとの応答時間TLI s TILの変化
は、第2図と第3図とに示した機関への空気流入量との
関係においても見ることができる。即ち、第2図は、新
しい酸素センサにおける機関吸入空気流量と応答時間と
の関係を示す図であシ、第3図は、劣化した酸素センサ
における機関吸入空気流量と応答時間との関係を示す図
であって、同一の吸入空気流量であっても新しい#!素
センサと劣化した#系センナとでa、*系センナの応答
時間TLm s TILが異なってくる。さらに、酸素
セン′すの応答時間TLI 。
In addition, as shown in Fig. 1, the oxygen senna has a new response time TLI to reach the maximum output voltage indicating rich from a minimum output voltage indicating lean, or the reverse response time TIL to reach the maximum output voltage indicating rich. The response time TL is not the same as the response time TIL. This change in response time TLI s TIL between the new oxygen sensor and the deteriorated oxygen sensor can also be seen in the relationship with the amount of air flowing into the engine shown in FIGS. 2 and 3. That is, FIG. 2 is a diagram showing the relationship between the engine intake air flow rate and response time in a new oxygen sensor, and FIG. 3 is a diagram showing the relationship between the engine intake air flow rate and response time in a deteriorated oxygen sensor. Even if the figure is the same intake air flow rate, the new #! The response time TLm s TIL of the a, *-system sensor differs between the original sensor and the degraded #-system sensor. Furthermore, the response time TLI of the oxygen sensor.

T鳳りは、第4図に示すように#!素センサ自体の基体
温度によっても変り、基体温度か300℃り下において
は応答時間が長く、酸素センサの出ツノ蔭圧が不安定で
、酸素センサの基体温度が簡くムるに従って応答時間T
L鳳、TILがしだいに一定となって出力電圧が安定し
てくる。
As shown in Figure 4, the T-tori is #! It also changes depending on the base temperature of the sensor itself, and the response time is long when the base temperature is below 300℃, and the pressure behind the oxygen sensor is unstable, and as the base temperature of the oxygen sensor increases, the response time T becomes longer.
L and TIL gradually become constant and the output voltage becomes stable.

上記のようKll素センサの応答時間は、”1151杯
をのみでなく使用に伴う時間的変化や一素セン丈の基体
温度によって′4h変化する。そのため、−系センナの
出力電圧と比較する基準11に′ft固定1■とせ°す
に、#系センナの出力電圧の極大籠、極小11!とに応
じて変化させたとして電空燃比の側御すれt土すること
になる。また、lI2III1&センサの応答時間’I
’LI、TILを考慮して、応答時間Ttt、T社りを
針側結果に基づいて基準値を変化させて9!燃片倉制御
するようにしても、始動時勢の酸素センサの出力電圧が
不安定の状態にあると@に、応答時101TLI 、 
TIL も不安定となシ璧燃比制餌のn駿を悪化させる
おそれがある。従って、内燃機関の空燃比を高精度に制
御する丸めには、rR木センサリ118力電圧の安定度
をも考慮する必要かある。
As mentioned above, the response time of the Kll elementary sensor varies by 4 hours not only due to the 1151 cup, but also due to the time change associated with use and the temperature of the substrate.Therefore, the standard for comparison with the output voltage of the − system sensor is If 11 is fixed at 1, the electric air-fuel ratio will be side-controlled by changing it according to the maximum and minimum output voltage of the # system sensor.Also, lI2III1& Sensor response time 'I
' Considering LI and TIL, change the reference value of response time Ttt and T company based on the needle side results, and 9! Even if fuel tank control is performed, if the output voltage of the oxygen sensor at the time of starting is unstable, 101TLI will be generated in response to @.
TIL is also unstable and there is a risk of worsening the problem of fuel ratio control. Therefore, in rounding to control the air-fuel ratio of an internal combustion engine with high precision, it is necessary to consider the stability of the rR tree sensor 118 voltage.

本開明は、削配資饋にかんがみてなされたもので、空燃
比制御の梢度を向上することかできる内燃+9&閣の空
燃比制御方法を快供することを目的と16゜ 本開明は、排気カス中の%定成分一度を検知する一暖セ
/ザの出力電圧を間欠的VC恨出して計算機に人力し、
Ali Ic III atセンサの出力電圧が極小値
から極入1廠に到達する時間と惨大1−から極小値に到
達する時間とに15t1μ+jL、これらfftI%1
1シた時間からチューティ比t−其出して空燃比をi+
lJ @する定数をFIil +Sl:アコーアイ比〃
・−ホの*11囲内となるように震化さゼて空燃比−り
獅のn4良か向上できるように1、たものである。
This invention was made in view of the reduction in capital, and the purpose of this invention is to provide an air-fuel ratio control method of internal combustion + 9 & The output voltage of the temperature sensor that detects the % constant component in the waste is outputted from an intermittent VC and manually entered into a computer.
The time for the output voltage of the Ali Ic III at sensor to reach the minimum value from the minimum value and the time for the output voltage to reach the minimum value from the maximum value 1- is 15t1μ+jL, and these fftI%1
From the time of 1 hour, calculate the tutee ratio t- and calculate the air-fuel ratio as i+
lJ @ FIil +Sl: Akoeye ratio
・The air-fuel ratio was adjusted so that it was within the *11 range, and the air-fuel ratio was improved.

本開明1c詠る内燃機関の空燃比制御方法の好壕し2い
爽施Fll ’t m1’j凶(3)Ic位って奸祝す
る0第5図6、本晃明iC保る内燃ヤ閣の空燃比制御方
法をデジタル岨)!蝋を用いて実施する場合の一カを7
I(″を基本ブロック図でりる。しjにおいて演算・霜
1j呻樟慎の中枢である中火処理装置(以下ePUと称
する)10、フ゛−夕等を8C博するクンタムアクセス
メモリ(以下RAMと称す)12、mJ1プログラム等
が記憶されているリードオ/リメ七り(以下ROMと称
す)14婢から栴敗すれているデジタル計算機には、入
出力装置でおる人カイ/ターフエース16、アナログ−
デジタル1rils、出力インター7エース20がデー
タバス、アドレスバス、コントロールバスによって接続
され1いる。そして、内燃機関の運転状態′t−検知す
るたりの各榴センサが前記入力装置に襞枕さくLでいる
The present invention 1c describes the preferred method of controlling the air-fuel ratio of an internal combustion engine. Digital air-fuel ratio control method)! 7 points when using wax
The basic block diagram of I('' is shown below. In the figure, there is a medium heat processing unit (hereinafter referred to as ePU) 10 which is the center of calculation and processing, and a quantum access memory (hereinafter referred to as ePU) which has 8C of data. (hereinafter referred to as RAM) 12, read/write memory (hereinafter referred to as ROM) (hereinafter referred to as ROM) in which mJ1 programs, etc. are stored; , analog
A digital 1rils, output interface 7ace 20 is connected by a data bus, an address bus, and a control bus. Each sensor for detecting the operating state of the internal combustion engine is connected to the input device.

即ち、内燃機関のクランクの回転角を検出フる+p+転
角センサ22が入力インターンエース16に伝統され、
回転角センサ22の国力1g号は人力インター7エース
16によって過轟に涙侠されて1/タル針算機に入力さ
れる。また、アナ口り一17タル変換器18には、吸気
マニホルド内の吸り(圧力、吸気温度を検出する吸気圧
力センサ24、吸気温センサ26と、冷却水の龜i’を
検出するab+水温センサ28と燃料噴射装置のスロッ
トル回置を検出するスロットル開度センサ30と排気力
・・中の酸XII&を検出する線素センサ32とか帳絖
され、これら各センナの出力信号は、コントロールバス
な介してCPUから与えられる制御信号により、時分割
的にアナログ−デジタル変換器18によってデジタル信
号に変換されてデジタル計算機に入力される。さらに1
出力インター7エース20には、燃料噴射装置34と点
火装置36との図示しない制御装置が接続されている。
That is, the input intern ace 16 is equipped with a rotation angle sensor 22 that detects the rotation angle of the crank of the internal combustion engine.
The national power 1g of the rotation angle sensor 22 is input into the 1/tal counter by the human power interface 7 ace 16. In addition, the Anaguchi 17 Tal converter 18 includes an intake pressure sensor 24 that detects the suction (pressure and intake air temperature) in the intake manifold, an intake air temperature sensor 26, and an ab + water temperature sensor that detects the cooling water A sensor 28, a throttle opening sensor 30 that detects the throttle rotation of the fuel injection device, and a line element sensor 32 that detects the acid In response to a control signal given from the CPU via the analog-to-digital converter 18, the signal is converted into a digital signal in a time-divisional manner and input to the digital computer.Furthermore, 1
A control device (not shown) for a fuel injection device 34 and an ignition device 36 is connected to the output interface 7 ace 20.

そして、CPUl0は、各センナからの出力信号をRA
Mに記憶させるとともに、ROMに記憶されている演算
グログラムに基づき前記出力信号を用いて演算を行い、
燃料噴射装置34、点火装置36の制御信号を算出する
。このCPU 10で算出された制御信号により、燃料
噴射装置34、燃料ポンプ等の制御と点火装置360点
火時期の制御とが行なわれる。
Then, CPU10 sends the output signal from each sensor to RA
M, and perform calculations using the output signal based on the calculation program stored in the ROM,
Control signals for the fuel injection device 34 and ignition device 36 are calculated. The control signal calculated by the CPU 10 controls the fuel injection device 34, fuel pump, etc., and controls the ignition timing of the ignition device 360.

第6図れ、上記燃料噴射装置34の制御のうち、排気ガ
ス中の酸素濃度を検出して内燃機関の空燃比を制御する
方法にお妙る本発明の実施例に係る酸素センサ32の出
力電圧と比較される基準値を変化させるルーチンを示す
流れ図である。
FIG. 6 shows the output voltage of the oxygen sensor 32 according to the embodiment of the present invention, which is a method of controlling the fuel injection device 34 and controlling the air-fuel ratio of the internal combustion engine by detecting the oxygen concentration in the exhaust gas. 2 is a flowchart illustrating a routine for changing a reference value to be compared with.

第6図においてCPUl0からの命令は、スタート40
からステップ42に全シ一定時間ごと、即ち予め定めら
れた時間ごと(例えば12 < IJセカンドごと)に
立てられる計III 7ラグを確鯰する。。
In FIG. 6, the instruction from CPU10 is start 40
From then on, in step 42, a total of 7 lags are determined, which are set at regular intervals, that is, at predetermined intervals (for example, every 12<IJ seconds). .

即ち、CPUは、前回の計1411から一定時間が軒遇
し九か否かをステップ42で4411断する。そして、
一定時間が経過していないとき(rrf 61117ラ
クか立っていないと11)には、命令はそのままエンド
44に至夛、一定時間が経過しているときには、守てら
れている計測7ラグを倒し次のステップ44に進む。ス
テップ44においては内燃機関が始1ilJ時もしくは
冷却水の温屓が低いとき勢の仝燃比ンイードパツク制御
(人/Fフィードバック制御141)か行なわれていな
い状態にあるのか、それ以外のA/Fフィードバック制
御が竹なわれている状態にあるのかを、前記回転角セン
サ22、奴気圧七/す24、冷却水温センナ281%に
よって判−■かなされる。そして、A/Fフィードバッ
クIIIIJ伽申でないときには、ステップ46におい
て前回までに計#1した応答時間’I’tt % ”L
m s TIL s 1”ILをクリアし、エンド44
に至る。このステップ46にお1するクリγ処理tよ、
A/Fフィードバック制御になって応答時間をl!を側
するときに、地、答時間を途中からカウントシて空燃比
制−の種度が低下するのt防ぐためである。
That is, the CPU determines whether or not a certain period of time has passed since the previous total of 1411 and determines whether or not 4411 has been reached in step 42. and,
If a certain amount of time has not elapsed (rrf 61117 or 11), the command goes directly to End 44, and if a certain amount of time has elapsed, the protected measurement 7 lag is overturned. Proceed to the next step 44. In step 44, it is determined whether the internal combustion engine is in a state where the fuel-fuel ratio fuel pack control (human/F feedback control 141), which is performed at the start of 1 ilJ or when the temperature of the cooling water is low, is not being performed, or whether any other A/F feedback is being performed. Whether or not the control is in a slow state is determined by the rotation angle sensor 22, internal air pressure sensor 24, and cooling water temperature sensor 281%. Then, when the A/F feedback is not the same, in step 46, the response time totaled by #1 until the previous time is 'I'tt%'L.
Clear m s TIL s 1”IL and end 44
leading to. The chestnut gamma process performed in this step 46,
A/F feedback control reduces response time! This is to prevent the air-fuel ratio control level from decreasing by counting down the response time from the middle when changing the air-fuel ratio.

ステップ−44においてA / k”フィードバック側
−宇でシると判断したときにをま、ステップ48に進み
内燃清閑かrIk索センプ32の応答時間TLI、Ti
tt k It mlするのに通した運転条件にあるか
否か(蹟糸センプ32の出力電圧により空燃比をftj
llすべさか古〃りの刊wTをする。ν11ち、繭配回
転角七/′!7′22&ひ吸A圧センサ24 rcよシ
本内が減運迷転中ちしくはアイドル通斬、中であること
を検知した騙市、またをゴ、上記二つのセンサの出力、
信号t(冷却水温センサ28の出力信号を増産して酸素
センサ32の出力電圧か不″を足である#l素センv3
2の基体IMItLか300℃以下であると判断した胸
倉には、スアソグ46?C進み、萌配同様計側しである
応答時間をクリアしエンド44に進む。
When it is determined in step 44 that A/k" is on the feedback side, the process proceeds to step 48, where the response time TLI, Ti of the internal combustion engine 32 is determined.
tt k It ml Whether the air-fuel ratio is adjusted according to the output voltage of the thread sump 32 (ftj
I'm going to publish an old publication wT. ν11, cocoon arrangement rotation angle 7/'! 7'22 & intake A pressure sensor 24 The output of the above two sensors is detected when the rc engine is in a state of reduced operation or idle running.
Signal t (increasing the output signal of the cooling water temperature sensor 28 to determine whether the output voltage of the oxygen sensor 32 is high or low) #l elementary sensor v3
2 base IMITL is determined to be below 300 degrees Celsius, Suasog 46? Proceed to C, and clear the response time, which is calculated like Moe, and proceed to End 44.

−系センタ゛32の基体妃震か:10υ℃以−Fであシ
、内燃機関が通常の運転状急にあるときには、CPUl
0はアナ−グーデジタル変換l618に*#−’セン?
32の出力電圧のデジタル化を節し、デジタル変換され
た酸素センサ32の今回の出力11IL圧Ossnwl
RAM12に格納すると共に、ステソゲ50において前
回の出力電圧020LDの慣と比軟丁0’1MmWは、
前回の計113時に出力されたwt業センサ32の笑顔
の出力電圧の値である。そして、今回の出力電圧02w
mwが前回の出力電圧02otpより小さい(前回よル
リーン儒にある)砲台に灯、ス1ツブ52に進みRAM
12に配憶されている11回の出力電圧01oLoと前
々回の出方電圧o’zotpとの大小を比較する。ζこ
で、前回の出力電圧020L(1が前々回の出力電圧0
’l0LDよ゛シ大きい場合、卸も、今回針側値が前回
計測値よシリ−7側にあり、かつ、前回計測値が前々回
針測11よシリツチ側にする場合には、l12i1cセ
ンサ32の出方電圧の変化の方向が不安定であると判断
され、エンド44に運電圧o’2otoよシ小さい場合
、即ち、今回計測値が前回##J1−よシリーン側にあ
シ、かつ、前回針側餉が―す前回計測値よりリーン側に
ある場合には、収水センサ32の出力電圧が下神中であ
ると判断さjしてステソゲ54に進む。
- Is the base body of the system center 32 trembling: 10 υ℃ or higher, and when the internal combustion engine is under normal operating conditions, the CPU
0 is anagoo digital conversion l618 *#-'sen?
32 output voltage is digitized, and the current output of the digitally converted oxygen sensor 32 is 11IL pressure Ossnwl.
While storing it in the RAM 12, the previous output voltage 020LD and the soft ratio 0'1MmW in the stem drive 50 are as follows.
This is the value of the smile output voltage of the wt industry sensor 32 that was output at a total of 113 hours last time. And this time output voltage 02w
mw is smaller than the previous output voltage 02otp (as in the last time, it is in Lulin Yu). Light on the battery, go to step 52 and read RAM.
The 11th output voltage 01oLo stored in 12 is compared with the output voltage o'zotp from the time before the previous time. ζ Here, the previous output voltage 020L (1 is the output voltage 0 before the previous one)
If the current needle side value is on the series 7 side compared to the previous measured value, and if the previous measured value is on the series side compared to the previous needle measurement 11, the wholesaler will also check the l12i1c sensor 32. If it is determined that the direction of change in the output voltage is unstable and the operating voltage at the end 44 is smaller than o'2oto, that is, the current measured value is on the side of the cylinder ##J1- from the previous time, and If the needle side hook is on the leaner side than the previous measured value, it is determined that the output voltage of the water absorption sensor 32 is in the lower range, and the process proceeds to the stem gauge 54.

このステツノ54においては、酸素センサ32の出力電
圧の下降段階のどの段階にあるかが判断される。k’l
jち、今回の出力電圧02NKWが前回の出力亀a:0
zoLpよシどの程度小ざくなっているかを凛鼻し、今
回の出方電圧02NilWが前回の出力電圧02oto
より一犀IIILCよシも小ざく1つている場合tc 
tよ、#木センサ32の出力電圧か過渡変化中であると
有期してステップ56に進み、前回計測したリッチから
リーンに向う工6答時間qlIILに1を加えて今回I
It側し九応答時間TILとしてT’lLに代えてRA
M12に格納し、その後エンド44に進む。
In this step 54, it is determined which stage of the decreasing stage the output voltage of the oxygen sensor 32 is in. k'l
j, the current output voltage 02NKW is the previous output voltage a: 0
I noticed how small the zoLp is, and the current output voltage 02NilW is the previous output voltage 02oto.
If there is one small piece of tc
If the output voltage of the wood sensor 32 is undergoing a transient change, the process proceeds to step 56, where 1 is added to the previously measured time qlIIL to move from rich to lean, and the current time I
It side and 9 response time TIL is RA instead of T'lL.
It is stored in M12 and then proceeds to end 44.

反対に今回の出力電圧02NmWと前回の出方電圧02
0LDとの差が一定値C以内である場合には、酸素セン
t32の出方電圧が極小1−に通したものと判断され、
ステップ58に進んで−ix[gItllした応答時間
’I’lLをそのまま今回計測した応答時間Ill&l
LとしてRAM12に格納した後、ステップ60に進む
。このようKして酸素センサ32の出方電圧が極大値か
ら極小値に到達する時間が1測さ1する。
On the contrary, the current output voltage 02NmW and the previous output voltage 02
If the difference from 0LD is within a certain value C, it is determined that the output voltage of oxygen center t32 has passed through the minimum 1-,
Proceed to step 58 and -ix[gItll's response time 'I'll is unchanged as the response time measured this time
After storing it in the RAM 12 as L, the process proceeds to step 60. In this manner, the time required for the output voltage of the oxygen sensor 32 to reach the minimum value from the maximum value is measured as 1.

他方、ステップ50において今回の出力11圧Osn1
wが前回の出力電圧0110LDより大きい(fJu回
よpリッチ側にある)場合には、スラーラグ62に進ん
でステップ52と同様前回とSit々回の出力電圧値の
大小の比較を行う。そして、前1の出h Q正値O雪O
LDが前々回の出力電圧値0’20LDよシも小さい場
合、即ち、今回計測値が藺回計6111値よりリッチ側
にあシ、かつ、前回計測値が前々回lt[611411
1Lよ〕リーン側にある場合に鉱、敏木センサの出力電
圧の変化の方向が不安定であると判断し、エンド44に
進む。しかし、前回の出力電圧02GLDが前々回の出
力電圧0’l!OL!1よす大きい場合、部ち、今(ロ
)計掬蓋が前回計測値よシリツチ側にあシ、かつ、前同
針側値が前々回計11+値よシリンチ物にある場合には
、酸素センサ32の出力電圧の変化力・どの段階にある
かを判断するためにステップ64に進む。
On the other hand, in step 50, the current output 11 pressure Osn1
If w is larger than the previous output voltage 0110LD (on the p-rich side compared to fJu times), the process proceeds to slur lag 62, where, as in step 52, the output voltage values of the previous time and Sit times are compared in magnitude. And the previous 1 output h Q positive value O snow O
If LD is smaller than the previous output voltage value 0'20LD, that is, the current measured value is richer than the total 6111 value, and the previous measured value is lt [611411
1L] If it is on the lean side, it is determined that the direction of change in the output voltage of the Toshiki sensor is unstable, and the process proceeds to End 44. However, the previous output voltage 02GLD is the previous output voltage 0'l! OL! If it is larger than 1, then the oxygen sensor is The process proceeds to step 64 in order to determine the level of change in the output voltage of 32.

ステップ64においては、今回の出力電圧Oxw謂が1
41ノ回の出力電圧02otoよシどれだけ大きくなっ
ているかが演算され、その皮が一定値Cよυも大でりる
場合にけ、叡木センサの出力電圧が極小値から極大値へ
の過渡変化中でろると判断され、ステツ166に進んで
今回針側したり一ンからリッチに向うえ、答時間T’L
Iに1を加えて今回針側した!61i時間TLIとして
RAM12に格納した後、エンド44に進む。反jjに
今回の出力電圧02NIWが前回の出力電圧020LD
よりわずかしか大きくなっておらす、その差が一定匍C
以下である場合には、rlk木−1”tの出力−圧が樵
大llI4に達したものと判爵「シ、ステツ168に進
み、前回i1mJした応答時間T’tmを今Igl f
tt 6111 した応答時ILij i’L置として
RAM12にIi!I帽し、ステップ60に進む。この
ようにして、敵本センサの出方電圧が極小値から極大値
tこ到達する時間か1洪」ざねる。
In step 64, the current output voltage Oxw is 1
It is calculated how much the output voltage 02 oto has increased over 41 times, and if the value is larger than the constant value C, the output voltage of the Eiki sensor changes from the minimum value to the maximum value. It is determined that the transient change is in progress, and the process proceeds to step 166 and moves to the needle side this time, or moves from 1st to rich, and the response time T'L.
I added 1 to I and turned it to the needle side this time! After storing it in the RAM 12 as the 61i time TLI, the process proceeds to end 44. Inversely, the current output voltage 02NIW is the previous output voltage 020LD
The difference is only slightly larger than C.
If it is below, it is assumed that the output pressure of rlk tree-1"t has reached l14
When responding to tt 6111, Ii! is stored in RAM 12 as ILij i'L! Then, proceed to step 60. In this way, the time required for the output voltage of the enemy sensor to reach the maximum value from the minimum value is approximately one hour.

なお、ステソゲ60は、次のステソノ70において実施
する演算のガードの丸めであって、!It側し九応答時
間TIL、TLIが斜って零として「を醐され九場合に
は、次のステップ70にAまずエンドに進む。そして、
応答時間Tut、Ttmが零よシ入自いとステップ60
において判−rL7Th場合に社、ステップ70に進み
デユーティ比りの演算かの式に基づいて行なわれる。ス
テップ70において算出され九デユーティ比りは、ステ
ラ772 +’Cおいて一定の範囲に入っているか否か
の判明かなされる。即ち、デユーティ比りが予め定めら
itだ極大値DMAX と極小値DMI)lの間にある
(DMIN≦D≦DMムX)場合には、空燃比の劃−が
良好になされているものとしてエンド44に進む。
Note that the stesoge 60 is a guard rounding of the operation to be performed in the next stesoge 70, and ! If the response times TIL and TLI are zero, then proceed to the next step 70 and proceed to the end.
If the response times Tut and Ttm are zero, step 60
In the case of -rL7Th, the process proceeds to step 70, where the duty ratio is calculated based on the formula. It is determined whether the duty ratio calculated in step 70 is within a certain range at Stella 772 +'C. That is, when the duty ratio is between the predetermined maximum value DMAX and minimum value DMI) (DMIN≦D≦DMMX), it is assumed that the air-fuel ratio is well controlled. Proceed to end 44.

しかし、D<DMINの場合、卸ち、デユーブイ比りが
例えば極小値DME)Iとして予め足りられたTutに
比し蝮かすぎると判断される。上記のように判断がなさ
れるとステップ74に進み、今迄用いられてきた酸素セ
ンサ32の出力電圧と比較さiする基準電(基準電圧)
 V’sの鎗にIt−加え、新たな基準値■鐙 として
HAん112に格納し、エンド44に進む。従って、次
に人力されるrIk素センf32の出力亀圧龜、繭1u
より大きな基準値Vmと比軟されるため、り一ンからリ
ッチに向う応答時間Ttaを長くすることができる。一
方、D ) DMAXのJ#1合、νμち、チューティ
比りか例えはD關^Xとし2て予め酎められた05〜0
9の匍より大きい場合には、埋、+1M仝鰹比1r侍る
たりe(は比、答時間Ttiρ・尾、答時間’1’ m
 tより氏すきると判萌される。この庵曾には、ステラ
7“76にfみ本年17V’mから1の値を引いたもの
を靴たなIl−革111.ViとしてRAM12に@帖
し、エンドに走む。便って、基準値が小姑くされたこと
ycよりjc、 1!時間1”ti+を短かくすること
ができ、空燃比を11と燃比に近く制御することかでき
る。
However, in the case of D<DMIN, it is determined that the wholesale and Dubuis ratios are too large compared to Tut, which is previously set as the minimum value DME)I. When the above judgment is made, the process proceeds to step 74, where a reference voltage (reference voltage) is compared with the output voltage of the oxygen sensor 32 that has been used up until now.
Add It- to the spear of V's, store it in the HA 112 as a new reference value ■Stirrup, and proceed to End 44. Therefore, the output of the rIk elementary sensor f32, which is then manually operated, is the output of the cocoon 1u.
The response time Tta from rich to rich can be lengthened since it is made softer than the larger reference value Vm. On the other hand, D) DMAX's J#1 case, νμchi, Chuty comparison or analogy is D關^X and 05~0 pre-filled as 2.
If it is larger than 9, the answer is +1M, the ratio is 1r, and the answer is '1' m.
If you like him more than T, you will be judged. In this case, subtract 1 from 17V'm for Stella 7"76, save it to RAM12 as shoe rack 111.Vi, and run to the end. Therefore, since the reference value has been lowered, jc, 1!time 1"ti+ can be made shorter than yc, and the air-fuel ratio can be controlled close to the fuel ratio of 11.

粉に、4一実施例においては、ステップ44とステップ
48とにおいて排気カス中の#R素画濃度検出して空燃
比を制御する場合を、#R木センタ320基体温度が3
00℃以上で、かつ、車内の通常の走行状lIKある場
合に限定したことによシ、屓素センサ32の出力電圧が
安定しており、NOxの排出量の比較的多い機関運転条
件にて行なうことになシ1.空燃比制御の精度を向上す
ることかでき譬を小さくすることができる。
In addition, in the fourth embodiment, the #R pixel density in the exhaust residue is detected in steps 44 and 48 to control the air-fuel ratio when the #R wood center 320 base temperature is 3.
This is limited to cases where the temperature is 00°C or higher and normal running conditions inside the vehicle are present, and the output voltage of the oxygen sensor 32 is stable and the engine operating conditions are such that the amount of NOx emissions is relatively high. 1. By improving the accuracy of air-fuel ratio control, errors can be reduced.

なお、前記実施例においてはデジタルark憎管使用し
て制御する場合について説明したか、アナログ針算機を
使用して制御してもよい。また、1ljl配実施例にお
いては、デユーティ比りを一定範囲に納めるために酸素
センサ32の出力電圧と月1される基準値Vmを変化さ
せる場合について簡明し九が、他O空燃比制御定a(例
えは、A/に一ンイードバツク制−の比例定数又は精分
定数)tX化させてもよい。
In the above embodiment, the case where the control is performed using a digital ARK controller has been explained, but the control may be performed using an analog pointer. In addition, in the 1ljl arrangement example, the case where the output voltage of the oxygen sensor 32 and the monthly reference value Vm are changed in order to keep the duty ratio within a certain range will be briefly explained. (For example, A/ is a proportional constant or a fractional constant based on a single yield system.) It may be converted into tX.

以上説明したように本発明によれは、tt:m恢によっ
て#*センサの出力電圧の極大値から極小値に到達する
までの時間と極小値から極大値に到達するまでの時間と
を針側し、前記各計測時間からデユーティ比を算出し、
このデユーティ比が一定範囲内に入るようにw素センサ
の出力電圧と比較される基準値を変化させるようにした
ことにより、内燃機関の空燃比制御の鵬”度を向上する
ことができる。
As explained above, according to the present invention, the time from the maximum value to the minimum value of the output voltage of the #* sensor and the time from the minimum value to the maximum value are determined by the tt:m ratio. Then, calculate the duty ratio from each measurement time,
By changing the reference value that is compared with the output voltage of the sensor so that the duty ratio falls within a certain range, it is possible to improve the accuracy of air-fuel ratio control of the internal combustion engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は#r5シい酸素センサ及び劣化した酸素センダ
の出力電圧と応答時間との関係を示す図、第2図は新し
いw素センサの機関吸入空気流量と応答時間との関係を
示す図、第3図は劣化した峡木センサの機関吸入空気流
量と応答時間との関係を示す図、第4図は酸素センサ基
体温度と応答時間との関係を示す図、第5図は本発明に
係る内燃機関の空燃比制御方法の実施例の基本ブロック
図、第6図は本発明の内燃機関の空燃比制御方法の実施
例の流れ図である。 10・・・中央処理装置、12・・・ランタムアクセス
メモリ、14・・・リードオンリメモリ、32・・・酸
素センサ、34−・燃料噴射装置。 代理人 鵜 沼 辰 之 (ほか2名) 第21−     第3図
Figure 1 is a diagram showing the relationship between the output voltage and response time of the #r5 oxygen sensor and the deteriorated oxygen sensor, and Figure 2 is a diagram showing the relationship between the engine intake air flow rate and response time of the new W element sensor. , Fig. 3 is a diagram showing the relationship between the engine intake air flow rate and the response time of a deteriorated Kyoki sensor, Fig. 4 is a diagram showing the relationship between the oxygen sensor base temperature and the response time, and Fig. 5 is a diagram showing the relationship between the oxygen sensor base temperature and the response time. A basic block diagram of an embodiment of the air-fuel ratio control method for an internal combustion engine, and FIG. 6 is a flowchart of an embodiment of the air-fuel ratio control method for an internal combustion engine according to the present invention. DESCRIPTION OF SYMBOLS 10... Central processing unit, 12... Random access memory, 14... Read only memory, 32... Oxygen sensor, 34-- Fuel injection device. Agent Tatsuyuki Unuma (and 2 others) Figure 21-3

Claims (4)

【特許請求の範囲】[Claims] (1)排気ガス中の特定成分11Kを検知する一纏セン
サの出力電圧を間欠的に検出してK[真情に入力し、前
記出力電圧を基準値と比較して空燃比倉制御する内燃機
関の空燃比lll11#方法におい1、−1紀一度セン
サの出力電圧が極小値から極大111に初達する時間と
極大値から極小辿fC到漣する時間とを計測し、前記各
計−j時間からチューティ比を鍔出してこのチューティ
比が一定軛d内となるように空燃比を制御する定数を灰
化させることを′4+値とする内燃機関の22!燃比制
御方法。
(1) An internal combustion engine that controls the air-fuel ratio by intermittently detecting the output voltage of a single sensor that detects a specific component 11K in exhaust gas, inputting the output voltage to a reference value, and comparing the output voltage with a reference value. In the air-fuel ratio lll11# method, measure the time when the output voltage of the sensor reaches the local maximum from the minimum value to 111 for the first time, and the time when the output voltage reaches the minimum fC from the maximum value, and from the above-mentioned total -j time. 22 of an internal combustion engine whose '4+ value is to set the tutee ratio and incinerate the constant that controls the air-fuel ratio so that the tutee ratio is within a constant yoke d. Fuel ratio control method.
(2)  Mid記空燃比を制御する定数か−u =e
幽廣センサの出力電圧と比軟する削記基卑慣であること
を特徴とする特許請求の範囲第1項記載の内燃徐開の空
燃比制御方法。
(2) Constant that controls the mid air-fuel ratio -u = e
2. The air-fuel ratio control method for gradually opening internal combustion according to claim 1, wherein the air-fuel ratio control method is characterized in that the ratio is lower than the output voltage of the exhaust sensor.
(3)  前記空燃比をflrlllilする定数か仝
燃比ノイードバツク制御の比例定数又は積分定数でめる
ことを特徴とする特許請求の範囲第1項記載の内燃機M
O空燃比制御方法。
(3) The internal combustion engine M according to claim 1, wherein the air-fuel ratio is determined by a constant that flrllil, or a proportional constant or an integral constant of fuel-fuel ratio noise back control.
O air fuel ratio control method.
(4)前記計算機において、回転角センナと吸気圧セン
サとによ〕検知し友前記m1.センナの基体温度が30
0℃以上、かつ、窒素酸化物の排出量が多い七きに前l
e磯震度センサ出力電圧を検出し、今回の出力電圧と前
回の出力電圧との平均値と前記今回の出力電圧とを比較
し、その差が一定値よシ大龜いときに前記濃度センサの
出力電圧が極小値から極大値に到達する時間と極大値か
ら極小値に到達する時間とを計測するようにしたことを
特徴とする特許請求の範囲第1項ないし第3項記載の内
燃機関の空燃比制御方法。
(4) In the computer, the rotation angle sensor and the intake pressure sensor detect m1. Senna's body temperature is 30
Temperatures above 0°C and high levels of nitrogen oxide emissions
e Detect the output voltage of the sea seismic intensity sensor, compare the average value of the current output voltage and the previous output voltage with the current output voltage, and when the difference is much larger than the constant value, the concentration sensor The internal combustion engine according to any one of claims 1 to 3, characterized in that the time for the output voltage to reach the local maximum value from the local minimum value and the time for the output voltage to reach the local minimum value from the local maximum value are measured. Air-fuel ratio control method.
JP17672981A 1981-11-04 1981-11-04 Control method of air-fuel ratio in internal combustion engine Pending JPS5879644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17672981A JPS5879644A (en) 1981-11-04 1981-11-04 Control method of air-fuel ratio in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17672981A JPS5879644A (en) 1981-11-04 1981-11-04 Control method of air-fuel ratio in internal combustion engine

Publications (1)

Publication Number Publication Date
JPS5879644A true JPS5879644A (en) 1983-05-13

Family

ID=16018757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17672981A Pending JPS5879644A (en) 1981-11-04 1981-11-04 Control method of air-fuel ratio in internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5879644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190633A (en) * 1984-03-09 1985-09-28 ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Gas mixture controller of internal combustion engine
EP0277826A2 (en) * 1987-02-04 1988-08-10 LUCAS INDUSTRIES public limited company Electronic control system for an IC engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190633A (en) * 1984-03-09 1985-09-28 ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Gas mixture controller of internal combustion engine
JPH0544552B2 (en) * 1984-03-09 1993-07-06 Bosch Gmbh Robert
EP0277826A2 (en) * 1987-02-04 1988-08-10 LUCAS INDUSTRIES public limited company Electronic control system for an IC engine
US4848300A (en) * 1987-02-04 1989-07-18 Lucas Industries Public Limited Company Electronic control system for an IC engine
GB2200770B (en) * 1987-02-04 1991-01-16 Lucas Ind Plc Electronic control system for an ic engine

Similar Documents

Publication Publication Date Title
US6487852B1 (en) Method and apparatus for controlling reactant injection into an active lean NOx catalyst
KR890000497B1 (en) Method of controlling air fuel ratio
US10161329B2 (en) Upstream NOx estimation
JPS58150038A (en) Fuel injection method of electronically controlled engine
US6374818B2 (en) Apparatus for determining a failure of an oxygen concentration sensor
US10995644B2 (en) Method for distinguishing between model inaccuracies and lambda offsets for a model-based control of the fill level of a catalytic converter
JPS6090944A (en) Air-fuel ratio learning control apparatus for electronically controlled fuel injection type internal-combustion engine
US4823270A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
US5251604A (en) System and method for detecting deterioration of oxygen sensor used in feedback type air-fuel ratio control system of internal combustion engine
JPH0585742B2 (en)
JPS5879644A (en) Control method of air-fuel ratio in internal combustion engine
KR940000342B1 (en) Method for air-fuel controlling in internal combustion engine
US11454154B2 (en) Method and processing unit for adapting modeled reaction kinetics of a catalytic converter
JPH09310636A (en) Air-fuel ratio controller for internal combustion engine
JP2676884B2 (en) Air-fuel ratio control device for internal combustion engine
US4765305A (en) Control method of controlling an air/fuel ratio control system in an internal combustion engine
JPH0642387A (en) Air-fuel ratio control device for internal combustion engine
JP2505750B2 (en) Air-fuel ratio control method for multi-fuel internal combustion engine
US11525415B2 (en) Method and processing unit for controlling an internal combustion engine
JP2571214B2 (en) Air-fuel ratio control method for multi-fuel internal combustion engine
JPS6059415B2 (en) Air-fuel ratio control method for internal combustion engine
JP2609129B2 (en) Exhaust purification system for internal combustion engine
JPH0756239B2 (en) Basic control variable setting method for internal combustion engine
Lack et al. Upstream NO x estimation
JPS6255440A (en) Engine control device