JPS587914B2 - Surface treatment method for heat sink for boiling cooling - Google Patents

Surface treatment method for heat sink for boiling cooling

Info

Publication number
JPS587914B2
JPS587914B2 JP11148976A JP11148976A JPS587914B2 JP S587914 B2 JPS587914 B2 JP S587914B2 JP 11148976 A JP11148976 A JP 11148976A JP 11148976 A JP11148976 A JP 11148976A JP S587914 B2 JPS587914 B2 JP S587914B2
Authority
JP
Japan
Prior art keywords
heat
boiling
heat sink
heat dissipation
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11148976A
Other languages
Japanese (ja)
Other versions
JPS5297458A (en
Inventor
光岡宏
細野勇
木村好男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11148976A priority Critical patent/JPS587914B2/en
Publication of JPS5297458A publication Critical patent/JPS5297458A/en
Publication of JPS587914B2 publication Critical patent/JPS587914B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Description

【発明の詳細な説明】 この発明は、冷媒の沸騰時の気化潜熱により冷却される
放熱体の表面処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface treatment method for a heat radiator that is cooled by latent heat of vaporization when a refrigerant boils.

第1図はこのような放熱体を装着した沸騰冷却形半導体
装置の断面図で、1は平形半導体素子、2はこの半導体
素子1に受熱面が圧接された(圧接機構は図示を省略す
る)銅などの良熱伝導材からなる放熱体で、この例では
フィンが形成され冷媒に接する広い放熱面21を有する
FIG. 1 is a cross-sectional view of a boiling-cooled semiconductor device equipped with such a heat sink, in which 1 is a flat semiconductor element, and 2 is a heat-receiving surface that is pressed against the semiconductor element 1 (the pressure-welding mechanism is not shown). It is a heat dissipating body made of a good heat conductive material such as copper, and in this example, it has fins and a wide heat dissipating surface 21 in contact with the refrigerant.

4は密閉容器、5は密閉容器4の外表面に設けられた冷
起用フィンである。
4 is an airtight container; 5 is a cooling fin provided on the outer surface of the airtight container 4;

このように構成された沸騰冷却形半導体装置では、半導
体素子1の発生熱は放熱体2を介して冷媒3の沸騰気化
潜熱として奪われ、半導体素子1は冷却される。
In the boiling-cooled semiconductor device configured as described above, the heat generated by the semiconductor element 1 is taken away as boiling vaporization latent heat of the refrigerant 3 via the heat sink 2, and the semiconductor element 1 is cooled.

沸騰により気化した冷媒3は密閉容器4の上部空間に上
昇し、冷却フイン5によって冷却された容器4の内壁面
で凝縮、液化し、放熱して再び容器4の下部に戻る循環
を繰返す。
The refrigerant 3 vaporized by boiling rises to the upper space of the closed container 4, condenses and liquefies on the inner wall surface of the container 4 cooled by the cooling fins 5, radiates heat, and returns to the lower part of the container 4 again, repeating the cycle.

容器4内におけるこの冷媒3の沸騰気化、凝縮液化の繰
り返し作用により、半導体素子1の発生熱は外部に放散
される。
The heat generated by the semiconductor element 1 is dissipated to the outside by the repeated actions of boiling, vaporizing, condensing and liquefying the refrigerant 3 in the container 4.

従来から放熱体2にフィンを設けたり、更にはフィンの
表面にギザギザを形成したりすることにより放熱面21
の増大を図ることが行なわれている。
Conventionally, the heat dissipation surface 21 has been improved by providing fins on the heat dissipation body 2 or by forming serrations on the surface of the fins.
Efforts are being made to increase this.

しかし単に放熱面積を増すだけでは放熱体2の沸騰表面
熱伝達率を効果的に増すことはできず、熱負荷に応じて
大形の放熱体2を必要とした。
However, the boiling surface heat transfer coefficient of the heat sink 2 cannot be effectively increased simply by increasing the heat sink area, and a large heat sink 2 is required depending on the heat load.

一方、沸騰冷却用放熱体2の放熱面21を、微細な多孔
質に構成することにより、放熱面21における気泡の発
生が促進され、放熱体2の沸騰表面熱伝達率を著しく増
大させうることが現象的に知られている。
On the other hand, by forming the heat dissipation surface 21 of the heat dissipation body 2 for boiling cooling into a fine porous structure, the generation of air bubbles on the heat dissipation surface 21 is promoted, and the boiling surface heat transfer coefficient of the heat dissipation body 2 can be significantly increased. is known phenomenologically.

しかし放熱面21を実効ある微細多孔質面に加工する経
済的な手段がなく、その実現が望まれていた。
However, there is no economical means to process the heat dissipation surface 21 into an effective microporous surface, and the realization thereof has been desired.

この発明は、このような現況に鑑みてなされたもので、
加工技術が確立されているサンドブラスト法または液体
ホーニング法により粗い研磨剤を用いてまづ放熱面21
を粗面化し、ついでこの粗面化した放熱面を、それより
更に細かい10〜400メッシュの研磨材を用いて微細
多孔質面に削蝕することにより簡単、安価で、しかも良
好な沸騰伝熱特性が得られることを見いだしこの発明を
完成したものである。
This invention was made in view of the current situation,
The heat dissipating surface 21 is first polished using a coarse abrasive using sandblasting or liquid honing, an established processing technology.
This roughened heat dissipation surface is then etched into a microporous surface using an abrasive with a finer mesh of 10 to 400 mesh, thereby achieving easy, inexpensive, and good boiling heat transfer. This invention was completed by discovering that the characteristics can be obtained.

第2図はこの発明にかかる表面処理を施した放熱体2の
部分的拡大断面図であり、放熱面21に、サンドブラス
ト法または液体ホーニング法により、まづ粗い凹凸面を
形成し、ついでこの粗い凹凸面の上に、更に微細な凹凸
面を形成する表面加工手順を示す説明図を兼ねている。
FIG. 2 is a partially enlarged sectional view of the heat dissipating body 2 subjected to the surface treatment according to the present invention. First, a rough uneven surface is formed on the heat dissipating surface 21 by sandblasting or liquid honing, and then this rough It also serves as an explanatory diagram showing a surface processing procedure for forming a finer uneven surface on top of an uneven surface.

図中放熱体2の右側部分の表面の破線で示す表面加工し
ない前の放熱面21に粗い凹凸面21aを形成した状態
を図中右側部分に、粗い凹凸面21aの上に更に微細な
凹凸面21bを形成した状態を図中左側部分に示す。
The right side of the figure shows a state in which a rough uneven surface 21a is formed on the heat dissipating surface 21 before surface processing, as indicated by the broken line on the right side of the surface of the heat sink 2, and a fine uneven surface is formed on the rough uneven surface 21a. The state in which 21b is formed is shown on the left side of the figure.

上記の粗い凹凸面21aはサンドブラスト法または液体
ホーニング法による削蝕加工法において使用する研磨剤
の粒度を粗いものを適用することによって、短時間で容
易に形成させることができる。
The above-mentioned rough uneven surface 21a can be easily formed in a short time by using a coarse abrasive in the etching process using sandblasting or liquid honing.

また微細な凹凸面21bは、同じ方法で、研磨剤の粒度
を細かくすることにより容易に形成させることができる
Further, the fine uneven surface 21b can be easily formed by using the same method by reducing the particle size of the abrasive.

サンドブラスト加工または液体ホーニング加工の代表的
な方法は、第2図に示すように、ノズル11の先端から
適当な粒度をもつ例えば砂などの研磨剤12、もしくは
この研磨剤12と水などの液体13との混合物を、圧縮
空気などを用いて高速度で被加工面に吹付けるもので、
単に研磨剤の粒度を変えるだけで被加工面に形成される
凹凸の粗さを所望のものとすることができる利点がある
A typical method of sandblasting or liquid honing is as shown in FIG. 2, in which an abrasive 12 such as sand having an appropriate particle size is ejected from the tip of a nozzle 11, or this abrasive 12 and a liquid 13 such as water. A mixture of
There is an advantage that the roughness of the irregularities formed on the surface to be processed can be made as desired simply by changing the particle size of the abrasive.

更に放熱面21上に形成された粗い凹凸面21aは、同
様の方法で吹付けられる細かい研磨剤に対して死角を生
じることがないため、全面にわたって微細な凹凸面21
bが形成されるという利点を有するものである。
Furthermore, the rough uneven surface 21a formed on the heat dissipation surface 21 does not create a blind spot for the fine abrasive that is sprayed in the same way, so
This has the advantage that b is formed.

上記のような凹凸面21a,21bを有する放熱体2を
用いた第1図の装置における半導体素子1の冷却は次の
ようになされる。
Cooling of the semiconductor element 1 in the apparatus shown in FIG. 1 using the heat sink 2 having the uneven surfaces 21a and 21b as described above is performed as follows.

すなわち半導体素子1が通電により発熱するとその両面
に圧接された放熱体2の温度が上昇し、放熱面21に直
接に接触する冷媒3は沸騰を開始する。
That is, when the semiconductor element 1 generates heat by being energized, the temperature of the heat radiator 2 pressed against both sides of the semiconductor element 1 rises, and the refrigerant 3 in direct contact with the heat radiating surface 21 starts to boil.

この際、半導体素子1の発熱は放熱体2を介して冷媒3
の沸騰気化潜熱として奪われ、半導体素子1は冷却され
る。
At this time, the heat generated by the semiconductor element 1 is transferred to the coolant 3 through the heat sink 2.
is taken away as latent heat of boiling and vaporization, and the semiconductor element 1 is cooled.

沸騰により気化した冷媒3は密閉容器4の上部空間に上
昇し、冷却フイン5によって冷却された容器4の内壁面
で凝縮、液化し、放熱して再び容器4の下部に戻る循環
を繰り返す、容器4内におけるこの冷媒3の沸騰気化、
凝縮液化の繰り返し作用により、半導体素子1の発生熱
は外部に放散される。
The refrigerant 3 vaporized by boiling rises to the upper space of the closed container 4, condenses and liquefies on the inner wall surface of the container 4 cooled by the cooling fins 5, radiates heat, and returns to the lower part of the container 4, repeating the circulation. Boiling vaporization of this refrigerant 3 in 4,
Due to the repeated condensation and liquefaction, the heat generated by the semiconductor element 1 is dissipated to the outside.

この場合上記のような表面処理を施こした放熱面21は
、粗い凹凸面21aのみあるいは微細な凹凸面21bの
みが形成された放熱面もしくは上記加工をまったく施さ
ない放熱面に比べて著しくすぐれた沸騰伝熱効果をもた
らすことが実験的に確かめられた。
In this case, the heat dissipation surface 21 that has been subjected to the above surface treatment is significantly superior to a heat dissipation surface that has only the rough uneven surface 21a or only the fine uneven surface 21b formed, or a heat dissipation surface that has not been subjected to the above processing at all. It was experimentally confirmed that the boiling heat transfer effect is produced.

第3図は沸騰熱伝達特性を比較するための特性図である
FIG. 3 is a characteristic diagram for comparing boiling heat transfer characteristics.

第3図において、特性曲線イはこの発明に係る放熱体の
沸騰表面熱伝達特性を示し、特性曲線口は何ら表面加工
を施さない放熱体2の沸騰表面熱伝達特性を示すもので
、縦軸は熱流束q1横軸は過熱度△Tを示す。
In FIG. 3, characteristic curve A shows the boiling surface heat transfer characteristic of the heat sink according to the present invention, and characteristic curve a shows the boiling surface heat transfer characteristic of heat sink 2 without any surface treatment. is the heat flux q1, and the horizontal axis indicates the degree of superheating ΔT.

この特性図から明らかなように、この発明に係る表面加
工処理を施した放熱体は、表面無加工の放熱体と比べ、
同じ熱流束qに対して、より低い過熱度△Tで動作し、
表面無加工の放熱体と比べてすぐれた熱伝達特性をもつ
ことがわかる。
As is clear from this characteristic diagram, the heat dissipation body subjected to the surface treatment according to the present invention has a higher
For the same heat flux q, it operates with a lower degree of superheat △T,
It can be seen that it has superior heat transfer characteristics compared to a heat sink with an untreated surface.

以下、その理由を推論的に説明する。The reason for this will be explained speculatively below.

いま表面無加工の放熱体2が特性曲線口上のA点で使用
されていたとすると、このときの熱流束q1、過熱度は
△T1で与えられる。
Assuming that the heat sink 2 with an unprocessed surface is used at point A on the characteristic curve, the heat flux q1 and degree of superheat at this time are given by ΔT1.

次にこの放熱体2と同一の形状で放熱面21に粗い凹凸
面21aのみを形成して放熱面21の表面積を拡大した
場合の動作点は曲線口上のB点に移り、熱流束、過熱度
はそれぞれq2,△T2となり、過熱度は先の△T1よ
り小さい△T2となる。
Next, when the surface area of the heat dissipation surface 21 is expanded by forming only the rough uneven surface 21a on the heat dissipation surface 21 with the same shape as the heat dissipation body 2, the operating point moves to point B on the curved edge, and the heat flux and superheat degree are q2 and ΔT2, respectively, and the degree of superheat is ΔT2, which is smaller than the previous ΔT1.

また、放熱体2の形状を同一とし、放熱面21に微細な
凹凸面2lbのみを形成した場合放熱体2の動作点は曲
線イ上のC点で与えられ、熱流束、過熱度はそれぞれq
1,△T3となる。
In addition, when the heat radiator 2 has the same shape and only a fine uneven surface 2lb is formed on the heat radiator surface 21, the operating point of the heat radiator 2 is given by point C on the curve A, and the heat flux and superheat degree are respectively q.
1, ΔT3.

次に粗い凹凸面21aと微細な凹凸面21bとを形成さ
せたこの発明に係る放熱体2では、曲線イ上のD点が動
作点として与えら札この場合熱流束はq2、過熱度は△
T4で与えらわ、過熱度△T4は先の△T1,△T2,
△T3などと比べてきわめて低い値をとる。
Next, in the heat sink 2 according to the present invention in which a rough uneven surface 21a and a fine uneven surface 21b are formed, point D on the curve A is given as the operating point.In this case, the heat flux is q2, and the degree of superheat is △.
The superheat degree △T4 is given by T4, and the superheat degree △T4 is the previous △T1, △T2,
It takes an extremely low value compared to ΔT3 and the like.

この場合、放熱面21に微細な凹凸面2lbを加工する
際の研磨剤12の粒度を替え、て比較試験を行なった結
果、微細な凹凸面を加工する際の研磨剤12の粒度とし
ては10〜400メッシュ程度の範囲のものを適用した
場合に有効な熱伝達特性をもつことを確認した。
In this case, a comparative test was carried out by changing the particle size of the abrasive 12 when processing the finely uneven surface 2lb on the heat dissipation surface 21, and it was found that the particle size of the abrasive 12 when processing the finely uneven surface 2lb was 10 It was confirmed that it has effective heat transfer characteristics when applied with a mesh size of ~400 mesh.

また、放熱面21に微細な凹凸面2lbを形成する前に
予じめ粗い凹凸面21aを形成させることは、放熱面2
1の実効的放熱面積の拡大を図ることになり、放熱体2
の低熱流束化を来すという効果の外に、上記の全面に微
細な凹凸面2lbが容易となり、気泡発生のための沸騰
核がより多く作られることによる効果が大きいものと考
えられる。
Furthermore, forming the rough uneven surface 21a in advance on the heat dissipating surface 21 before forming the fine uneven surface 2lb on the heat dissipating surface 21
In order to expand the effective heat dissipation area of heat dissipation body 2,
In addition to the effect of lowering the heat flux, it is thought that the above-mentioned fine uneven surface of 2 lb is easily formed on the entire surface, and the effect is large because more boiling nuclei for bubble generation are created.

この発明に係る表面処理方法は実施例にあげた半導体装
置の放熱体に適用する場合に限られるものではなく例え
ばレーザ装置など局部より多量の熱を出すものの沸騰冷
却に適用しても好ましい結果をもたらす。
The surface treatment method according to the present invention is not limited to being applied to the heat dissipation body of the semiconductor device mentioned in the embodiment, but can also be applied to the boiling cooling of a device such as a laser device that locally generates a large amount of heat. bring.

この他冷却装置等における蒸発器の伝熱管など上記半導
体装置などに比べ比較的低い熱流束で用いられるものに
適用しても同様の効果が得られることはいうまでもない
It goes without saying that similar effects can also be obtained by applying the present invention to heat exchanger tubes of evaporators in cooling devices and the like, which are used with a relatively lower heat flux than the semiconductor devices mentioned above.

さらに放熱体の形状も上記実施例のようにブロック状の
ものに限定されるものではなくパイプ状のものなど任意
の形状をもつものに適用できることはいうまでもなく、
その加工方法も簡単で加工時間もごく短かいため、きわ
めて安価にすぐれた特性をもつ放熱体を提供できるとい
う大きな利点を有する。
Furthermore, the shape of the heat sink is not limited to the block shape as in the above embodiment, but it goes without saying that it can be applied to any shape such as a pipe shape.
Since the processing method is simple and the processing time is very short, it has the great advantage of being able to provide a heat sink with excellent properties at an extremely low cost.

以上詳述したように、この発明は放熱体の冷媒に接触す
る放熱面にまずサンドブラスト法または液体ホーニング
法により比較的粗い凹凸面を形成させ、ついで10〜4
00メッシュの研磨剤を用いて同じ加工法を適用してこ
の上に更に微細な凹凸面を形成させるようにしたもので
、簡単な工程で製作することができるにもかかわらず良
好な沸騰熱伝達特性を有する放熱体とすることができる
もので、実用上きわめて有用なものである。
As detailed above, this invention first forms a relatively rough uneven surface on the heat dissipation surface of the heat dissipation body that comes into contact with the refrigerant by sandblasting or liquid honing, and then
The same processing method is applied using 00 mesh abrasive to form a finer uneven surface on top of the abrasive, and it can be manufactured through a simple process and yet has good boiling heat transfer. It can be made into a heat radiator having special characteristics, and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による放熱体を適用した沸騰冷却半導
体装置の一実施例の構成を示す断面図、第2図はこの発
明による放熱体の加工方法を示す説明図、第3図はこの
発明による表面処理の有無による放熱体の沸騰熱伝達特
性を比較するための特性図である。 図中、1は平形半導体素子、2は放熱体、21は放熱体
2の放熱面、21aは粗い凹凸面、21bは微細な凹凸
面、3は冷媒、4は密閉容器、5は冷却フィンである。 なお、図中同一符号はそれぞれ同一または相当部分を示
す。
FIG. 1 is a cross-sectional view showing the configuration of an embodiment of a boiling-cooled semiconductor device to which a heat sink according to the present invention is applied, FIG. 2 is an explanatory diagram showing a method for processing a heat sink according to the present invention, and FIG. FIG. 3 is a characteristic diagram for comparing boiling heat transfer characteristics of heat radiators with and without surface treatment according to the present invention. In the figure, 1 is a flat semiconductor element, 2 is a heat sink, 21 is a heat dissipation surface of the heat sink 2, 21a is a rough uneven surface, 21b is a fine uneven surface, 3 is a coolant, 4 is a closed container, and 5 is a cooling fin. be. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 液状冷媒に接触する放熱面をサンドブラスト法また
は液体ホーニング法により粗い研磨剤を用いて粗面とな
し、ついで上記研磨剤よりも更に細かい10〜400メ
ッシュの研磨剤を用いサンドブラスト法または液体ホー
ニング法により上記粗面に形成された放熱面の表面を多
孔質面に削蝕することを特徴とする沸騰冷却用放熱体の
表面処理方法。
1. The heat dissipation surface that comes into contact with the liquid refrigerant is roughened using a coarse abrasive by sandblasting or liquid honing, and then by sandblasting or liquid honing using an abrasive of 10 to 400 mesh, which is finer than the above abrasive. A method for surface treatment of a heat dissipating body for boiling cooling, characterized in that the surface of the heat dissipating surface formed as a rough surface is etched into a porous surface.
JP11148976A 1976-09-16 1976-09-16 Surface treatment method for heat sink for boiling cooling Expired JPS587914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11148976A JPS587914B2 (en) 1976-09-16 1976-09-16 Surface treatment method for heat sink for boiling cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11148976A JPS587914B2 (en) 1976-09-16 1976-09-16 Surface treatment method for heat sink for boiling cooling

Publications (2)

Publication Number Publication Date
JPS5297458A JPS5297458A (en) 1977-08-16
JPS587914B2 true JPS587914B2 (en) 1983-02-12

Family

ID=14562554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11148976A Expired JPS587914B2 (en) 1976-09-16 1976-09-16 Surface treatment method for heat sink for boiling cooling

Country Status (1)

Country Link
JP (1) JPS587914B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354557U (en) * 1986-09-30 1988-04-12
JP2016125762A (en) * 2014-12-27 2016-07-11 国立大学法人徳島大学 Heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003214A1 (en) * 2016-06-29 2018-01-04 三菱電機株式会社 Vehicle rotary electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354557U (en) * 1986-09-30 1988-04-12
JP2016125762A (en) * 2014-12-27 2016-07-11 国立大学法人徳島大学 Heat exchanger

Also Published As

Publication number Publication date
JPS5297458A (en) 1977-08-16

Similar Documents

Publication Publication Date Title
US7327572B2 (en) Heat dissipating device with enhanced boiling/condensation structure
JPH10141877A (en) Electronic apparatus heat radiating unit using heat pipe, and its manufacture
JP2010522996A (en) Thin thermal diffusion liquid chamber using boiling
JP7220434B2 (en) Boiling cooling structure
WO2012060461A1 (en) Cooling device and manufacturing method thereof
JPS587914B2 (en) Surface treatment method for heat sink for boiling cooling
WO2012053624A1 (en) Cooling device and method for producing same
JPH02114597A (en) Method of cooling electronic device
JP4042268B2 (en) Boiling cooler
JP2001349682A (en) Boiling cooler
JPH10227585A (en) Heat spreader and cooler employing the same
US3521708A (en) Heat transfer surface which promotes nucleate ebullition
JPH0320070B2 (en)
JPS59232448A (en) Liquid cooled container
JPH07169889A (en) Heat sink
JP2005337701A (en) Cooling device
JP2014138060A (en) Cooling device
JP2550162B2 (en) Boiling cooler
JPH0254955A (en) Vaporization cooling semiconductor device
JP2004349652A (en) Boiling cooler
JPH0442931Y2 (en)
JPS6320122Y2 (en)
JP2773588B2 (en) Cooling system
JPH0278256A (en) Dipping/cooling module
JPH0328513Y2 (en)