JPS5877268A - Manufacture of tunnel type josephson junction element - Google Patents

Manufacture of tunnel type josephson junction element

Info

Publication number
JPS5877268A
JPS5877268A JP56175652A JP17565281A JPS5877268A JP S5877268 A JPS5877268 A JP S5877268A JP 56175652 A JP56175652 A JP 56175652A JP 17565281 A JP17565281 A JP 17565281A JP S5877268 A JPS5877268 A JP S5877268A
Authority
JP
Japan
Prior art keywords
electrode
josephson junction
tunnel
film
type josephson
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56175652A
Other languages
Japanese (ja)
Inventor
Shinichiro Yano
振一郎 矢野
Junji Shigeta
淳二 重田
Koji Yamada
宏治 山田
Mikio Hirano
幹夫 平野
Juichi Nishino
西野 寿一
Kunio Yamashita
山下 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56175652A priority Critical patent/JPS5877268A/en
Publication of JPS5877268A publication Critical patent/JPS5877268A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain the tunnel type Josephson element in excellent reproducibility by a method wherein the surface of an electrode is covered by a film of excellent corrosion-resisting property in advance, and the surface of an electrode is protected from becoming wet while a photoresist process is performed. CONSTITUTION:A resist mask 12 is provided on an Si substrate 11, an alloy 13 of Pb, In and Au is vapor-deposited, and a protective film 14 such as corrosion- resisting In, Au and the like is then vapor-deposited. The resist mask 12 is removed using aceton, and the first super conductive electrode 15 is formed. Then, a resist mask 16 is provided. When performing the above procedure, the surface of the electrode is not contaminated by the help of the film 14. The film 14 is removed by performing an Ar plasma etching, and a tunnel barrier layer 17 is formed on the exposed electrode 15 by plasma oxidization and the like. Subsequently, the second superconductive electrode 18 is formed by vapor-deposition of lead, gold alloy or lead-bismuth alloy and the like, and the Josephson junction electrode is completed. According to this constitution, a uniform tunnel barrier can be formed in excellent reproducibility, and the maximum Josephson current can be maintained within + or -5% or below when a number of elements are provided on the same substrate.

Description

【発明の詳細な説明】 本発明はトンネル型ジョセフソン接合素子を製造する方
法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method of manufacturing tunnel Josephson junction devices.

従来ジョセフソン接合素子としては1種々の構造のもの
が知られているが、2つの超電導体の間に極めて薄いト
ンネル障壁層を介在させて構成されるトンネル型ジョセ
フソン接合素子が、応用上多くの利点を持つために、集
積回路化技術が開発されている。第1図はトンネル型ジ
ョセフソン接合素子の斜視図であり、超電導体薄膜によ
り形成された第1の電極1と第2の電極20間に極めて
薄いトンネル障壁層3をはさんだ構造になっている。第
2図はこのような構造を持つトンネル型ジョセフソン接
合素子の電流−電圧特性の一例を示すものである3、電
圧を発生せずに流しうる最大の電流を最大ジョセフソン
電流■、と呼び、ジョセフソン接合素子を多数個用いる
ような集積回路の作製にあたっては各素子間での最大ジ
ョセフソン電流工、の不均一を可能な限り小さくするこ
とが極めて重要である。この最大ジョセフソン電流■、
はトンネル障壁層の厚み及び接合面積によって変化する
。従ってこれらを精度良く所望の値に制御する必要があ
る。接合面積はリソグラフィー技術を適用することで、
かなり゛の精度をもって規定することができる。一方ト
ンネル障壁層の形成においては、その厚みにより最大ジ
ョセフソン電流工、は指数関数的に変化する上に、上記
のリソグラフィー技術の適用により超電導電極表面がウ
ェットな状態におかれ、不要な汚染層、変質層が形成さ
れ、再現性良く均一なトンネル障壁層を形成することは
はなはだ困難なことになっている。
Conventionally, Josephson junction devices have been known to have various structures, but the tunnel type Josephson junction device, which is constructed by interposing an extremely thin tunnel barrier layer between two superconductors, has been widely used for many applications. Integrated circuit technology has been developed to have the advantages of FIG. 1 is a perspective view of a tunnel-type Josephson junction element, which has a structure in which an extremely thin tunnel barrier layer 3 is sandwiched between a first electrode 1 and a second electrode 20 formed of a superconducting thin film. . Figure 2 shows an example of the current-voltage characteristics of a tunnel-type Josephson junction device with such a structure.3 The maximum current that can flow without generating voltage is called the maximum Josephson current. When manufacturing an integrated circuit using a large number of Josephson junction elements, it is extremely important to minimize the non-uniformity of the maximum Josephson current between each element. This maximum Josephson current ■,
varies depending on the thickness of the tunnel barrier layer and the junction area. Therefore, it is necessary to control these to desired values with high precision. The bonding area can be determined by applying lithography technology.
It can be defined with considerable precision. On the other hand, when forming a tunnel barrier layer, the maximum Josephson current changes exponentially depending on its thickness, and the application of the above-mentioned lithography technology leaves the superconducting electrode surface in a wet state, resulting in an unnecessary contamination layer. , an altered layer is formed, making it extremely difficult to form a uniform tunnel barrier layer with good reproducibility.

従来この困難さを取り除く方法として、超電導電極表面
を予め酸化しておき、この酸化膜を保護とする方法、ト
ンネル障壁層形成直前に、電極表面をスパッタエツチン
グして表面の不要層を取り除く方法などが用いられてい
る。しかし、この様な方法では、たとえば前者の場合酸
化膜は100オングストローム以下の極めて薄い膜であ
り、完全な保護膜とはなり得ない、後者の場合、スパッ
タリングの選択性、あるいはスパッタ時の温度上昇によ
シ、かえって、超電導膜表面を変質させてしまうなどの
問題があシ、十分な対策方法とは言いがたい。
Conventional methods to overcome this difficulty include oxidizing the surface of the superconducting electrode in advance and using this oxide film as a protection, and removing unnecessary layers on the surface by sputter etching the electrode surface immediately before forming the tunnel barrier layer. is used. However, in such a method, for example, in the former case, the oxide film is an extremely thin film of 100 angstroms or less and cannot be a complete protective film, and in the latter case, sputtering selectivity or temperature rise during sputtering may be affected. On the contrary, there are problems such as deterioration of the surface of the superconducting film, and it is difficult to say that this is a sufficient countermeasure.

本発明の目的は、トンネル型ジョセフソン接合素子を作
製する際、電極パタンを形成するフォトレジスト工程に
より、電極表面がウェットな状況にお゛かれても、再現
性の良い素子作製を可能にすることにある。
The purpose of the present invention is to enable the fabrication of tunnel-type Josephson junction devices with good reproducibility even when the electrode surfaces are exposed to wet conditions using a photoresist process for forming electrode patterns. There is a particular thing.

本発明は、電極表面を予め耐食に優れた保護膜で被覆し
ておくことにより、ウェットな工程や大気中に於いても
、その電極表面を保膿できるようにするものである。
The present invention enables the electrode surface to retain purulence even in a wet process or in the atmosphere by coating the electrode surface with a protective film having excellent corrosion resistance.

以下1本発明の一実施例を第3図にょシ説明する。第3
図(A)において、たとえばシリコン等からなる基板l
l上に、ポジティブ型フォトレジスト(たとえば、AZ
1350J (米国シプレー社の商品名)など)12を
たとえば1ミクロン程度の厚さに塗布した後、フォトマ
スクを介してフォトレジスタ12上に第1の超電導電極
のノ(タンを転写、現像処理を行なう。次に第3図(B
)において例えば蒸着法によシ鉛・インジウム・金合金
13などの蒸着を行なう。次いで第3図(C)において
たとえば蒸着法によりインジウム、金など耐食性にすぐ
れた蒸着膜14を保農膜としてたとえば厚さ100〜1
000オングストローム程匿形成する。次に上記基板1
1をアセトン中に浸しフォトレジスト12を除去して第
3図(D)に示すように、第1の超電導電極15を形成
する。このようにして基板上に蒸着膜バタンを形成する
方法はリフトオフ法と言われる公知の技術である。次に
第3図(E)に示す工程において、第3図(A)の工程
と同様にして第2の超電導電極のためのしされる゛から
、通常であれば、その電極表面は少なからす汚染される
ところであるが1本発明では第3図(C)に示した工程
によりあらかじめ保護膜14で被覆しであるので、その
ようなことは起きない。次に第3図(F)に示すように
残っているフォトレジスト膜をマスクとして保護膜14
のエツチングを行なって第1の超電導電極15の一部表
面を露出させる。このエツチングは例えばアルゴンをエ
ツチングガスとするプラズマエツチング法を用いて行な
う。次いでたとえば第3図(G)に示す工程のように、
たとえば酸素中で行なわれる熱酸化、プラズマ酸化など
の周知の方法によシ第1の超電導電極15上にトンネル
障壁層17を形成する。引き続いて第3図(H)に示す
工程において、たとえば、鉛・金合金、鉛・ビスマス合
金などの蒸着によ#)、第3図(B)および第3図(D
)と同様の工程により第2の超電導電極18を形成すれ
ばジョセフソン接合素子が完成する。
An embodiment of the present invention will be described below with reference to FIG. Third
In Figure (A), for example, a substrate l made of silicon, etc.
A positive photoresist (e.g. AZ
1350J (trade name of Shipley, USA) 12 to a thickness of about 1 micron, for example, the first superconducting electrode is transferred onto the photoresist 12 through a photomask and developed. Next, see Figure 3 (B
), the lead-indium-gold alloy 13 is deposited by, for example, a vapor deposition method. Next, in FIG. 3(C), a vapor-deposited film 14 having excellent corrosion resistance such as indium or gold is deposited by a vapor deposition method to a thickness of, for example, 100 to 1,000 ml as a protective film.
000 angstroms. Next, the above board 1
1 is immersed in acetone and the photoresist 12 is removed to form a first superconducting electrode 15 as shown in FIG. 3(D). The method of forming a vapor deposited film bump on a substrate in this manner is a known technique called a lift-off method. Next, in the step shown in FIG. 3(E), the second superconducting electrode is marked in the same manner as in the step of FIG. 3(A), so normally the surface of the electrode is small. However, in the present invention, since the protective film 14 is coated in advance in the step shown in FIG. 3(C), such a problem does not occur. Next, as shown in FIG. 3(F), a protective film 14 is formed using the remaining photoresist film as a mask.
Etching is performed to expose a part of the surface of the first superconducting electrode 15. This etching is performed using, for example, a plasma etching method using argon as an etching gas. Then, for example, as in the step shown in FIG. 3(G),
A tunnel barrier layer 17 is formed on the first superconducting electrode 15 by a well-known method such as thermal oxidation or plasma oxidation performed in oxygen. Subsequently, in the step shown in FIG. 3(H), for example, by vapor deposition of lead-gold alloy, lead-bismuth alloy, etc.
) A Josephson junction element is completed by forming the second superconducting electrode 18 through a process similar to that described in (a).

本発明によれば、トンネル型ジョセフソン接合素子を作
製する際、第1の肩篭導電極上をあらかじめ耐食性にす
ぐれた保ramで被覆することで、それに続く、水洗な
どウェットな工程を経ても。
According to the present invention, when manufacturing a tunnel-type Josephson junction element, the first shoulder conductive electrode is coated in advance with a retaining RAM having excellent corrosion resistance, so that it can be coated even after subsequent wet processes such as washing with water.

その電極表面を何ら変質させることなく、その上にトン
ネル障壁層、第2の超電導電極を形成し完成するもので
あって、従来、この種のジョセフソン接合素子を作製す
る場合の障害となっていた。
This method is completed by forming a tunnel barrier layer and a second superconducting electrode on the electrode surface without changing its surface in any way, which has traditionally been an obstacle in producing this type of Josephson junction device. Ta.

第1の超電導電極表面の汚染あるいは変質を防止するこ
とで、再現性の良い均一なトンネル障壁層を形成するこ
とができる。結果的に、同一基板上に作製した多数個の
ジョセフソン接合素子の最大ジョセフソン電流1.の不
均一さを±5%以内に収めることも可能である。
By preventing contamination or alteration of the surface of the first superconducting electrode, a uniform tunnel barrier layer with good reproducibility can be formed. As a result, the maximum Josephson current of a large number of Josephson junction devices fabricated on the same substrate is 1. It is also possible to keep the non-uniformity within ±5%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はトンネル型ジョセフソン接合素子を示す主要部
斜視図、第2図はその電流−・電圧特性の一例を表わす
グラフ、第3図(A)〜(H)は本発明一実施例の工程
説明図である。 11・・・基板、12・・・レジスト膜、13・・・第
1の超電導電極膜、14・・・保護膜、15・・・第1
の超電導電極、16・・・レジスト膜、17・・・トン
ネル障壁層。 18・・・第2の超電導電極。 蒐1図   ¥、2図 % 3 図 Cf))        (”      ’   (
F)第1頁の続き 0発 明 者 西野寿− 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 0発 明 者 山下邦男 国分寺市東恋ケ窪1丁目280番 、      地株式会社日立製作所中央研究所内
FIG. 1 is a perspective view of the main parts of a tunnel-type Josephson junction device, FIG. 2 is a graph showing an example of its current-voltage characteristics, and FIGS. It is a process explanatory diagram. DESCRIPTION OF SYMBOLS 11... Substrate, 12... Resist film, 13... First superconducting electrode film, 14... Protective film, 15... First
superconducting electrode, 16... resist film, 17... tunnel barrier layer. 18...Second superconducting electrode. Figure 1 ¥, Figure 2% 3 Figure Cf)) ("' (
F) Continued from page 1 0 Author: Hisashi Nishino - 1-280 Higashi-Koigakubo, Kokubunji City, Hitachi, Ltd. Central Research Laboratory 0 Author: Kunio Yamashita, 1-280 Higashi-Koigakubo, Kokubunji City, Hitachi, Ltd. Central Research Laboratory

Claims (1)

【特許請求の範囲】 1、第1の超電導体電極および第2の超電導体電極の間
に極めて薄いトンネル障壁層を介在させて構成するトン
ネル型ジョセフソン接合素子の製造方法において、上記
第1の超電導電極を蒸着法、スパッタ法などにより形成
した後に、形成装置の真空を破ることなく続けて上記第
1の超電導体電極表面に予め耐食性に優れた保護膜を形
成しておくことを特徴とするトンネル型ジョセフソン接
合素子の製造方法。 2 上記保護膜の形成方法として蒸着法、スパッタ法な
どによる被着方法を用いることを特徴とする特許請求の
範囲第1項記載のトンネル型ジョセフソン接合素子の製
造方法。 3、上記保護膜としてh I ” e A ” @ A
4 + 8’O*sio、もしくはこれらの複合体を用
いることを特徴とする特許請求の範囲第1項記載のトン
ネル型ジョセフソン接合素子の製造方法。 4、上記保護膜として100〜1000オングストロー
ムの膜厚を用いることを特徴とする特許請求の範囲第1
項記載のトンネル型ジョセフソン接合素子の製造方法。
[Claims] 1. A method for manufacturing a tunnel-type Josephson junction device comprising an extremely thin tunnel barrier layer interposed between a first superconductor electrode and a second superconductor electrode, wherein the first After the superconducting electrode is formed by a vapor deposition method, a sputtering method, etc., a protective film having excellent corrosion resistance is formed in advance on the surface of the first superconducting electrode without breaking the vacuum of the forming apparatus. A method for manufacturing a tunnel-type Josephson junction device. 2. The method of manufacturing a tunnel-type Josephson junction device according to claim 1, wherein the protective film is formed by a deposition method such as a vapor deposition method or a sputtering method. 3. As the above protective film, h I ” e A ” @ A
4+8'O*sio or a composite thereof is used. 4+8'O*sio or a composite thereof is used. The method for manufacturing a tunnel type Josephson junction device according to claim 1. 4. Claim 1, characterized in that the protective film has a thickness of 100 to 1000 angstroms.
A method for manufacturing a tunnel-type Josephson junction device as described in .
JP56175652A 1981-11-04 1981-11-04 Manufacture of tunnel type josephson junction element Pending JPS5877268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56175652A JPS5877268A (en) 1981-11-04 1981-11-04 Manufacture of tunnel type josephson junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56175652A JPS5877268A (en) 1981-11-04 1981-11-04 Manufacture of tunnel type josephson junction element

Publications (1)

Publication Number Publication Date
JPS5877268A true JPS5877268A (en) 1983-05-10

Family

ID=15999835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56175652A Pending JPS5877268A (en) 1981-11-04 1981-11-04 Manufacture of tunnel type josephson junction element

Country Status (1)

Country Link
JP (1) JPS5877268A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143488A (en) * 1984-08-08 1986-03-03 Agency Of Ind Science & Technol Manufacture of superconductive contact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143488A (en) * 1984-08-08 1986-03-03 Agency Of Ind Science & Technol Manufacture of superconductive contact

Similar Documents

Publication Publication Date Title
JPS6161280B2 (en)
JPS5877268A (en) Manufacture of tunnel type josephson junction element
JPS5978585A (en) Josephson integrated circuit
JP2682136B2 (en) Method of manufacturing Josephson device
JPH0480549B2 (en)
JPS6213832B2 (en)
US3450534A (en) Tin-lead-tin layer arrangement to improve adherence of photoresist and substrate
JPS6147679A (en) Production of josephson junction element
JPS61263179A (en) Manufacture of josephson junction element
JPH0680845B2 (en) How to make a Josephson device
US4536780A (en) Superconductive tunneling junction resistor and method of fabrication
JPS61144892A (en) Production of josephson integrated circuit
JPH0145218B2 (en)
JPS58125881A (en) Constitution of vertical type resistance circuit
JPS58147183A (en) Manufacture of josephson integrated circuit
JPS6052069A (en) Manufacture of josephson integrated circuit device
JPS6167975A (en) Manufacture of josephson junction element
JPH0594961A (en) Manufacture of superconductive wiring
JPS60208872A (en) Manufacture of superconductive contact
JPH03106080A (en) Manufacture of superconducting device
JPS60208875A (en) Manufacture of josephson junction element
JPS60210887A (en) Manufacture of josephson junction element
JPS6329593A (en) Superconducting transistor and manufacture thereof
JPH0613672A (en) Manufacture of josephson junction device
JPS6143488A (en) Manufacture of superconductive contact