JPS5874086A - Stress detecting element - Google Patents

Stress detecting element

Info

Publication number
JPS5874086A
JPS5874086A JP56172040A JP17204081A JPS5874086A JP S5874086 A JPS5874086 A JP S5874086A JP 56172040 A JP56172040 A JP 56172040A JP 17204081 A JP17204081 A JP 17204081A JP S5874086 A JPS5874086 A JP S5874086A
Authority
JP
Japan
Prior art keywords
complex
stress
precipitate
plate
charge transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56172040A
Other languages
Japanese (ja)
Inventor
Masanori Sakamoto
正典 坂本
Masami Sugiuchi
政美 杉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56172040A priority Critical patent/JPS5874086A/en
Publication of JPS5874086A publication Critical patent/JPS5874086A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To obtain a stable stress detecting element with good detection sensitivity, by using a material wherein charge transfer type complex formed of electron acceptors and electron donors is dispersed into a high polymer material. CONSTITUTION:Tetrathiatetracene (TTT) is dissolved into toluene heated at 70 deg.C till the saturation. When carbon tetrachloride is mixed with the same amount of the toluene and kept at 70 deg.C, the precipitate of TTT-CCl4 complex can be obtained. It is filtered, the precipitate is decomposed, this precipitate is added to the toluene solution of polystyrene so that the added complex may be in the same weight as the polystyrene, and it is sufficiently kneaded. After the mixed charge transfer complex is sufficiently dispersed, it is casted into a mold to obtain a plate-like product. This plate-like resistant material 1 is mounted to an outer frame 4 by evaporating electrode patterns to deposit on the upper and lower side thereof, and lead wires and led out and attached to an external frame. Si rubber 5 is adhered on the back of the material 1. When the surface is pressed, the plate is deformed, the resistance between electrodes is varied and functions as a pressure detection element.

Description

【発明の詳細な説明】 る予力検出素子に関する。[Detailed description of the invention] This invention relates to a preload detection element.

(従来技術) 従来、応力を検知するための素子としては、機銅粉のよ
うな金属材料を分散させたいわゆる感圧シートがある。
(Prior Art) Conventionally, as an element for detecting stress, there is a so-called pressure-sensitive sheet in which a metal material such as copper powder is dispersed.

前者についてみると、圧電材料と分極させたものや、圧
電性磁気材料などが知られしく、また印加応力と発生す
る電位差の直線性が乏しく、簡便な応力検出素子として
は適当でなからた。また、後者につ−ていえは、累−の
製造は比截的容易□であるものの、高分子材料と金鵬粉
との親和性が悪く、長期の使用や水分の侵入、金属粉末
の酸化などによって特性が変化する欠点があった。
Regarding the former, known materials include polarized piezoelectric materials and piezoelectric magnetic materials, and the linearity between applied stress and generated potential difference is poor, making them unsuitable as simple stress detection elements. Regarding the latter, although it is relatively easy to manufacture the metal powder, the affinity between the polymer material and the metal powder is poor, and problems such as long-term use, moisture intrusion, oxidation of the metal powder, etc. The disadvantage was that the characteristics changed depending on the

(本発明の目的) 本発明は、応力検出素子の上記欠点を改善するためにな
され九もので、検出感度が良好で、安定な応力検出素子
を提供できるものでおる。
(Objective of the present invention) The present invention has been made to improve the above-mentioned drawbacks of stress detection elements, and can provide a stable stress detection element with good detection sensitivity.

(本発明の構成) 本発明は、印加応力ないし圧力に応じて電気抵抗が変化
する材料を相対向する電極間に介在させてなる応力検出
素子において、電子受容体と電子供与体とで形成される
電荷移動型錯体を高分子材料中に分散させた材料(抵抗
材料)t−用いることを特徴とする゛ものである。
(Structure of the present invention) The present invention provides a stress detection element in which a material whose electrical resistance changes depending on applied stress or pressure is interposed between opposing electrodes, which is formed of an electron acceptor and an electron donor. This is characterized by using a material (resistance material) in which a charge transfer type complex is dispersed in a polymer material.

本発明で用いることのできる電荷移動−錯体は、電子供
与体が芳香衰化合物あるvkはN−へテロ芳香環化合物
から選ばれたものであシ、また電子受容体が7.7,8
.8−テトラ゛レテノキノジメタン、テトラシアノジメ
タン、パラクロラニル、四塩化縦索、バラベンゾキノン
、wO1票あるいは塩素から選ばれたものである両成分
からなる錯体でLJ)、特に電子供与体とぽはテトラチ
アテトラセン、テトラチアナフタセン、ナト2セレノテ
トラセン、テトラチアフルバレンが好ましい。これらの
成分は1種あるいは2種以上併用することもできる。
In the charge transfer complex that can be used in the present invention, the electron donor is an aromatic decay compound, vk is selected from N-heteroaromatic compounds, and the electron acceptor is 7.7, 8.
.. A complex consisting of both components selected from 8-tetra-rethenoquinodimethane, tetracyanodimethane, parachloranil, longitudinal tetrachloride, barabenzoquinone, wO1 or chlorine (LJ), especially with an electron donor Preferred are tetrathiatetracene, tetrathianaphthacene, nato2selenotetracene, and tetrathiafulvalene. These components can be used alone or in combination of two or more.

この錯体は、導電性を有する針状晶でら9、かつ結晶の
長軸方向と、短軸方向の導電性が大きく異なるいわゆる
異方性を有するものであシ、骸針状晶−を高分子材料中
で配向させることにより異方性を有する応力検出素子を
実現でき、応力検出素子としては極めて好都合である。
This complex consists of acicular crystals9 that have electrical conductivity, and is so-called anisotropic in that the electrical conductivity in the long axis direction and the short axis direction of the crystals are greatly different. By orienting it in a molecular material, a stress sensing element having anisotropy can be realized, which is extremely advantageous as a stress sensing element.

本発明の電荷移動型錯体を製造するVCは、公知の錯体
の製法を採用することができるが、例えばナト2セン誘
導体の有機溶媒溶液と、電子受容体の有機溶媒溶液□を
、両成分示当量となるように混合し、攪拌した1門加温
することにょル製造できる。
VC for producing the charge transfer type complex of the present invention can employ a known complex production method, but for example, an organic solvent solution of a nato2cene derivative and an organic solvent solution of an electron acceptor □ are prepared as two components. It can be produced by mixing in equal amounts, stirring, and heating one batch.

:1・ 本発明で用い・、′lFことのできる高分子材料として
は、例えにポリビニルブチ2−ル、ポリj普ネート、ポ
リスルホン、ポリスチレン、アクリル系樹脂、ポリエチ
レン、シリコン樹脂、フッ素樹脂、ジエン系ゴム等適度
の可撓性を有する材料はiずれも使用可能であって、こ
れらに限定されなioまた、この錯体を高分子材料に分
散させるには、高分子材料中蝋に上記の錯体溶液あるi
は懸濁液を加えた後溶媒を揮−させる方法、あるいは、
前記の如く溶液を混合攪拌加温させて得られる錯体沈殿
を分離しこれを高分子材料の有機溶剤溶液に加え、ボー
ル考ル、i−ルなどにより混線分散さ本発明にお―で、
高分子材料中に分散す゛る電荷移動型錯体の量は、高分
子の種類にもよるが門高分子材料一対して10〜95重
量−の範囲が好−じ(、辷れが10重量%に満友な一場
合は満足すべき導電性が得られず、また95重量−を越
える場合は成型性が着しく悪化し好宜しくな―。
1. Polymer materials that can be used in the present invention include, for example, polyvinyl butyl, poly(J-P), polysulfone, polystyrene, acrylic resin, polyethylene, silicone resin, fluororesin, and diene. Any material having appropriate flexibility such as rubber can be used, but is not limited to these materials.In addition, in order to disperse this complex in a polymeric material, the above complex is added to the wax in the polymeric material. There is a solution i
is a method in which the solvent is volatilized after adding a suspension, or
In the present invention, the complex precipitate obtained by mixing, stirring, and heating the solution as described above is separated, added to an organic solvent solution of a polymer material, and cross-dispersed using a ball condenser, an i-ru, etc.
The amount of the charge transfer type complex dispersed in the polymer material depends on the type of polymer, but it is preferably in the range of 10 to 95% by weight per polymer material (with a slippage of 10% by weight). If the weight is too high, satisfactory conductivity cannot be obtained, and if the weight exceeds 95%, the moldability deteriorates, which is undesirable.

以下、本発明をさらに図wを用いて説明する。Hereinafter, the present invention will be further explained using Figure w.

第1図はi@の応力検出−子の構造の1例を示す図であ
る。同図にかiでlは板状に成形し喪電荷移動型錯体含
有材料であル、その両面に相対向する電極が形成されて
いる。鋏電極は、鋼、アにボローラム等の金属、あるi
は酸化インジウム等のも使用することができる。
FIG. 1 is a diagram showing an example of the structure of the stress detection element of i@. In the same figure, numerals ``i'' and ``l'' are plate-shaped materials containing a charge transfer type complex, and opposing electrodes are formed on both sides of the plates. The scissor electrodes can be made of metal such as steel, aluminum, etc.
Indium oxide and the like can also be used.

M1図のように抵抗材料の両面に電極層が形成さt′乏
“る場合′は・印加応力を有効に抵抗材料層へ伝達でき
るように電極は薄い方が好オし−0このような素子を製
造するには、膜状に形成した抵抗材料の両面に電極材料
の箔を貼)合わせる方法、電極材−〇箔上に抵抗材料層
を形成し・5次″1対向電極を貼着ある%Afd蒸着に
ょ)形成する方法、抵抗材料の所I!部分に電極を蒸着
して形成する方法等、任意の方法で実−しうる。ま九応
カ検出素子を支持体上に形成することもできる。この場
合、抵抗材料および電極を薄膜とすることができ好都合
である。高分子材料中に電荷移動部錯体の針状、   
  は第5図にみられるようにドクターナイフ8等を用
iて機械的に配向することができる。図において針状晶
は、ドクターナイフの走行方向9と平行に配向する。
When electrode layers are formed on both sides of the resistive material as shown in Figure M1, it is preferable that the electrodes be thin so that the applied stress can be effectively transmitted to the resistive material layer. To manufacture the element, there is a method in which foils of electrode material are pasted on both sides of a resistive material formed in the form of a film, a resistive material layer is formed on the electrode material -〇 foil, and a 5th ``1 counter electrode'' is pasted. %Afd evaporation) method of formation, place of resistive material I! Any method can be used, such as forming an electrode on a portion by vapor deposition. The force sensing element can also be formed on the support. In this case, it is advantageous that the resistance material and the electrode can be formed into thin films. needle-like charge transfer moiety complex in polymeric material;
can be mechanically oriented using a doctor knife 8 or the like as shown in FIG. In the figure, the needles are oriented parallel to the running direction 9 of the doctor knife.

(本発明の実施例) 以下、実施例によシ本発明を説明する。(Example of the present invention) The present invention will be explained below with reference to Examples.

実施例−1 テトラチアテトラセン(TTT)を70°0に加温した
トルエンに飽和するまで溶解させる。これにトルエンと
同量の4塩化炭素1混合し、70°OK保温すると暗紫
色のTTT−0014錯体の沈殿が得られる。これをろ
過し沈殿を分離する。得られた沈殿をポリスチレンのト
ルエン溶液(601G)に加え、加えた錯体が、ポリス
チレンと等重量になるようにする。これをボールセルに
入れてよく混練する。
Example-1 Tetrathiatetracene (TTT) is dissolved in toluene heated to 70°0 until saturated. To this is mixed 1 carbon tetrachloride in the same amount as toluene and kept warm at 70° to obtain a dark purple precipitate of TTT-0014 complex. This is filtered to separate the precipitate. The obtained precipitate is added to a toluene solution of polystyrene (601G) so that the weight of the added complex is equal to that of the polystyrene. Put this into a ball cell and mix well.

混入した電荷移動錯体が充分に分散したのちこれ管形に
流し込み第2図および第3図のように厚さ約1txtの
板状に成形する。かかる板状の抵抗材料1の上下に電極
2をAターン蒸着してリー゛ド曽3を引き出し金属製の
外枠4KjlE付ける。抵抗材料の背後にはシリコンゴ
ム5を貼っである。表面に圧力がかかると板は変形し、
上下、ある―は表面上の電極間の抵抗が変化し、圧□力
(圧縮応力)検出素子として働く。ゴムの弾性を調節す
ることにより圧力感度を調腎することができる。
After the mixed charge transfer complex is sufficiently dispersed, it is poured into a tube shape and formed into a plate shape with a thickness of about 1 txt as shown in FIGS. 2 and 3. Electrodes 2 are deposited in an A-turn on the top and bottom of such a plate-shaped resistance material 1, and leads 3 are pulled out and a metal outer frame 4KjlE is attached. Silicone rubber 5 is pasted behind the resistor material. When pressure is applied to the surface, the plate deforms,
The resistance between the electrodes on the top and bottom changes, and it works as a pressure (compressive stress) detection element. Pressure sensitivity can be adjusted by adjusting the elasticity of the rubber.

実施例−2 実施例−1と同様にして得られた、TTT−0074錯
体微結晶管紫外線架橋型シリコンポツティング封止樹脂
に、錯体の体積分率が50 S程度になるように混合し
分散させる。これt−sm厚さのシート状に成型後、紫
外光照射を行ない架橋ゴム化する。これを第1図のよう
に10 X 10m5+の板状1に切り出し、シート上
下面に電極2を付ける。電極間の抵抗は、第4図に示す
ように上下面に加わる圧力によって変化し、感圧素子と
して使用できる。
Example-2 TTT-0074 complex microcrystalline tube ultraviolet cross-linked silicone potting sealing resin obtained in the same manner as in Example-1 was mixed and dispersed so that the volume fraction of the complex was approximately 50 S. let After molding this into a sheet with a thickness of t-sm, it is irradiated with ultraviolet light to form a crosslinked rubber. This is cut into a plate 1 measuring 10 x 10 m5+ as shown in Fig. 1, and electrodes 2 are attached to the upper and lower surfaces of the sheet. The resistance between the electrodes changes depending on the pressure applied to the upper and lower surfaces as shown in FIG. 4, and it can be used as a pressure-sensitive element.

実施例−3 実施例−1と同様にして、得られたTTT−00j4錯
体微結晶を紫外線硬化型のアクリルワニス(粘性率; 
1000〜2000 cP )に混合充分分散させる。
Example-3 In the same manner as in Example-1, the obtained TTT-00j4 complex microcrystals were coated with UV-curable acrylic varnish (viscosity;
1,000 to 2,000 cP) and thoroughly mixed and dispersed.

これを第5019に示すように電極をバタン形成した厚
さ0.51111のポリエステルシートγ上にドクター
ナイフ8を用いて0.5〜l關の厚さに塗布する。
This is coated using a doctor knife 8 to a thickness of 0.5 to 1 on a polyester sheet γ having a thickness of 0.51111 on which electrodes are formed by pressing, as shown in No. 5019.

塗布後速やかに紫外大を照射しワニスを架橋しゴム化す
る。針状の錯体微粒子は、塗布時のず多速度勾配により
シート面に平行に配向する。かくして得られたゴム状抵
抗体の表面にすシ応力を印加すると電極間の抵抗が変化
し応力を検出することができる。一方表面に垂直な圧力
を加えた場合には、抵抗値の変化は殆んど見られなかっ
た。すなわち、本実施例で得られた応力検出素子は、す
り応力のみを検出できる。
Immediately after application, the varnish is irradiated with high-ultraviolet light to crosslink and turn it into rubber. The acicular fine complex particles are oriented parallel to the sheet surface due to the multivelocity gradient during coating. When stress is applied to the surface of the rubber resistor thus obtained, the resistance between the electrodes changes and the stress can be detected. On the other hand, when pressure was applied perpendicular to the surface, almost no change in resistance was observed. That is, the stress detection element obtained in this example can detect only the scraping stress.

(本発明の効果) 以上の実施例に示したように本発明にかかる応力あるい
は圧力検出素子はその形成容易なこと、異方的感度を有
することから実用上多くの利点を有すると言える。
(Effects of the Present Invention) As shown in the above embodiments, the stress or pressure detecting element according to the present invention can be said to have many practical advantages because it is easy to form and has anisotropic sensitivity.

図であシ、第4図は本発明素子の実施例の効果を示すグ
ラフでう〕、第5図は本発明素子の製造方法管示す図で
ある。
FIG. 4 is a graph showing the effects of the embodiment of the device of the present invention, and FIG. 5 is a diagram showing the method of manufacturing the device of the present invention.

1・・・応力検出抵抗材料、2・・・電極、3・・・リ
ード線。
DESCRIPTION OF SYMBOLS 1... Stress detection resistance material, 2... Electrode, 3... Lead wire.

代理人 弁理士 則 近 憲 佑(ほか1名)第  1
  図 第3図
Agent: Patent Attorney Noriyuki Chika (and 1 other person) No. 1
Figure 3

Claims (1)

【特許請求の範囲】 1)印加応力ないし圧力に応じて電気抵抗が変化する材
料を一対の電極間に介在させ九応力検出素子において、
電子受容体と電子供与体とで形゛ 成される電荷移動型
錯体を一脂中に分散させ良材料を用い′ることt−特徴
とする応力検出素子。 2)電子供与体が芳香環化合物、およびN−ヘテロ芳香
環化合物のうちの少なくとも1種からなることを特徴と
する特許請求の範囲第11[′記載の応力検出・素子。 3)芳香環化合物がテトラチアテトラセン、テトラチア
ナフタセン、テトラセレノテトラセン、およびテトラチ
アフルバレンのうちの少なくとも1種であることf:特
徴とする特許請求の範囲第2項記載の応力検出素子。 4)電子受容体が7.7,8.8°−テトラシアノキノ
ジメタシ、テトラシ′アノジメタン、パラクロラニル、
四塩化炭素、バラベンゾキノン、ヨウ素、および塩素の
うちの少なくともlfsであることt%黴とする特許請
求の範囲m1項記載の応力検出素子。
[Claims] 1) In a nine-stress detection element in which a material whose electrical resistance changes depending on applied stress or pressure is interposed between a pair of electrodes,
A stress sensing element characterized in that a charge transfer type complex formed by an electron acceptor and an electron donor is dispersed in a liquid and good materials are used. 2) The stress detection element according to claim 11[', wherein the electron donor comprises at least one of an aromatic ring compound and an N-hetero aromatic ring compound. 3) The stress sensing element according to claim 2, characterized in that the aromatic ring compound is at least one of tetrathiatetracene, tetrathianaphthacene, tetraselenotetracene, and tetrathiafulvalene. 4) Electron acceptor is 7.7, 8.8°-tetracyanoquinodimethane, tetracyanoquinodimethane, parachloranil,
The stress sensing element according to claim m1, wherein the mold is at least lfs of carbon tetrachloride, parabenzoquinone, iodine, and chlorine.
JP56172040A 1981-10-29 1981-10-29 Stress detecting element Pending JPS5874086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56172040A JPS5874086A (en) 1981-10-29 1981-10-29 Stress detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56172040A JPS5874086A (en) 1981-10-29 1981-10-29 Stress detecting element

Publications (1)

Publication Number Publication Date
JPS5874086A true JPS5874086A (en) 1983-05-04

Family

ID=15934408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56172040A Pending JPS5874086A (en) 1981-10-29 1981-10-29 Stress detecting element

Country Status (1)

Country Link
JP (1) JPS5874086A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207939A (en) * 1985-03-13 1986-09-16 Yokohama Rubber Co Ltd:The Pressure sensor
JPS61219844A (en) * 1985-03-26 1986-09-30 Agency Of Ind Science & Technol Force sensor
US7108342B2 (en) 2002-01-15 2006-09-19 Samsung Electronics Co., Ltd. Refrigerator home bar unit door
US7316121B2 (en) 2003-09-17 2008-01-08 Lg Electronics Inc. Dispenser of icemaker in refrigerator
US7455085B2 (en) 2004-06-04 2008-11-25 Whirlpool Corporation Water dispenser for refrigerator freezers
US7997452B2 (en) 2007-01-18 2011-08-16 Lg Electronics Inc. Refrigerator related technology
US8016160B2 (en) 2007-01-18 2011-09-13 Lg Electronics Inc. Refrigerator related technology

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207939A (en) * 1985-03-13 1986-09-16 Yokohama Rubber Co Ltd:The Pressure sensor
JPS61219844A (en) * 1985-03-26 1986-09-30 Agency Of Ind Science & Technol Force sensor
US7108342B2 (en) 2002-01-15 2006-09-19 Samsung Electronics Co., Ltd. Refrigerator home bar unit door
US7318633B2 (en) 2002-01-15 2008-01-15 Samsung Electronics Co., Ltd. Refrigerator home bar unit door
US8434320B2 (en) 2003-09-17 2013-05-07 Lg Electronics Inc. Dispenser of icemaker in refrigerator
US7316121B2 (en) 2003-09-17 2008-01-08 Lg Electronics Inc. Dispenser of icemaker in refrigerator
US7383689B2 (en) 2003-09-17 2008-06-10 Lg Electronics Inc. Dispenser of icemaker in refrigerator
US7628032B2 (en) 2003-09-17 2009-12-08 Lg Electronics Inc. Dispenser of icemaker in refrigerator
US7455085B2 (en) 2004-06-04 2008-11-25 Whirlpool Corporation Water dispenser for refrigerator freezers
US7793690B2 (en) 2004-06-04 2010-09-14 Whirlpool Corporation Water dispenser for refrigerator freezers
US7757732B2 (en) 2004-06-04 2010-07-20 Whirlpool Corporation Water dispenser for refrigerator freezers
US7997452B2 (en) 2007-01-18 2011-08-16 Lg Electronics Inc. Refrigerator related technology
US8016160B2 (en) 2007-01-18 2011-09-13 Lg Electronics Inc. Refrigerator related technology

Similar Documents

Publication Publication Date Title
JPH05500568A (en) capacitance humidity sensor
JPS6239678A (en) Polymer thick film ink and its use
US7435310B2 (en) Method for surface imprinted films with carbon nanotubes
JPS5874086A (en) Stress detecting element
Lee et al. Resistive humidity sensor using polyelectrolytes based on new-type mutually cross-linkable copolymers
US3674711A (en) Electrically conductive transparent plastic material
JPH06211997A (en) Layer element and its preparation
JP3072862B2 (en) Method for forming transparent conductive film
JP3176812B2 (en) Transparent conductive film
JPH03211702A (en) Thermosensor
JPH0371507A (en) Transparent conductor
Akkermans et al. Application of electrodeposited piezo‐resistive polypyrrole for a pressure‐sensitive bruxism sensor
JPS5897650A (en) Humidity sensor
Moloney et al. The formation and properties of polypyrrole doped with an immobile antibiotic
KR20200072934A (en) Humidity sensing film for humidity sensor including carbon doped with nano metal and method for manufacturing the same
JP2546252B2 (en) Method for producing material having antistatic property
WO2021014671A1 (en) Resin composition for temperature sensor, and element for temperature sensor
JPS6321321B2 (en)
US20240124741A1 (en) Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and phenylalanine composite films
JPS5899740A (en) Dewing sensor
JPH0748396B2 (en) Sheet heating element
JPS624761A (en) Coating composition
JPS62255920A (en) Electrochromic display element
JPS63137931A (en) Production of electrically conductive material
TW202311738A (en) Binder and salt system for solid contact ion selective electrode