JPS587315Y2 - High temperature thermistor type temperature sensor - Google Patents

High temperature thermistor type temperature sensor

Info

Publication number
JPS587315Y2
JPS587315Y2 JP12382877U JP12382877U JPS587315Y2 JP S587315 Y2 JPS587315 Y2 JP S587315Y2 JP 12382877 U JP12382877 U JP 12382877U JP 12382877 U JP12382877 U JP 12382877U JP S587315 Y2 JPS587315 Y2 JP S587315Y2
Authority
JP
Japan
Prior art keywords
metal oxide
protective cylinder
temperature sensor
insulator tube
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12382877U
Other languages
Japanese (ja)
Other versions
JPS5449983U (en
Inventor
山田哲正
山本紀夫
松井浩
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP12382877U priority Critical patent/JPS587315Y2/en
Publication of JPS5449983U publication Critical patent/JPS5449983U/ja
Application granted granted Critical
Publication of JPS587315Y2 publication Critical patent/JPS587315Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【考案の詳細な説明】 本考案は、自動車内燃機関の排ガス等の高温流体の温度
測定ないし過熱検知用の温度センサーに関する。
[Detailed Description of the Invention] The present invention relates to a temperature sensor for measuring the temperature or detecting overheating of a high-temperature fluid such as exhaust gas of an automobile internal combustion engine.

詳しくは、ステンレス等の耐熱性金属の有底保護筒内に
、金属酸化物半導体と2本の電極とからなりかつ該電極
にリード線が接続されたサーミスタ素子が収納されてお
り、かつ該サーミスタ素子の金属酸化物半導体の抵抗値
異常を防止するために該金属酸化物半導体の周辺雰囲気
を保護筒の開口端側大気雰囲気に通気的に連通ずるよう
にされである高温用サーミスタ式温度センサーに関する
Specifically, a thermistor element consisting of a metal oxide semiconductor and two electrodes, with lead wires connected to the electrodes, is housed in a bottomed protective cylinder made of heat-resistant metal such as stainless steel. The present invention relates to a thermistor-type temperature sensor for high temperatures, in which the surrounding atmosphere of the metal oxide semiconductor of the element is ventilated with the atmosphere on the open end side of the protective tube in order to prevent an abnormality in the resistance value of the metal oxide semiconductor of the element. .

こ\で金属酸化物半導体とは約700〜1000℃に動
作温度を有する電子伝導型ないしは酸素イオン伝導型の
金属酸化物半導体を指し、いずれも高温用サーミスタ式
温度センサーに実用されCいる。
Here, the metal oxide semiconductor refers to an electron conduction type or oxygen ion conduction type metal oxide semiconductor having an operating temperature of about 700 to 1000°C, and both are used in high temperature thermistor type temperature sensors.

これらは耐熱金属製の有底保護筒内に収納されて高温で
使用されるとき金属酸化物半導体0周辺雰囲気が外界に
対して気密封塞されていると、保護筒金属の酸化等のた
めに該雰気の酸素分圧が変動しこのために半導体物質の
変質を生じて異常な抵抗量を示すに至ることが知られて
おり、これを防止するために該雰囲気を保護筒外の大気
雰囲気に通気的にする連通経路を設けることが行なわれ
る。
When these metal oxide semiconductors are housed in a bottomed protective cylinder made of heat-resistant metal and used at high temperatures, if the surrounding atmosphere is hermetically sealed from the outside world, the protective cylinder metal may oxidize, etc. It is known that the partial pressure of oxygen in the atmosphere fluctuates, which causes deterioration of the semiconductor material and causes it to exhibit an abnormal amount of resistance.To prevent this, the atmosphere is protected from the atmosphere outside the cylinder. A communication path is provided for ventilation.

本考案は、サーミスタ素子やそのリード線を耐熱金属の
保護筒内に収納するのに、半導体の上述の抵抗値異常の
発生を確実に防止すると\もに、サーミスタ素子やリー
ド線の絶縁性と耐振性の保持並びに製作容易性と寸法形
状の非拡大化の維持とを併せ実現する高温用サーミスタ
式温度センサーの提供を目的とする。
The present invention reliably prevents the occurrence of the above-mentioned resistance value abnormality of the semiconductor when the thermistor element and its lead wire are housed in a heat-resistant metal protective cylinder, and also improves the insulation properties of the thermistor element and its lead wire. The object of the present invention is to provide a high-temperature thermistor-type temperature sensor that maintains vibration resistance, is easy to manufacture, and maintains non-expansion of dimensions and shape.

即ち、本考案の高温用サーミスタ式温度センサーは、耐
熱性金属の有底保護筒内1に、金属酸化物半導体2aと
2本の電極2b、2bとからなり該電極にリード線3,
3が接続されであるサーミスタ素子2が収納されており
、該電極とリード線は連通気孔を有する多孔質のセラミ
ック碍管5に通されており、上記碍管の孔5a、5aと
上記電極ないしリード線との間の空隙には耐火セメント
6または耐熱性無機質接着剤6が充填されており、上記
碍管はこれと一体かもしくは別体で形成したセラミック
のスペーサ4を介して保護筒の底部に当接し該スペーサ
によって形成された腔部11に上記サーミスタ素子の金
属酸化物半導体2aが配置するようにされており、上記
金属酸化物の周辺の上記腔部11には耐熱性無機質粉末
7が満されており、上記保護筒と碍管との間の環状空隙
のうちの底側の部分を含む保護筒内底側空間部分には耐
熱性無機質粉末充填物8が配されており、残る保護筒内
開口端側空間部分に骨材粉末とガラスとからなる多孔性
接着性無機質充填物9が配されており、しかしてサーミ
スタ素子の金属酸化物半導体の周辺雰囲気を保護筒の開
口端側の大気雰囲気に連通せしめてなるもので、以下実
施例にもとづいて説明する。
That is, the high temperature thermistor type temperature sensor of the present invention includes a metal oxide semiconductor 2a and two electrodes 2b, 2b in a bottomed protection cylinder 1 made of heat-resistant metal, and a lead wire 3,
3 is connected to the thermistor element 2, and the electrode and lead wire are passed through a porous ceramic insulator tube 5 having communicating holes, and the holes 5a, 5a of the insulator tube and the electrode or lead wire are passed through a porous ceramic insulator tube 5 having communicating holes. A fire-resistant cement 6 or a heat-resistant inorganic adhesive 6 is filled in the gap between the insulator and the insulator, and the insulator is brought into contact with the bottom of the protective tube via a ceramic spacer 4 formed integrally with the insulator or separately. The metal oxide semiconductor 2a of the thermistor element is arranged in a cavity 11 formed by the spacer, and the cavity 11 around the metal oxide is filled with heat-resistant inorganic powder 7. A heat-resistant inorganic powder filling 8 is disposed in the bottom side space of the protection tube, including the bottom side of the annular gap between the protection tube and the insulator tube, and the remaining open end of the protection tube is filled with a heat-resistant inorganic powder filling 8. A porous adhesive inorganic filler 9 made of aggregate powder and glass is arranged in the side space, thereby communicating the surrounding atmosphere of the metal oxide semiconductor of the thermistor element with the atmospheric atmosphere on the open end side of the protective cylinder. This will be explained below based on an example.

第1図は本考案の高温用サーミスタ式温度センサーの実
施例を示す。
FIG. 1 shows an embodiment of the high temperature thermistor type temperature sensor of the present invention.

図中、1は耐熱金属ここではステンレス製の有底1aの
保護筒、2はサーミスタ素子で金属酸化物半導体こ\で
はCaOで安定化したZrO2のディスク状多孔質焼戒
体2aと、これに設けられる2本の電極こ\では上記安
定化Zr O2中に一体状に埋設された白金電極線2b
、2bとからなり、上記保護筒内に深く配置されである
In the figure, 1 is a protective cylinder with a bottom 1a made of a heat-resistant metal, here stainless steel, and 2 is a thermistor element, which is a disc-shaped porous burning body 2a made of a metal oxide semiconductor (here, ZrO2 stabilized with CaO). In the two electrodes provided, a platinum electrode wire 2b is embedded integrally in the stabilized ZrO2.
, 2b, and are deeply disposed within the protection cylinder.

3,3は上記電極線に接合されて上方に伸びる2本のリ
ード線で、うち一方のリード線は保護筒の開口端側で保
護筒に接続されこれと同電位にされている。
Reference numerals 3 and 3 denote two lead wires that are joined to the electrode wires and extend upward, one of which is connected to the protection tube at the open end of the protection tube and has the same potential as the lead wire.

4は保護筒の底部に配置されるセラミックのスペーサで
こXでは保護筒の内径よりもや\小径の中空円筒体をな
すもので、金属酸化物半導体を収容する腔所11を形成
する。
4 is a ceramic spacer arranged at the bottom of the protective tube. X is a hollow cylindrical body having a diameter slightly smaller than the inner diameter of the protective tube, and forms a cavity 11 for accommodating the metal oxide semiconductor.

5はサーミスタ素子の露出する電極とこれに接続して伸
びるリード線の一部分を挿通する孔5a。
Reference numeral 5 denotes a hole 5a through which the exposed electrode of the thermistor element and a portion of the lead wire extending connected thereto are inserted.

5aを有しかつ上記スペーサの上にこれと接して配置さ
れかつまた上記保護筒1の先端側内径1bよりもわずか
に小さい外径寸法をもつセラミック2つ孔碍管であるが
、本考案に従うところにより特に、内部に連通気孔を有
する多孔質とされたものを示す。
5a, which is disposed on and in contact with the spacer, and which has an outer diameter slightly smaller than the inner diameter 1b on the tip side of the protective tube 1, according to the present invention. In particular, this refers to a porous material having internally communicating pores.

この多孔質碍管の見掛は気孔率は、通常の碍管において
は0.1%以下であるのに対して約20%以上とするこ
とが望ましく、こ\では23〜25係のものを用いた。
The apparent porosity of this porous insulator is preferably about 20% or more, whereas it is less than 0.1% in ordinary insulators. .

6,6は電極線2bと碍管の孔5aとの間またはリード
線3と碍管の孔5aとの間の空隙に充填されて電極線ま
たはリード線を碍管の孔内に固着する耐火性セメントな
いし耐熱性無機質接着剤を示す。
6, 6 is a fire-resistant cement that fills the gap between the electrode wire 2b and the hole 5a of the insulator tube or between the lead wire 3 and the hole 5a of the insulator tube to fix the electrode wire or the lead wire in the hole of the insulator tube. Indicates a heat-resistant inorganic adhesive.

こ\で耐火性セメントとして硅酸ソーダとシリカゾルと
アルミナ(骨材)とからなるもの(硅酸アルカリを主材
とするセメント)を用いたが、その他耐火性セメントと
してリン酸セメント、マグネシアセメント、アルミナセ
メントなど用いうるし、また耐熱性無機質接着剤として
は水酸化アルミニウム、水酸化ジルコニウム、水酸化硅
素などを主材として含むものを用いうる。
Here, a fire-resistant cement consisting of sodium silicate, silica sol, and alumina (aggregate) was used (cement whose main material is alkali silicate), but other fire-resistant cements include phosphate cement, magnesia cement, Alumina cement may be used, and heat-resistant inorganic adhesives containing aluminum hydroxide, zirconium hydroxide, silicon hydroxide, etc. as main materials may be used.

これらは碍管の孔と電極もしくはリード線との間にペー
スト状態で充填後乾燥処理したあとは、通気性ないしは
非通気性の固結物となる。
After being filled in a paste state between the holes of the porcelain tube and the electrodes or lead wires and then dried, it becomes an air-permeable or non-air-permeable solidified substance.

7はサーミスタ素子の金属酸化物の固定を良くするため
に該金属酸化物周辺の上記スペーサ4内腔部11に満さ
れた耐熱性の無機質粉末で、こ\では熱処理を経て充分
酸化され安定化されたマグネシア粉末を示す。
7 is a heat-resistant inorganic powder filled in the inner cavity 11 of the spacer 4 around the metal oxide in order to improve the fixation of the metal oxide of the thermistor element; in this case, it is sufficiently oxidized and stabilized through heat treatment. Magnesia powder is shown.

この無機質粉末7の粒度は比較的大きくかつ揃っている
ことが望ましく、こ\では100〜200メツシユとし
た。
It is desirable that the particle size of the inorganic powder 7 is relatively large and uniform, and in this case it is 100 to 200 mesh.

金属酸化物周辺の腔部に耐熱性無機質粉末を満すのは次
のようにして行なうことができる。
The cavity around the metal oxide can be filled with heat-resistant inorganic powder as follows.

即ち、保護筒1の底部1aにスペーサ4を置きしかるの
ち適当量を計量した耐熱性無機質粉末をスペーサ内に注
いではマこれを満し、ついでサーミスタ素子2を組付け
たセラミック碍管5を保護筒内に挿入してサーミスタ素
子の金属酸化物を流動性を呈する耐熱性無機質粉末中に
埋設させると\もにスペーサに当接させることによって
行なうことができる。
That is, a spacer 4 is placed on the bottom 1a of the protective tube 1, an appropriate amount of measured heat-resistant inorganic powder is poured into the spacer to fill it, and then the ceramic insulator tube 5 with the thermistor element 2 assembled is placed in the protective tube. The metal oxide of the thermistor element can be embedded in the flowable heat-resistant inorganic powder by bringing it into contact with the spacer.

8は碍管と保護筒との間の僅かな環状空隙のうちの底側
の部分を埋めて碍管の振動ぶれを止めるようにする耐熱
性の無機質粉末、こ\では熱処理を経て充分酸化され安
定化されたマグネシア粉末の通気性の充填物を示す。
8 is a heat-resistant inorganic powder that fills the bottom part of the small annular gap between the insulator tube and the protective tube to stop the vibration of the insulator tube, and is sufficiently oxidized and stabilized through heat treatment. Figure 2 shows a breathable filling of magnesia powder.

この無機質粉末充填物8の粉末の粒度は比較的大きくか
つ揃っていることが望ましく、こ\では100〜200
メツシユとした。
It is desirable that the particle size of the powder of this inorganic powder filler 8 is relatively large and uniform, and in this case it is 100 to 200.
It was a mess.

9は上記環状空隙の残り部分を含む保護筒内開口端側空
間部分に、上記無機質粉末充填物8と接して配されかつ
ガラスと骨材とからなる多孔性接着性の無機質充填物を
示す。
Reference numeral 9 denotes a porous adhesive inorganic filler made of glass and aggregate, which is placed in contact with the inorganic powder filler 8 in the space on the open end side of the protective cylinder including the remaining portion of the annular gap.

この多孔性接着性無機質充填物中のガラスは軟化温度が
600℃以上を高くかつ高温域(SOO〜1100°C
)でも流動性の変化が少なくかつまた揮発分が少なく電
気絶縁性もよいことなどの要求を満すものとしてPbO
が10重重量風下のバリウムシリケート系ガラスが好適
であり、他方骨材は粒度が比較的大きくかつ揃ったもの
(ここでは100〜200メツシユの粒度)が望ましい
が、マグネシアの外アルミナ、ジルコン、ムライトなど
も広く用いうる。
The glass in this porous adhesive inorganic filler has a softening temperature of 600°C or higher and a high temperature range (SOO~1100°C).
), but PbO is used as a material that satisfies the requirements of little change in fluidity, low volatile content, and good electrical insulation.
Barium silicate glass with a weight of 10 gw is preferred, while aggregates with relatively large and uniform grain sizes (here, grain size of 100 to 200 mesh) are preferred, but magnesia exo alumina, zircon, mullite, etc. etc. can also be widely used.

そしてガラスと骨材との容積比は1:0.5から1=5
までの範囲であることを必要とする。
And the volume ratio of glass and aggregate is 1:0.5 to 1=5
must be within the range of

この多孔性接着性の充填物は、はじめ混合粉末剤として
充填され圧縮されたあと、たとえば900℃で熱処理す
ることによって仕上げられる。
This porous adhesive filling is first filled as a mixed powder, compressed, and then finished by heat treatment at, for example, 900°C.

10は保護筒の開口端1C側に固着されたコイル状芯線
10aをもった中空コードを示す。
Reference numeral 10 indicates a hollow cord having a coiled core wire 10a fixed to the open end 1C side of the protection tube.

このコード内の孔を経由して大気雰囲気と自由連通ずる
ようにされる。
Free communication with the atmosphere is provided via holes in the cord.

次に上記の本考案高温用サーミスタ式温度センサーの実
施例についての効果確認例を示す。
Next, an example of confirming the effects of the above-mentioned embodiment of the high temperature thermistor type temperature sensor of the present invention will be shown.

上記の実施例の温度センサーと、上記の実施例とはセラ
ミック碍管に通常の気密質のものを用いた外は寸法構造
において同一とした比較用温度センサーとを、電気炉内
で1100℃まで加熱後2時間保持したのち大気中冷却
することを繰返すと同時に、その間の抵抗値変化を記録
し、高温域で異常な抵抗値、異常現象が生じるかどうか
を調べることを行なった結果、比較用温度センサーは最
初の加熱の約900℃以上において抵抗値の異常上昇が
認められたのに対し、本実施例の温度センサーにおいて
は、数10回にわたる加熱冷却の繰返しを行なっても伺
ら異常が認められなかった。
The temperature sensor of the above example and a comparative temperature sensor of the same size and structure except that the ceramic insulator used in the above example was made of a normal airtight ceramic tube were heated to 1100°C in an electric furnace. After holding for 2 hours, we repeated the process of cooling in the air, and at the same time recorded the change in resistance value during that time, and investigated whether abnormal resistance values or abnormal phenomena occurred in the high temperature range.As a result, we found that the temperature for comparison was In the sensor, an abnormal increase in resistance was observed at temperatures above approximately 900°C during initial heating, whereas in the temperature sensor of this example, no abnormality was observed even after repeated heating and cooling several dozen times. I couldn't.

なお、上記実施例においてセラミックのスペーサ4と多
孔質セラミックの碍管は互いに別体として作ったが、本
考案においては一体に作ってもよく、また一体とする場
合において碍管の先端に単に切込み状の溝を形成し、こ
の溝内を腔所としてベレット状とした金属酸化物半導体
を収容してもよい。
In the above embodiment, the ceramic spacer 4 and the porous ceramic insulator tube were made separately, but in the present invention they may be made in one piece, and if they are made in one piece, there is simply a notch at the tip of the insulator tube. A groove may be formed, and a pellet-shaped metal oxide semiconductor may be accommodated in the groove as a cavity.

また、上記実施例では多孔性接着性無機質充填物9は、
保護筒1゛と碍管5との間の環状空隙のうちの上側部分
を含む保護筒内開口端側空間部分に充填してサーミスタ
素子2、碍管5などを保護筒内に収納固着したが、これ
を碍管5より開口端側の保護筒内空間部分に充填するよ
うにすることもできる。
Further, in the above embodiment, the porous adhesive inorganic filler 9 is
Thermistor element 2, insulator tube 5, etc. were housed and fixed in the protection tube by filling the space on the open end side of the protection tube, including the upper part of the annular gap between the protection tube 1' and the insulator tube 5. It is also possible to fill the space inside the protective cylinder closer to the open end than the insulator tube 5.

以上実施例にもとづいて説明したように、本考案の高温
用サーミスタ式温度センサーはそのサーミスタ素子のリ
ード線外面や保護筒内面に無機質充填物を当接させるこ
とにより金属面酸化、即ちサーミスタ素子の金属酸化物
半導体の周辺腔部雰囲気における酸素消費を極力おさえ
ると\もに、サーミスタ素子の金属酸化物半導体の周辺
雰囲気を保護筒の開口端側の大気雰囲気に対して連通気
孔により連通させることにより温度センサーの先端側が
例えば800℃の高温度に昇温されたのち再び冷却され
るときに該腔部雰囲気と保護筒開口端側の大気雰囲気と
の入れ換えが行なわれて酸素分圧を維持しつつサーミス
タ素子の金属酸化物半導体の抵抗値異常の発生を効果的
に抑制でき、しかも耐振性と製作容易性をも兼ね備える
という大きな実用的効果を奏する。
As explained above based on the embodiments, the high-temperature thermistor type temperature sensor of the present invention has metal surface oxidation, that is, the thermistor element is In order to suppress oxygen consumption in the cavity atmosphere around the metal oxide semiconductor as much as possible, the atmosphere around the metal oxide semiconductor of the thermistor element is communicated with the atmospheric atmosphere on the open end side of the protective cylinder through a communicating hole. When the tip side of the temperature sensor is heated to a high temperature of, for example, 800°C and then cooled down again, the atmosphere in the cavity is exchanged with the atmospheric atmosphere at the open end side of the protective tube to maintain the oxygen partial pressure. This has the great practical effect of effectively suppressing the occurrence of resistance abnormalities in the metal oxide semiconductor of the thermistor element, and also having vibration resistance and ease of manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の高温用サーミスタ式温度センサーの実
施例の断面図である。
FIG. 1 is a sectional view of an embodiment of the high temperature thermistor type temperature sensor of the present invention.

Claims (4)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)耐熱性金属の有底保護筒内1に、金属酸化物半導
体2aと2本の電極2b 、2bとからなりかつ該電極
にリード線3,3が接続されであるサーミスタ素子2が
収納されており、該電極とリード線は連通気孔を有する
多孔質のセラミック碍管5に通されており、上記碍管の
孔5a。 5aと上記電極ないしリード線との間の空隙には耐火セ
メント6または耐熱性無機質接着剤6が充填されており
、上記碍管はこれと一体かもしくは別体で形成したセラ
ミックのスペーサ4を介して保護筒の底部に当接し該ス
ペーサによって形成された腔部11に上記サーミスタ素
子の金属酸化物半導体2aが配置するようにされており
、上記金属酸化物の周辺の上記腔部11には耐熱性無機
質粉末7が満されており、上記保護筒と碍管との間の環
状空隙のうちの底側の部分を含む保護筒内底側空間部分
には耐熱性無機質粉末充填物8が配されており、残る保
護筒内開口端側空間部分には骨材粉末とガラスとからな
る多孔性接着性無機質充填物9が配されており、しかし
てサーミスタ素子の金属酸化物半導体の周辺雰囲気を保
護筒の開門端側の大気雰囲気に連通せしめてなる、高温
用サーミスタ式温度センサー。
(1) A thermistor element 2 consisting of a metal oxide semiconductor 2a and two electrodes 2b, 2b and lead wires 3, 3 connected to the electrodes is housed in a bottomed protective cylinder 1 made of heat-resistant metal. The electrode and the lead wire are passed through a porous ceramic insulator tube 5 having a communicating hole, and the hole 5a of the insulator tube. The gap between 5a and the electrode or lead wire is filled with a fire-resistant cement 6 or a heat-resistant inorganic adhesive 6, and the insulator tube is connected to the ceramic spacer 4 through a ceramic spacer 4 formed integrally with this or separately. The metal oxide semiconductor 2a of the thermistor element is disposed in the cavity 11 formed by the spacer and in contact with the bottom of the protective cylinder, and the cavity 11 around the metal oxide has a heat-resistant material. It is filled with an inorganic powder 7, and a heat-resistant inorganic powder filling 8 is arranged in the bottom space inside the protective cylinder, which includes the bottom side of the annular gap between the protective cylinder and the insulator tube. A porous adhesive inorganic filler 9 made of aggregate powder and glass is arranged in the remaining space at the open end of the protective cylinder, thereby controlling the surrounding atmosphere of the metal oxide semiconductor of the thermistor element into the protective cylinder. A high-temperature thermistor type temperature sensor that communicates with the atmosphere on the open end side.
(2)多孔性接着性無機質充填物のガラスはバリウムシ
リケート系ガラスでありかつガラ;こ、と骨材との容積
比がl:Q、5からl:5までの範囲にある、請求項(
1)記載の高温用サーミスタ式温度センサー。
(2) The glass of the porous adhesive inorganic filler is a barium silicate glass, and the volume ratio of the glass to the aggregate is in the range of l:Q, 5 to l:5.
1) The high temperature thermistor type temperature sensor described above.
(3)碍管は2つ孔碍管であって見掛は気孔率が20係
以上の多孔質である、請求項(1)記載の高温用サーミ
スタ式温度センサー。
(3) The high-temperature thermistor type temperature sensor according to claim (1), wherein the insulator tube is a two-hole insulator tube and is apparently porous with a porosity of 20 or more.
(4)サーミスタ素子の金属酸化物半導体が、酸素イオ
ン伝導性の固体電解質である、請求項(1)記載の高温
用サーミスタ式温度センサー。
(4) The high temperature thermistor type temperature sensor according to claim (1), wherein the metal oxide semiconductor of the thermistor element is an oxygen ion conductive solid electrolyte.
JP12382877U 1977-09-14 1977-09-14 High temperature thermistor type temperature sensor Expired JPS587315Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12382877U JPS587315Y2 (en) 1977-09-14 1977-09-14 High temperature thermistor type temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12382877U JPS587315Y2 (en) 1977-09-14 1977-09-14 High temperature thermistor type temperature sensor

Publications (2)

Publication Number Publication Date
JPS5449983U JPS5449983U (en) 1979-04-06
JPS587315Y2 true JPS587315Y2 (en) 1983-02-08

Family

ID=29083293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12382877U Expired JPS587315Y2 (en) 1977-09-14 1977-09-14 High temperature thermistor type temperature sensor

Country Status (1)

Country Link
JP (1) JPS587315Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2008070B1 (en) 2006-03-28 2018-08-01 Stoneridge, Inc. Temperature sensor and method of reducing degradation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2008070B1 (en) 2006-03-28 2018-08-01 Stoneridge, Inc. Temperature sensor and method of reducing degradation thereof

Also Published As

Publication number Publication date
JPS5449983U (en) 1979-04-06

Similar Documents

Publication Publication Date Title
JP2708915B2 (en) Gas detection sensor
JP4404520B2 (en) Gas sensor and method of manufacturing sealing device therefor
RU2138800C1 (en) Electrochemical metering probe with potentially loose sensing element and its manufacturing process
JPS587315Y2 (en) High temperature thermistor type temperature sensor
JP2004039634A (en) Spark plug, spark plug insulator, and method of manufacturing spark plug
JPH118049A (en) Molten metal heating heater and assembling method thereof
JPH09510298A (en) Electrochemical sensor having a sensor member arranged without potential
JP2010501968A (en) Metal halide lamp
JP3634364B6 (en) Electrochemical measurement sensor having sensor elements arranged at no potential and method for producing the same
US2591205A (en) Hermetically sealed insulator bushing assembly
RU2004122556A (en) SOLID ELECTROLYTE OXYGEN CONCENTRATION SENSOR AND METHOD FOR ITS PRODUCTION
JPS6322642Y2 (en)
CN106568521A (en) Vacuum-packaged ceramic-armored high temperature thermocouple and manufacturing method thereof
JPS61241658A (en) Oxygen sensor element and its production
JPS5921517Y2 (en) Sea heater
JPS58165026A (en) Heat-sensing unit
JP3543789B2 (en) lamp
RU2677927C1 (en) Potentiometric oxygen concentration sensor
CN106441611B (en) Protective atmosphere packaging ceramic armouring pyrometer couple and its manufacturing method
JPH0439661Y2 (en)
JPH08152364A (en) High-temperature measuring platinum resistor element
JPS6156931B2 (en)
JPS6343745Y2 (en)
JPS5915420Y2 (en) Seed wire terminal
JPS5922902B2 (en) Manufacturing method of oxygen concentration detection element in oxygen sensor