JPS5871648A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5871648A
JPS5871648A JP56169474A JP16947481A JPS5871648A JP S5871648 A JPS5871648 A JP S5871648A JP 56169474 A JP56169474 A JP 56169474A JP 16947481 A JP16947481 A JP 16947481A JP S5871648 A JPS5871648 A JP S5871648A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
resistance
film
silicon layer
high resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56169474A
Other languages
Japanese (ja)
Other versions
JPH0131704B2 (en
Inventor
Shigeru Koshimaru
越丸 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56169474A priority Critical patent/JPS5871648A/en
Publication of JPS5871648A publication Critical patent/JPS5871648A/en
Publication of JPH0131704B2 publication Critical patent/JPH0131704B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To provide a high resistance element of very small size and stable high resistance in a semiconductor device by forming the element of a polycrystalline silicon layer which has impurities of different electric conductivities. CONSTITUTION:After an active region 12 is formed in a semiconductor substrate 11, a polycrystalline silicon film 14 is formed through an insulating film 13 on the overall surface. Then, phosphorus ions are implanted to provide an electric conductivity in the film 14, thereby providing approx. 20kOMEGA/square of layer resistance value. Subsequently, the polycrystalline silicon layer is formed in the prescribed pattern, a mask nitrided film is formed in a thickness of 3,000Angstrom for the implantation of boron ions of the second impurity, and a hole 16 of approx. 4mum is opened at the part to be formed with a high resistance of the polycrystalline silicon layer. Thereafter, boron ions are implanted in the entire surface. Then, an insulating film 17 is formed, a contacting hole 18 is opened, and aluminum wiring electrodes 19 are formed, and a semiconductor resistance element is then completed.

Description

【発明の詳細な説明】 本発明は半導体装置に関するものである。[Detailed description of the invention] The present invention relates to a semiconductor device.

近年のLSIの集積度の向上に伴なって、例えばスタチ
ック塩のメモリー素子等では、セル内の負荷素子に半導
体抵抗素子を用いるようになってきている。プロセス上
の簡易さから首へは、多結晶シリコン層により抵抗素子
を形成するのが盛んであるが、従来のこの種の素子は、
その高い抵抗値の制御という事で素子寸法が大きくなる
という欠点を有していた。
With the recent improvement in the degree of integration of LSIs, semiconductor resistance elements have come to be used as load elements in cells, for example, in static salt memory elements. Due to the simplicity of the process, it is popular to form resistance elements using polycrystalline silicon layers, but conventional elements of this type are
Controlling the high resistance value has the disadvantage that the element size becomes large.

本発明は従来のプロセスの容易さを損う事なく製造で龜
、素子寸法が非常に小さく安定し圧扁抵抗を持つ半導体
抵抗素子を提供するものである。
The present invention provides a semiconductor resistance element that can be manufactured without sacrificing the ease of conventional processes, has very small element dimensions, is stable, and has compaction resistance.

本発明は2種類の互いに導電性の異なる不純物を含有す
る多結晶シリコン層で形成され圧扁抵抗素子を含む事會
特像とする半導体装置にある。
The present invention resides in a semiconductor device which is formed of a polycrystalline silicon layer containing two types of impurities having different conductivities and includes a compressed resistance element.

第1図に従来素子の一例を示す。図に於て1.8は両端
の電極となる低抵抗領域であり、2は、高抵抗領域であ
るが、この抵抗素子を多結晶シリコン層tベースにして
作製する場合先づ1.鼠3の全領域に低濃度の不純物イ
オンを打ち込んで高抵抗を持った導電性層となし先後、
20部分をマスクして高濃度の不純物熱拡散により1.
3の低抵抗領域を形成している。ところが、この種の構
造では、1.3.と2が同導電I!lを有してお如、不
純物湊度の違いのみで、高抵抗部と低抵抗部を形成して
いるため、その後の熱工程によ)、l及び3の高濃度領
域から2の低濃度領域への不純物拡散を考えると、安定
し圧扁抵抗値を得る為には、充分な長さのtが必要にな
ってくる。実際に即して言えば、不純物がリンの場合1
.3からの拡散によるはいり込みが4μm、高抵抗部分
が〜4μmで、合計のtは少なくとも12μmもの長さ
になる。
FIG. 1 shows an example of a conventional element. In the figure, 1.8 is a low-resistance region that becomes the electrodes at both ends, and 2 is a high-resistance region.When manufacturing this resistance element using a polycrystalline silicon layer t as a base, first 1. After implanting low concentration impurity ions into the entire area of mouse 3 to create a conductive layer with high resistance,
1. By masking the 20 parts and thermally diffusing impurities at a high concentration.
3 low resistance regions are formed. However, in this type of structure, 1.3. and 2 are the same conductivity I! Since the high-resistance part and the low-resistance part are formed only by the difference in impurity concentration, the subsequent thermal process changes the high-concentration region of 1 and 3 to the low-concentration region of 2. Considering the diffusion of impurities into the region, a sufficient length t is required in order to obtain a stable compression resistance value. Practically speaking, if the impurity is phosphorus, 1
.. The intrusion due to diffusion from 3 is 4 μm, and the high resistance portion is ~4 μm, making the total t as long as at least 12 μm.

次に本発明の詳細について述べる。Next, details of the present invention will be described.

第2図は、本発明の原理による半導体装置の抵抗素子の
構造で、多結晶シリコン層をペースとしている。4.6
は高濃度に例えばリンを注入した低抵抗部であり、5に
は、前記リン濃度を殆んど打ち消す様に高濃度にリンと
は逆の導電性を与える不純物、例えばボロンを注入する
tこのとき、5の部分は、2種の不純物が打ち消し合う
が、非常に低濃度KIJンが不純物として存在する様に
する。
FIG. 2 shows the structure of a resistive element of a semiconductor device according to the principles of the present invention, using a polycrystalline silicon layer as a base. 4.6
is a low-resistance part in which phosphorus, for example, is implanted in a high concentration, and 5 is a low resistance part in which an impurity, for example boron, is implanted in a high concentration to give conductivity opposite to that of phosphorus so as to almost cancel out the phosphorus concentration. At this time, in the part 5, the two types of impurities cancel each other out, but a very low concentration of KIJ is made to exist as an impurity.

これはイオン注入という技術を用いれば制御性良く実現
する事が出来る。このようにボロンを高濃度に打ち込む
為と、あらかじめ全領域(4,5,6)にリンが161
1度に存在することから、4,6から5への拡散を全く
考慮する必要がなく、Lの長さを非常に短かくできる。
This can be achieved with good controllability by using a technique called ion implantation. In order to implant boron at a high concentration in this way, 161 phosphorus was added to the entire area (4, 5, 6) in advance.
Since they exist at once, there is no need to consider the diffusion from 4 and 6 to 5, and the length of L can be made very short.

次に本発明の実施例を図によって説明する。第3図(a
)、半導体基板11に活性領域12t−形成した後、絶
縁膜13を介して全面に多結晶シリコン膜14t−形成
する。その後骸多結晶シリコン膜に導電性を持たせる為
KIJンのイオン注入をエネルギー150 K−v、ド
ーズ量5X” 01B、、−Zで行なって層抵抗値的2
0 Kfl/、前後を持たせる。次に第3図(bl、良
く知られた写真蝕刻技術により、多結晶シリコン層を所
望のパターンに形成してから、第2の不純物であるボロ
ンのイオン注入に備えてマスク窒化膜を300OAの厚
さに形成し多結晶シリコン層の高抵抗を形成すべき部分
に4μm11度の開口16に−設ける。その後ボロンの
イオン注入をエネルギー50Kev、ドーズ量4.8X
10mで全面に行なう。このとき、Bの部分は、開口1
6を通して、ボロンが打ち込まれリンと打ち消し会い1
00MΩ/口 前後の層抵抗値となる。第3図(C1、
その後絶縁膜17t−形成して、コンタクト穴18會開
孔してから、アルミ配線電極19を設は半導体抵抗素子
を完成させる。なお本発明の抵抗素子では、抵抗の両端
部分の層抵抗が従来のものに比べ高目になる事が予想さ
れるが、実際の素子の場合、例えば第4図に示し九スタ
チック型のメモリセルに使用した時この部分の抵抗値は
、全く問題にならない。第4図では20.21が本発明
による半導体抵抗素子で、23.24がスイッチングト
ランジスタ、22.25がトランスファゲートトランジ
スタである。即ち第2図に於て、高抵抗部分として長さ
Lの5だけを考えていたものを1長さL′の4.5.6
全体として考えればいいわけで、この様な考え方が可能
となったのも本発明の利点の1つである。
Next, embodiments of the present invention will be described with reference to the drawings. Figure 3 (a
), after forming an active region 12t- on the semiconductor substrate 11, a polycrystalline silicon film 14t- is formed on the entire surface with an insulating film 13 interposed therebetween. After that, in order to make the skeleton polycrystalline silicon film conductive, ion implantation was performed at an energy of 150 K-v and a dose of 5X''01B, -Z, resulting in a layer resistance value of 2.
0 Kfl/, have front and back. Next, a polycrystalline silicon layer is formed into a desired pattern using a well-known photolithography technique, and a mask nitride film is deposited at 300 OA in preparation for ion implantation of boron, which is the second impurity. An opening 16 of 4 μm and 11 degrees is formed in the portion where the high resistance of the polycrystalline silicon layer is to be formed.Then, boron ions are implanted at an energy of 50 Kev and a dose of 4.8X.
Do this over the entire surface at 10m. At this time, part B is the opening 1
Through 6, boron is driven and cancels with phosphorus 1
The layer resistance value is around 00MΩ/mouth. Figure 3 (C1,
Thereafter, an insulating film 17t is formed, a contact hole 18 is formed, and an aluminum wiring electrode 19 is formed to complete the semiconductor resistance element. In the resistor element of the present invention, it is expected that the layer resistance at both ends of the resistor will be higher than that of the conventional resistor, but in the case of an actual element, for example, the static type memory cell shown in FIG. The resistance value of this part does not matter at all when used for. In FIG. 4, 20.21 is a semiconductor resistance element according to the present invention, 23.24 is a switching transistor, and 22.25 is a transfer gate transistor. That is, in Fig. 2, the high resistance part was considered to be only 5 of length L, but instead of 4.5.6 of length L'.
It is only necessary to think about it as a whole, and one of the advantages of the present invention is that this kind of thinking is possible.

以上、本発明に依れば、従来の製法と殆んど変わらない
簡易さで、素子寸法が173以下の高抵抗素子を有する
半導体装置を得ることができる。
As described above, according to the present invention, a semiconductor device having a high resistance element having an element size of 173 mm or less can be obtained with almost the same simplicity as the conventional manufacturing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術t7r、す概略断面図であり、第2図
は本発明の原理金示す概略断面図である。第3図(ml
乃至第3図(C)は本発明の一実施例を工程順に示す断
面図であり第4図は本発明の応用例を示す回路図である
。 尚、図において1・・・・・・低抵抗部、2・・・・・
・高抵抗部、3・・・・・低抵抗部、4・・・・・低抵
抗部、5・・・・・・高抵抗部、6・・・・・・低抵抗
部、11・・・・・・半導体基板、12・・・・・・活
性領域、13・・・・・・絶縁膜、14・・・・・・多
結晶シリコン層、15・・・・・・シリコン窒化膜、1
6・・・・・・開口、17・・・・・・絶縁膜、18・
・・・・・開口、19・・・・・・アルミ配線電極、A
・・・・・・低抵抗部、B・・・・・・高抵抗部、C・
・・・・・低抵抗部、20.21・・・・・・半導体抵
抗素子、22,23,24.25・・・・・・トランジ
スタである。
FIG. 1 is a schematic sectional view of the conventional technology t7r, and FIG. 2 is a schematic sectional view showing the principle of the present invention. Figure 3 (ml
3C to 3C are cross-sectional views showing an embodiment of the present invention in the order of steps, and FIG. 4 is a circuit diagram showing an application example of the present invention. In the figure, 1...low resistance part, 2...
・High resistance part, 3...Low resistance part, 4...Low resistance part, 5...High resistance part, 6...Low resistance part, 11... ... Semiconductor substrate, 12 ... Active region, 13 ... Insulating film, 14 ... Polycrystalline silicon layer, 15 ... Silicon nitride film, 1
6...Opening, 17...Insulating film, 18.
...Opening, 19...Aluminum wiring electrode, A
...Low resistance part, B...High resistance part, C.
...low resistance section, 20.21 ... semiconductor resistance element, 22, 23, 24.25 ... transistor.

Claims (1)

【特許請求の範囲】[Claims] 2種類の互いに導電性の異なる不純物を含有する多結晶
シリコン層で形成された高抵抗素子を含む事t41微と
する半導体装置。
A semiconductor device including a high resistance element formed of a polycrystalline silicon layer containing two types of impurities having different conductivities.
JP56169474A 1981-10-23 1981-10-23 Semiconductor device Granted JPS5871648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56169474A JPS5871648A (en) 1981-10-23 1981-10-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56169474A JPS5871648A (en) 1981-10-23 1981-10-23 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5871648A true JPS5871648A (en) 1983-04-28
JPH0131704B2 JPH0131704B2 (en) 1989-06-27

Family

ID=15887222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56169474A Granted JPS5871648A (en) 1981-10-23 1981-10-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5871648A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582465A (en) * 1991-09-24 1993-04-02 Victor Co Of Japan Ltd Semiconductor device and mos fet
JP2002016237A (en) * 2000-06-27 2002-01-18 Hitachi Ltd Semiconductor ic device and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529108A (en) * 1978-08-23 1980-03-01 Hitachi Ltd Semiconductor resistance element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529108A (en) * 1978-08-23 1980-03-01 Hitachi Ltd Semiconductor resistance element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582465A (en) * 1991-09-24 1993-04-02 Victor Co Of Japan Ltd Semiconductor device and mos fet
JP2002016237A (en) * 2000-06-27 2002-01-18 Hitachi Ltd Semiconductor ic device and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0131704B2 (en) 1989-06-27

Similar Documents

Publication Publication Date Title
JPH08130246A (en) Semiconductor device and fabrication thereof
JPS61140168A (en) Semiconductor memory device
JPS5871648A (en) Semiconductor device
JPS6329979A (en) Semiconductor memory device
JPH0467671A (en) Manufacture of semiconductor device
JPS6362382A (en) Floating gate nonvolatile semiconductor storage device and manufacture thereof
JPH01283828A (en) Manufacture of semiconductor device
JP2846055B2 (en) Method for manufacturing semiconductor device
JPH021942A (en) Semiconductor device and its manufacture
JPS59134868A (en) Manufacture of semiconductor device
JPS6236852A (en) Semiconductor device
JPS5826177B2 (en) Manufacturing method of semiconductor device
JPS60229373A (en) Semiconductor device
JPH0269975A (en) Semiconductor memory and manufacture of the same
JPS62149172A (en) Manufacture of semiconductor nonvolatile memory
JPH04180634A (en) Manufacture of semiconductor device
JPS63237462A (en) Static type semiconductor memory and manufacture thereof
JPH03231460A (en) Semiconductor memory device
JPH05343422A (en) Semiconductor device and manufacture of the same
JPH03238859A (en) Semiconductor device
JPS6171662A (en) Manufacture of semiconductor device
JPS62199046A (en) Manufacture of semiconductor element
JPH01158760A (en) Semiconductor integrated circuit and its manufacture
JPS61121465A (en) Manufacture of semiconductor device
JPH046832A (en) Manufacture of semiconductor element