JPS5871383A - Electrolytic cell - Google Patents

Electrolytic cell

Info

Publication number
JPS5871383A
JPS5871383A JP56167066A JP16706681A JPS5871383A JP S5871383 A JPS5871383 A JP S5871383A JP 56167066 A JP56167066 A JP 56167066A JP 16706681 A JP16706681 A JP 16706681A JP S5871383 A JPS5871383 A JP S5871383A
Authority
JP
Japan
Prior art keywords
cathode
iron
electrolytic cell
chamber
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56167066A
Other languages
Japanese (ja)
Inventor
Takashi Sakaki
孝 榊
Kazutaka Sakiyama
崎山 和孝
Junji Koshiba
小柴 淳治
Masatoshi Sugimori
正敏 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP56167066A priority Critical patent/JPS5871383A/en
Publication of JPS5871383A publication Critical patent/JPS5871383A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To drop the hydrogen overvoltage and to improve the durability of an electrolytic cell in the electrolysis of an aqueous soln. of alkali chloride using a diaphragm by plating the whole surfaces of the internal members of the cathode chamber with Ni and by forming a sprayed coat of powdered metal on the cathode. CONSTITUTION:An electrolytic cell is divided into an anode chamber and a cathode chamber with a diaphragm, and an aqueous soln. of alkali chloride is fed to the anode chamber to obtain chlorine from the anode chamber and hydrogen and alkali hydroxide from the cathode chamber. The whole surfaces of the cathode chamber, the cathode and other internal member of the cathode chamber each made of iron or iron group metal are plated with Ni in an Ni plating bath contg. Ni salt. Powdered metal or a mixture of powdered metal with powdered metallic oxide is then sprayed on the cathode to form a sprayed coat.

Description

【発明の詳細な説明】 電解において、鉄の溶出が全くなく、長期間安定して、
かつ少ない消費電力にて苛性アルカリを製造するに適し
走新規な電解!aK関するものである。
[Detailed description of the invention] In electrolysis, there is no elution of iron at all, and it is stable for a long period of time.
A new electrolysis method suitable for producing caustic alkali with low power consumption! This is related to aK.

例えば、陽イオン交換膜を隔膜として食塩水溶、液の電
解を行ない、塩素および苛性ソーダ番製造する方法は公
知である。この陽イオン交換@を用いる電解方法は、陰
極で生成する苛性ソーダ中に混入する食塩の量が極めて
少なく、又、水銀法やアスベスト法などに比較して公害
問題もなく、近年になって特に注目されてきた。
For example, a method for producing chlorine and caustic soda by electrolyzing a saline solution using a cation exchange membrane as a diaphragm is known. This electrolysis method using cation exchange@ has attracted particular attention in recent years because the amount of salt mixed in with the caustic soda produced at the cathode is extremely small, and there are no pollution problems compared to the mercury method or asbestos method. It has been.

陰極室で得られる苛性ソーダの濃度および電流効率を高
めるべく陽イオン交換膜の開発、改良がなされ、最近で
は20v+を一以上の苛性ソーダが90−以上の^い電
流効率で得ることができる。
Cation exchange membranes have been developed and improved in order to increase the concentration and current efficiency of caustic soda obtained in the cathode chamber, and recently 20V+ can be obtained with one or more caustic sodas at a current efficiency of 90- or more.

パーフルオロカーボン重合体を基材とした陽イオン交換
膜が開発され、一部では商業化なされようとしている。
Cation exchange membranes based on perfluorocarbon polymers have been developed, and some are on the verge of commercialization.

一方、近年エネルギー節約の重要性が世界的に認識され
つつあり′、この見地からこの分野においては電解電力
を極力少なくすること、即ち電槽電圧を極力低下させる
ことが強く望まれている。これまで電槽電圧を低下させ
る目的で、発生するガスを電極の背後に抜は易くするた
めに、エキスバンドメタル、パンチメタル、金網状など
の多孔性電極の使用、これらの電極自体の組成や極間距
離をコントロールしたシ、あるいは陽イオン交換膜の組
成、交換基の種類を特定化する等の種々の手段が提案さ
れている。
On the other hand, in recent years, the importance of energy conservation has been recognized worldwide', and from this point of view, it is strongly desired in this field to reduce the electrolytic power as much as possible, that is, to reduce the battery cell voltage as much as possible. Up until now, for the purpose of lowering the battery cell voltage, in order to make it easier to extract the generated gas behind the electrode, the use of porous electrodes such as expanded metal, punch metal, and wire mesh, and the composition of these electrodes themselves have been improved. Various methods have been proposed, such as controlling the distance between the electrodes, or specifying the composition of the cation exchange membrane and the type of exchange group.

この内、特に隔膜を用い之水素発生反応を陰極主反応と
する塩化アルカリ水溶液の電解においては、主に前述の
形状の鉄陰極がコスト的に安価であり、かつ、かなり低
い水素過電圧を示すという理由で使用されている。しか
し、前述し九ように特に陽イオン交換瞑法食塩電解技術
の発展と共に省エネルギーの面から電力消費の一層の低
下が望まれ、特開昭52−5 ’2852号1%開昭5
2−56585号等に見られるように鉄よシも低い水素
過電圧を有する陰極の開発が種々なされている。
Among these, especially in the electrolysis of aqueous alkali chloride solutions using a diaphragm and hydrogen generation reaction as the main cathode reaction, the iron cathode of the above-mentioned shape is mainly used because it is inexpensive in terms of cost and also exhibits a considerably low hydrogen overvoltage. used for a reason. However, as mentioned above, with the development of cation exchange meditation salt electrolysis technology, further reduction of power consumption is desired from the viewpoint of energy saving.
As seen in No. 2-56585, various cathodes have been developed that have lower hydrogen overvoltages than steel.

これらの低水素過電圧を有する金属被aを施してなる陰
極自体それなりに当初の目的は達成しうるものの新たに
下記の重大な問題点を含んでいることが明らになった。
Although these cathodes formed with a metal coating having a low hydrogen overvoltage can achieve their original purpose to a certain extent, it has been found that they include the following serious problems.

即ち、これまでの鉄陰極に代えて、鉄または鉄系金属か
らなる基材表面に低水素過電圧を有する金属被覆を施し
てなる陰極を、内面が鉄または鉄系金属からなる陰極室
Kj!l!付けて用いた場合は、鉄の溶出量が短期間に
極端に増加する現象が認められるのである。この現象は
更に高温、高アルカリ濃度指向というきびしい電解条件
下においては一層顕著に現われるという傾向を示す。
That is, instead of the conventional iron cathode, a cathode formed by applying a metal coating having a low hydrogen overvoltage to the surface of a base material made of iron or iron-based metal is used in the cathode chamber Kj! whose inner surface is made of iron or iron-based metal. l! When used in combination, a phenomenon is observed in which the amount of iron eluted increases dramatically in a short period of time. This phenomenon tends to become more pronounced under severe electrolytic conditions such as high temperature and high alkali concentration.

この鉄の溶出は、取得苛性アルカリの品質悪化、陽イオ
ン交換膜等の隔膜の性能劣化を来たすばかりでなく、鉄
または鉄系金属で構成された陰極室内面の腐食が進行し
て電解槽自体の寿命の短縮という深刻な問題に発展する
。この鉄の溶出を防止する手段として、対アルカリ耐食
性を有するニッケル等の金属にて陰極室を構成すること
が考えられる。しかしながら、陰極室の構成金属のすべ
てに、対アルカリ土類金属を用いることは烏価となり、
実用的でない。更に、この場合は陰極基材も対アルカリ
耐食性の金属を用いなければならないのである。なぜな
らば、鉄ま九は鉄系金属の基体にニッケル等の低い水素
過電圧を有する被覆を溶射法等により施し九隘極を用い
た場合は、該陰極を陰極室に溶接等の方法によシ取付け
る際、いかに注意深く行なっても被lIK損傷を来たし
て鉄の木地が露出し、この露出部からの蛛の溶出が進行
するからである。従りて、鉄または鉄系金属からなる陰
極室内面および陰極にそれぞれ対アルカリ耐食性を有す
る被覆をメッキ法等によシ施し、しかる後に溶接等の方
法によって両者を一体化する方法も同様の理由によグ問
題がある。
This elution of iron not only causes a deterioration in the quality of the obtained caustic alkali and a deterioration in the performance of diaphragms such as cation exchange membranes, but also causes corrosion of the inside of the cathode chamber, which is made of iron or iron-based metals, and damages the electrolytic cell itself. This develops into a serious problem of shortening the lifespan of people. As a means to prevent this elution of iron, it is conceivable to construct the cathode chamber with a metal such as nickel that has corrosion resistance against alkali. However, using anti-alkaline earth metals for all of the constituent metals of the cathode chamber is expensive,
Not practical. Furthermore, in this case, the cathode base material must also be made of a metal that is resistant to alkali corrosion. This is because, when a nine-pole is used by applying a coating with low hydrogen overvoltage such as nickel to an iron-based metal base using a thermal spraying method, the cathode is attached to the cathode chamber by a method such as welding. This is because, no matter how carefully the installation is done, damage will occur and the bare iron will be exposed, and the elution of spiders will proceed from this exposed area. Therefore, the same reason applies to a method in which a coating having resistance to alkali corrosion is applied to the inner surface of the cathode chamber and the cathode made of iron or iron-based metal by plating, etc., and then the two are integrated by a method such as welding. I have a problem with this.

他の手段として、1プラスチツク製の電解槽を採用する
ことが考えられる。しかしこれは加工および強度の点で
問題があると共に、仮に採用できたとしても、鉄の溶出
防止の抜本的な手段とはなり得ないのである。
Another possibility is to use a plastic electrolytic cell. However, this has problems in terms of processing and strength, and even if it could be adopted, it would not be a fundamental means of preventing iron elution.

本発明者らは、これらの問題点を一挙に解決すべく種々
検討の結果、低水素過電圧を有する金属被覆を施してな
る陰極を使用しても、これまで使用していた鉄または鉄
系金属で構成され六鉄陰極、陰極室枠がその11*用可
能で、いかなる豪雑な電解槽構造であっても、鉄の溶出
を防ぎ、しかも長期間安定して、かつ少なi消費電力に
て苛性アルカリを製造しうる電解槽を完成したのである
As a result of various studies to solve these problems all at once, the inventors of the present invention found that even if a cathode coated with a metal having a low hydrogen overvoltage is used, iron or iron-based metals used up until now can be used. It is composed of a hexa-iron cathode and a cathode chamber frame that can be used for 11 times, preventing iron elution no matter how complicated the electrolytic cell structure is, stable for a long time, and with low power consumption. They completed an electrolytic cell capable of producing caustic alkali.

即ち、本発明は隔膜を用い陽極室と陰極室とを区割し、
陽極室に塩化アルカリ水溶液を供給して陽極室より塩素
、陰極室よプ水素並びに苛性アルカリを製造するに用い
る電解槽において鉄もしくは鉄系金属からなる陰極室内
面、陰極およびその他の陰極室内部材表面の全てにニッ
ケル塩(含むニッケルメッキ浴からニッケルメツ中を施
した後、該陰極上に粉末状金属あるいは粉末状金属と粉
末状金属酸化物の混合物を溶射にて溶射被覆層を形成し
てなる電解槽にある。ここでいう、その他の陰極室内部
材とは、導電棒、集電体、溶接部など陰極室内に存在す
る部材を意味する。
That is, the present invention uses a diaphragm to separate an anode chamber and a cathode chamber,
In an electrolytic cell used to supply an aqueous alkali chloride solution to the anode chamber to produce chlorine, hydrogen from the cathode chamber, and caustic alkali, the inner surface of the cathode chamber, the surface of the cathode, and other members of the cathode chamber made of iron or iron-based metals. After applying nickel metal from a nickel plating bath containing nickel salt (containing nickel salt), a powdered metal or a mixture of a powdered metal and a powdered metal oxide is sprayed onto the cathode to form a thermally sprayed coating layer. The other members in the cathode chamber as used herein refer to members existing in the cathode chamber, such as a conductive rod, a current collector, and a welded part.

これまで鉄または鉄系金属からなる陰極基体にニッケル
やニッケル合金の粉末金属を溶射すると、得られる被膜
は低、水嵩過電圧を示すことFi種々提案され、知られ
ている。しかしながら、このようにして得られた被膜は
顕微鏡で表面を注意深く観察すると、多数の孔が入って
いることが認められ、例えば、これを水中に浸漬すると
数時間後には素地からの鉄の溶出による赤さびが検出さ
れる。
It has been proposed and known that when nickel or nickel alloy powder metal is thermally sprayed onto a cathode substrate made of iron or iron-based metal, the resulting film exhibits a low water bulk overvoltage. However, when the surface of the film obtained in this way was carefully observed under a microscope, it was found that it had many pores.For example, when the film was immersed in water, after a few hours, iron was leached from the base material. Red rust is detected.

陰極室内での高温高アルカリ濃度液中ではなおさら鉄の
溶出が加速される結果となる。
The elution of iron is further accelerated in the high-temperature, high-alkali concentration solution in the cathode chamber.

従って、鉄または鉄系金属素地上に直接このような活性
被膜を施した場合、被膜の剥離、脱落等の現象が起こシ
やすい。被膜の剥離、脱落が生じると、一部の面で鉄素
地が璽出し、鉄の溶出は加速される結果となり、活性被
膜の剥離、脱落は一層促進されてくる。このような腐食
現象により活性被膜の寿命は極めて短かく、数10日後
には鉄電極の陰極電位に近づく結果となる。
Therefore, when such an active coating is applied directly to an iron or iron-based metal substrate, phenomena such as peeling and falling off of the coating are likely to occur. When the coating peels off or falls off, the iron base is exposed on some surfaces, the elution of iron is accelerated, and the peeling or falling off of the active coating is further accelerated. Due to such a corrosion phenomenon, the life of the active coating is extremely short, and the potential approaches the cathode potential of the iron electrode after several tens of days.

耐食性を改善させる目的で溶射被膜の厚さを極端に厚く
する、即ち、500μ〜1000μの溶射mt−形成さ
せることは、耐食性のみならず耐久性を向上させるのK
も有効な方法の一つであるが、厚さを2倍にしても耐久
性が2倍に向上するものではなく、ピンホールが存在す
ると、約数ケガ後には、やはシ剥離、脱落現象がみられ
、結果的に過電圧の上昇を来たし、鉄陰極の電位に近づ
く傾向を呈する。また、もし陰極基体からの鉄の溶出を
完全に防止できたとしても、陰極室内部材が鉄または鉄
系金属で構成されていれば、そこからの鉄の溶出により
、堆得苛性アルカリの品質悪化。
For the purpose of improving corrosion resistance, making the thermal spray coating extremely thick, that is, forming a thermal spray coating of 500μ to 1000μ, improves not only corrosion resistance but also durability.
is also an effective method, but doubling the thickness does not double the durability, and if there are pinholes, peeling or falling off will occur after several injuries. This results in an increase in overvoltage, which tends to approach the potential of the iron cathode. Furthermore, even if the elution of iron from the cathode substrate can be completely prevented, if the cathode interior is made of iron or iron-based metals, the quality of the deposited caustic alkali will deteriorate due to the elution of iron from there. .

陽イオン交換膜等の隔膜の性能劣化、さらには陰極面へ
の鉄イオンの電着を起こし、活性陽極の本来もつ最高の
性能を発揮し得ない結果となる。
The performance of diaphragms such as cation exchange membranes deteriorates, and iron ions are deposited on the cathode surface, resulting in the active anode not being able to exhibit its maximum performance.

本発明者らは、これらの問題点を改善すべく探求の結果
、ニッケル塩を含むニッケルメッキ浴から施したニッケ
ルメッキ上、特に該陰極上に粉末状金属あるいは粉末状
金属と粉末状金属酸化物の混合物を溶射することにより
、極めて優れた低水素過電圧特性を示し、かつ優れ九耐
久性を有するものであることの知見1:得た。本発明は
この知見に基づいて完成したものである。
As a result of our search to improve these problems, the present inventors have discovered that powdered metal or powdered metal and powdered metal oxide can be used on nickel plating applied from a nickel plating bath containing nickel salt, especially on the cathode. Knowledge 1: It was found that by thermal spraying a mixture of the following, it exhibited extremely low hydrogen overvoltage characteristics and had excellent durability. The present invention was completed based on this knowledge.

即ち、鉄または鉄系素地上にニッケル塩を含む二、ツケ
ル浴を用いてニッケルメッキを行なった彼、粉末状金属
おるいは粉末状金属と粉末状金属酸化物の混合粉末を溶
射することKより、全体として、陰極室、陰極等の鉄素
地からの鉄の溶出が全くなく、極めて優れ次耐久性を有
する活性壁Hを得ることができるのである。
That is, nickel plating is performed on iron or iron-based substrates using a nickel bath containing nickel salts, and then thermal spraying of powdered metal or a mixed powder of powdered metal and powdered metal oxide is performed. Therefore, as a whole, there is no elution of iron from the iron substrate of the cathode chamber, cathode, etc., and it is possible to obtain an active wall H having extremely excellent durability.

本発明に用いられるニッケル浴の組成は以下のようなも
のである。
The composition of the nickel bath used in the present invention is as follows.

ニッケル塩は可溶性の塩であればよく、通常、硫酸ニッ
ケル、塩化ニッケル、硫酸ニッケルアンモニウム、スル
7アンン酸ニッケル等任意の水溶性ニッケル塩の一種以
上が用いられる。ニッケル塩の濃度は、特に制限を受け
ないが、通常、[lL1モル濃度から2.0モル濃度の
範囲で用いられる。
The nickel salt may be any soluble salt, and usually one or more of any water-soluble nickel salts such as nickel sulfate, nickel chloride, nickel ammonium sulfate, and nickel sulfonate are used. The concentration of the nickel salt is not particularly limited, but is usually used in a range of 1 molar to 2.0 molar.

本発明におφて、陰極室、陰極等の鉄素地にニッケル塩
を含むニッケルメッキ浴を用いてニッケルメッキを施す
方法としては、電気メツキ法、無電解メッキ法いずれも
行なうことができるが、このうち無電解メッキ法が好ま
しい。そして特に密着性の極めて優れ、強固で、かつ長
期間にわたって安定して低い水素過電圧を示す被覆を有
する陰極および陰極室を得る最良の方法としては、陰極
室内面、陰極およびその他の陰極室内部材表面すべてに
無電解ニッケルメッキを行なう方法である。
In the present invention, as a method for applying nickel plating to the iron substrate of the cathode chamber, cathode, etc. using a nickel plating bath containing nickel salt, both electroplating method and electroless plating method can be performed. Among these, electroless plating is preferred. In particular, the best way to obtain a cathode and cathode chamber with a coating that is extremely adhesive, strong, and exhibits stable and low hydrogen overvoltage over a long period of time is to This method involves electroless nickel plating on everything.

従りて、鉄ま念は鉄系金属製の臨極室、陰極およびその
他の陰極室内部材表面をあらかじめ無電解ニッケルメッ
キして組立てられた電解槽に本発明の手段を適用するこ
とも有効な方法である。
Therefore, it is also effective to apply the means of the present invention to electrolytic cells assembled by electroless nickel plating on the surfaces of the critical chamber, cathode, and other cathode chamber members made of iron-based metals. It's a method.

本発明の優れ次特徴の一つは、陰極を陰極室に取付けた
後に、隘極室内面、陰極およびその他の陰極室内部材表
面すべてにわたって被aを施すことができるので、鉄素
地の露出は皆無であるということである。仮りに陰極室
および陰極それぞれに被覆を施し、これを溶接等の方法
によって一体化せしめようとすると、被覆の損傷を来た
し、活性の劣化および鉄素地の露出を免れることができ
ないことは前述の通りである。
One of the advantages of the present invention is that after the cathode is installed in the cathode chamber, a coating can be applied to the inside of the chamber, the cathode, and all other surfaces of the cathode chamber, so there is no exposure of the iron substrate. That is to say. As mentioned above, if the cathode chamber and the cathode are coated individually, and an attempt is made to integrate them by welding or other methods, the coating will be damaged, and the deterioration of activity and exposure of the iron base cannot be avoided. It is.

鉄素地にニッケルメッキを施す場合、その厚さは2〜1
00μが適当である。
When applying nickel plating to an iron base, the thickness is 2 to 1
00μ is appropriate.

陰極、陰極室およびその他の陰極室内部材表面全面が均
一な厚さにメッキされる必要はなく、この範囲の中に入
っていればよい。
It is not necessary that the entire surfaces of the cathode, cathode chamber, and other members within the cathode chamber be plated to a uniform thickness, as long as the thickness falls within this range.

これより薄いと鉄の溶出を防止する効果が小さく、1+
これより厚いと不経済である。
If it is thinner than this, the effect of preventing iron elution is small, and 1+
If it is thicker than this, it is uneconomical.

ニッケルメッキ上に溶射する前処理として、一般的にプ
ラスト処理がある。ニッケルメッキと溶射被膜との密着
性を向上する目的で溶射を実施する前にブラスト処理を
行なうことが好ましい。
Plast treatment is generally used as a pretreatment for thermal spraying on nickel plating. In order to improve the adhesion between the nickel plating and the thermal spray coating, it is preferable to perform blasting before thermal spraying.

本発明においてニッケルメッキ上に施される溶射用粉末
としては、粉末状金Ii4あるいは粉末状金属と粉末状
金属酸化物の混合物が有効である。
In the present invention, powdered gold Ii4 or a mixture of powdered metal and powdered metal oxide is effective as the thermal spray powder to be applied on the nickel plating.

そして本発明に用いられる粉末状金属としては、充分な
耐食性を有し、かつ低水素過電圧特性を有するニッケル
、コバルト、銅、モリブデン、銀。
The powdered metals used in the present invention include nickel, cobalt, copper, molybdenum, and silver, which have sufficient corrosion resistance and low hydrogen overvoltage characteristics.

メンタル、チタン、ニオブおよびそれらの合金から選ば
れる少なくと吃一種の金輌よりなるものが適宜使用され
る。また、粉末状金属酸化物としては、tニッケル、銅
、コバルト、マグネシウム。
At least one metal selected from metal, titanium, niobium, and alloys thereof is used as appropriate. In addition, examples of powdered metal oxides include nickel, copper, cobalt, and magnesium.

ジルコニウム、イツトリウム、亜鉛、アルミニウム、ケ
イ素から選ばれる少なくとも一種の酸化物が使用される
At least one oxide selected from zirconium, yttrium, zinc, aluminum, and silicon is used.

本発明における粉末状金属或いは粉末状金属酸化物の粒
の大きさは、1μ以上、100μ以下、好ましくは5〜
50Pである。その理由は、1μ以下では密着性が不十
分なため、耐久性に乏しく、100μ以上の粒度の粉末
を溶射すると、水素過電圧の低減効果が小さいためであ
る。
The particle size of the powdered metal or powdered metal oxide in the present invention is 1μ or more and 100μ or less, preferably 5 to 100μ.
It is 50P. The reason for this is that if the particle size is 1 μm or less, the adhesion is insufficient, resulting in poor durability, and if a powder with a particle size of 100 μm or more is thermally sprayed, the hydrogen overvoltage reduction effect is small.

ニッケルメッキの上になされる溶射被膜の厚さは50p
以上、SOOμ以下が好ましい。
The thickness of the sprayed coating on the nickel plating is 50p.
Above, SOOμ or less is preferable.

30μ以下の厚さでは水素過電圧低下の効果がIトさく
、また500μ以上の厚さにメッキをすることはコスト
島になる。
If the thickness is less than 30 μm, the hydrogen overvoltage reduction effect will be limited, and plating to a thickness of 500 μm or more will be costly.

溶射を実施するにあたり、陰極室内部が非常に複雑な形
状を有するものKついては、該陰極の両面共に溶射する
ことが困難な場合も生じるが、本′発明においては、こ
のことはいささかも障害となるものではなく、該陰極の
片面のみ溶射することで極めて低い水素過電圧を示し、
かつ優れた耐久性を有し、十分目的は達せられる。
When carrying out thermal spraying, it may be difficult to thermally spray both sides of the cathode in cases where the inside of the cathode chamber has a very complicated shape. However, in the present invention, this is not a problem at all. By spraying only one side of the cathode, it shows an extremely low hydrogen overvoltage.
It also has excellent durability and can fully achieve its purpose.

本発明に用いられる粉末溶射被覆法には、一般にガス溶
射法、プラズマ溶射法が有シ、特にその方法は限定され
ないが、本発明の知見によれば、密着性、耐久性を充分
に発揮するためにはプラズマ溶射の方が好ましい。
The powder spray coating method used in the present invention generally includes gas spraying and plasma spraying, and the method is not particularly limited, but according to the knowledge of the present invention, it is possible to sufficiently exhibit adhesion and durability. For this reason, plasma spraying is preferable.

プラズマ溶射は、一般にアルゴンまたは賭素等、さらに
はこれらと水素あるいはヘリウムの混合ガスを作動ガス
として行なわれる。なお、溶射用粉末の供給量、粉末送
り用ガス量、プラズマガス訛量、プラズマアーク電流、
溶射距離等の溶射条件は特に限定されず、いかなる態様
も採用し得ることは勿論である。
Plasma spraying is generally carried out using argon, nitrogen, or a mixture of hydrogen or helium as a working gas. In addition, the supply amount of powder for thermal spraying, the amount of powder feeding gas, the amount of plasma gas accent, the plasma arc current,
Thermal spraying conditions such as the thermal spraying distance are not particularly limited, and it goes without saying that any aspect can be adopted.

これまでイオン交換膜法について主として言及してきた
が、本発明の電解槽はアスベスト等の隔膜法にも適用し
得ることは云うまでもない。
Although the ion exchange membrane method has been mainly mentioned so far, it goes without saying that the electrolytic cell of the present invention can also be applied to the diaphragm method for asbestos and the like.

以上のように、電極室内面、陰極およびその他の陰極室
内部材表面すべてにニッケル塩を含むニッケルメッキ浴
からニッケルメッキを施し良後、粉末状金lII&ある
いは粉末状金属と粉末状金属酸化物の混合粉末を溶射に
て溶射被覆N1を形成させることKより、鉄の露出部分
がなく、従って鉄の溶出が完全に防止され、かつ、極め
て低い水素過電圧を長期間にわたって安定して保つ陰極
を有する電解槽を製造することができる。
As described above, the inner surface of the electrode chamber, the cathode, and all other surfaces of the cathode chamber members are plated with nickel from a nickel plating bath containing nickel salt, and then powdered gold lII & or powdered metal and powdered metal oxide are mixed. By forming the thermal spray coating N1 by thermal spraying the powder, there is no exposed part of iron, so the elution of iron is completely prevented, and the electrolyzer has a cathode that stably maintains an extremely low hydrogen overvoltage over a long period of time. A tank can be manufactured.

即ち、本発明は極めて簡便な方法により採用している鉄
系金属製陰極室を有する電解槽をなんら変更なくして、
高温、高アルカリ濃度という厳しい条件下においても、
水素過電圧の上昇なく、しかも苛性アルカリ中への鉄の
溶出を来九すことなくして、長期間安定して極めて少な
い消費電力で苛性アルカリを製造するに有効な電解槽で
ある。
That is, the present invention uses an extremely simple method to produce an electrolytic cell having an iron-based metal cathode chamber without any modification.
Even under harsh conditions of high temperature and high alkali concentration,
This is an effective electrolytic cell for producing caustic alkali stably for a long period of time and with extremely low power consumption without increasing hydrogen overvoltage and without leaching iron into caustic alkali.

以下、本発明を実施例によって詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 内面が鉄からなる陰極室、鉄製エキスバンドメタルから
なる陰極およびその他の陰極室内部材表面すべてをアル
カリ脱脂、酸洗後、表1に示したニッケルメッキ浴を用
いて表2に示した条件でニッケルメッキ全行なった。
Example 1 After alkali degreasing and pickling of the cathode chamber whose inner surface was made of iron, the cathode made of iron expanded metal, and all other surfaces of the cathode chamber members, the nickel plating baths shown in Table 1 were used as shown in Table 2. All nickel plating was performed under the following conditions.

表1 ニッケルメッキ浴組成 硫酸ニッケル  α? 1  mol/1塩化ニッケル
  (L19   # ホウ酸      α49   z 表2 ニッケルメッキ条件 浴温      60℃ 電流密度    6A/1粘彰面積l メッキ時間   30分 しかる後、陰極をプラストし表3に示した溶射用粉末を
用いて陰極面上にプラズマ溶射を行ない、約100pの
膜厚の溶射被覆層を形成させた。
Table 1 Nickel plating bath composition Nickel sulfate α? 1 mol/1 nickel chloride (L19 #boric acid α49 z Table 2 Nickel plating conditions Bath temperature 60°C Current density 6 A/1 plating area l Plating time 30 minutes Afterwards, a cathode was applied and the thermal spray powder shown in Table 3 was applied. Plasma spraying was carried out on the cathode surface using the following method to form a spray coating layer with a thickness of about 100p.

表3 溶射用粉末 社、粉末   95 wtチ ム龜O粉末     51 かくして得られた陰極室および陰極をパー70ロスルボ
ン酸イオン交換膜を介して、チタノラス上に酸化ルテニ
ウムをコーディングした陽極を有する陽極室と組合せて
電解槽を構成し、表4に示す電解条件にて食塩水の電解
を行なった。その結果を表5に示す。
Table 3 Thermal Spraying Powder Co., Ltd., Powder 95 wt Chimpu O powder 51 The cathode chamber and cathode thus obtained were combined with an anode chamber having an anode coated with ruthenium oxide on titanolas through a Par 70 sulfonic acid ion exchange membrane. An electrolytic cell was constructed, and electrolysis of saline water was carried out under the electrolytic conditions shown in Table 4. The results are shown in Table 5.

表4 陰極室Na0E濃度 32% 温度       80℃ 電流密度     30A/血! 比較例1 内面が鉄からなる陰を室および陰極をパー70ロスルホ
ン酸イオン交換lIを介して、チタンラス上に酸化ルテ
ニウムをコーディングした陽極分有する陽極室と組合せ
て電解槽を構成し、表4に示し念電解条件で食塩水の電
解を行なり次。その結果を表5に示す。
Table 4 Cathode chamber Na0E concentration 32% Temperature 80℃ Current density 30A/blood! Comparative Example 1 An electrolytic cell was constructed by combining an anode chamber with an inner surface made of iron and a cathode chamber with an anode section coated with ruthenium oxide on a titanium lath through Par 70 loss sulfonic acid ion exchange lI, Next, electrolysis of saline water was carried out under the electrolysis conditions. The results are shown in Table 5.

比較例2 内面が鉄からなる陰極室、陰極を有するセルにおいて陰
極面にプラスト処理を施し、ついで表3に示した溶射用
粉末を用いて陰極面上にプラズマ溶射を行ない、約10
0μの膜厚の溶射被覆層を形成させた。
Comparative Example 2 In a cell having a cathode chamber and a cathode with an inner surface made of iron, the cathode surface was subjected to a blast treatment, and then plasma spraying was performed on the cathode surface using the thermal spraying powder shown in Table 3.
A sprayed coating layer with a thickness of 0 μm was formed.

しかる後にパー70ロスルホン酸イオン交換膜を介して
チタンラス上に酸化ルテニウムをコーディングした陽極
を有する電解槽を構成し、表4に示し死重解条件で電解
を行なった。その結果を表5に示す。
Thereafter, an electrolytic cell was constructed having an anode in which ruthenium oxide was coated on a titanium lath through a Par 70 rosulfonic acid ion exchange membrane, and electrolysis was carried out under the dead weight decomposition conditions shown in Table 4. The results are shown in Table 5.

表5 実施例2 内面が鉄からなる陰極室および鉄製エキスバンドメタル
からなる論極をアルカリ脱脂、酸洗後、実施例11!1
vc示したニッケルメッキ浴を用い、実施例1に示し九
条件でニッケルメッキを行なうた。ついでプラスト処理
後、咳陰極面上にN1粉末をプラズマ溶射した。
Table 5 Example 2 After alkali degreasing and pickling of a cathode chamber whose inner surface is made of iron and a pole made of iron expanded metal, Example 11!1
Nickel plating was carried out under the nine conditions shown in Example 1 using the nickel plating bath shown below. After the blast treatment, N1 powder was then plasma sprayed onto the cough cathode surface.

かくして得られた陰極室および陰極をパー70ロスルホ
ン酸イオン交換膜を介して、チタンラス上に酸化ルテニ
ウムをコーディングした陰極を有する陰極室と組合せて
電解槽を構成し、実施例1表4に示した条件で食塩の電
解を行なった。
The cathode chamber and cathode thus obtained were combined with a cathode chamber having a cathode coated with ruthenium oxide on a titanium lath through a Par70 rosulfonic acid ion exchange membrane to constitute an electrolytic cell, as shown in Table 4 of Example 1. Electrolysis of common salt was carried out under the following conditions.

摺電圧およびNaOH中の鉄濃度の経時変化を表6に示
す。
Table 6 shows the changes in sliding voltage and iron concentration in NaOH over time.

表6 内面が鉄からなる陰極室および鉄製エキスバンドメタル
からなる陰極をアルカリ脱脂、酸洗後、カニゼンブルー
シェーマ−無電解ニッケルメッキ液(日本カニゼン■社
製)t−用い90℃で30分間無電解ニッケルメッキを
施した。ついで該陰極表面をブラスト処理を施し、表7
の溶射粉末を用いてプラズマ溶射にて溶射被覆層を形成
させた。
Table 6 After alkali degreasing and pickling of the cathode chamber whose inner surface is made of iron and the cathode made of iron expanded metal, the cathode chamber was heated at 90°C for 30 minutes using Kanisen Blue Schema electroless nickel plating solution (manufactured by Nippon Kanisen ■ Co., Ltd.). Electrolytically nickel plated. Then, the cathode surface was subjected to blasting treatment, and Table 7
A thermal spray coating layer was formed by plasma spraying using the thermal spray powder.

表7 溶射粉末 N1 粉末   90 wtチ NiO粉末   10 I かくして得られ九陰極室および陰極をパー70ロスルホ
ン酸イオン交換膜を介してチタン2ス上に酸化ルテニウ
ムをコーディングした陽極を有する陽極室と組合せ死重
電槽を構成し、表4に示した条件で食塩水の電解を行な
った。
Table 7 Thermal Sprayed Powder N1 Powder 90 wt NiO powder 10 I The nine cathode chambers thus obtained and the cathode were combined with an anode chamber having an anode coated with ruthenium oxide on titanium through a Par70 sulfonic acid ion exchange membrane. A heavy battery tank was constructed, and saline solution was electrolyzed under the conditions shown in Table 4.

電槽電圧および)iaOH中の鉄濃度の経時変化を表8
に示す。
Table 8 shows the changes in cell voltage and iron concentration in iaOH over time.
Shown below.

表8Table 8

Claims (2)

【特許請求の範囲】[Claims] (1)  隔@を用い陽極室と陰極室とを区割し、陽極
室に塩化アルカリ水溶液を供給して陽極室より塩素、陰
極室より水素並びに苛性アルカリを取得するに用いる電
解槽に於て、鉄または鉄系金属よりなる陰極室、陰極及
びその他の陰極室内部材表面の全てに、ニッケル塩を含
むニッケルメッキ浴を用いてニッケルメッキを施し、次
いで該陰極上に粉末状金属あるいは粉末状金−と粉末状
金属酸化物の混合物を溶射にて溶射被嶺層を形成してな
る電解槽。
(1) In an electrolytic cell used to separate an anode chamber and a cathode chamber using a partition, and supply an aqueous alkali chloride solution to the anode chamber to obtain chlorine from the anode chamber and hydrogen and caustic alkali from the cathode chamber. All surfaces of the cathode chamber, cathode, and other cathode chamber members made of iron or iron-based metals are nickel-plated using a nickel plating bath containing nickel salt, and then powdered metal or powdered gold is applied onto the cathode. An electrolytic cell formed by thermally spraying a mixture of - and powdered metal oxide to form a thermally sprayed layer.
(2) プラズマ溶射により粉末状金属あるいは粉末状
金属と粉末状金属酸化物を該陰極上に溶射被覆すること
を特徴とする特許請求の範囲第1項記載の電解槽。 (2)粉末状金属がニッケル、コバルト、銅、モツプダ
ン。銀、タンタル、チタン、ニオブおよびそれらの合金
から選ばれる少なくとも一種の金属であることを特徴と
する特許請求の範囲第1項記載の電解槽。 (2)粉末状金属酸化物が銀、ニッケル、銅、コ/< 
J/ ) 、マクネシウム、ジルコニウム、イツトリウ
ム、亜鉛、アルミニウム、ケイ素から選ばれる少なくと
も一種の酸化物であることを特徴とする特許請求の範囲
#!1項記載の電解槽。
(2) The electrolytic cell according to claim 1, wherein the cathode is coated with a powdered metal or a powdered metal and a powdered metal oxide by plasma spraying. (2) Powdered metals include nickel, cobalt, copper, and motsubudan. The electrolytic cell according to claim 1, characterized in that the electrolytic cell is at least one metal selected from silver, tantalum, titanium, niobium, and alloys thereof. (2) Powdered metal oxides include silver, nickel, copper, co/<
Claim #! is an oxide of at least one kind selected from J/), manesium, zirconium, yttrium, zinc, aluminum, and silicon! The electrolytic cell according to item 1.
JP56167066A 1981-10-21 1981-10-21 Electrolytic cell Pending JPS5871383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56167066A JPS5871383A (en) 1981-10-21 1981-10-21 Electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56167066A JPS5871383A (en) 1981-10-21 1981-10-21 Electrolytic cell

Publications (1)

Publication Number Publication Date
JPS5871383A true JPS5871383A (en) 1983-04-28

Family

ID=15842766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56167066A Pending JPS5871383A (en) 1981-10-21 1981-10-21 Electrolytic cell

Country Status (1)

Country Link
JP (1) JPS5871383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199883A (en) * 1982-05-19 1983-11-21 Kanegafuchi Chem Ind Co Ltd Electrode for generation of hydrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199883A (en) * 1982-05-19 1983-11-21 Kanegafuchi Chem Ind Co Ltd Electrode for generation of hydrogen

Similar Documents

Publication Publication Date Title
Tilak et al. High performance electrode materials for the hydrogen evolution reaction from alkaline media
JPS5948872B2 (en) Electrolytic cathode and its manufacturing method
EP3684966B1 (en) Method of producing an electrocatalyst
US4354915A (en) Low overvoltage hydrogen cathodes
US4162204A (en) Plated metallic cathode
JPS6013074B2 (en) Electrolytic cathode and its manufacturing method
US4414064A (en) Method for preparing low voltage hydrogen cathodes
US4250004A (en) Process for the preparation of low overvoltage electrodes
US4221643A (en) Process for the preparation of low hydrogen overvoltage cathodes
JPH0257159B2 (en)
JP3676554B2 (en) Activated cathode
JPS5871383A (en) Electrolytic cell
US5855751A (en) Cathode useful for the electrolysis of aqueous alkali metal halide solution
JPH11229170A (en) Activated cathode
JPS6045710B2 (en) electrolytic cell
US5827413A (en) Low hydrogen over voltage cathode and process for production thereof
Zeng et al. Electrodeposition of Ni-Mo-P alloy coatings
US4177129A (en) Plated metallic cathode
GB1285417A (en) Production of protective coatings on metals by anodic oxidation
US4240887A (en) Process of water electrolyis
JPH0260759B2 (en)
JP3236682B2 (en) Electrolytic cathode and method for producing the same
JPS586983A (en) Electrolytic cell
JPS5846553B2 (en) Method of manufacturing activated electrodes
JPS6211075B2 (en)