JPS5871347A - Manufacture of composite material member - Google Patents

Manufacture of composite material member

Info

Publication number
JPS5871347A
JPS5871347A JP17056581A JP17056581A JPS5871347A JP S5871347 A JPS5871347 A JP S5871347A JP 17056581 A JP17056581 A JP 17056581A JP 17056581 A JP17056581 A JP 17056581A JP S5871347 A JPS5871347 A JP S5871347A
Authority
JP
Japan
Prior art keywords
chamber
matrix metal
molten matrix
molding
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17056581A
Other languages
Japanese (ja)
Inventor
Tadashi Donomoto
堂ノ本 忠
Atsuo Tanaka
淳夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17056581A priority Critical patent/JPS5871347A/en
Publication of JPS5871347A publication Critical patent/JPS5871347A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To prevent the buckling deformation of a reinforcing material by placing the material in a molding chmaber at a specified temp., introducting a molten matrix metal into a pressing chamber and the molding chamber, and specifying the ratio between the volume of the molding chamber and the volume of the metal in the pressing chamber. CONSTITUTION:The mold of a casting apparatus 21 is composed of a cope 22 and a drag 23, and a pressing chamber 24 and a molding chamber 26 connected with a path 25 are formed. A formed body 29 of fibers is placed in the chamber 26, a molten matrix metal 28 is introduced into the chamber 24 and impregnated into the space among the fibers of the body 29 under pressure applied by a plunger 27. The volume V2 of the metal 28 in the chamber 24 and the volume V1 of the chamber 26 are regulated so as to make the ratio of V1/V2 >=0.6. After finishing solidification, the solidified body is taken out with knockout pins 31, 33, the part solidified in the chamber 24 is removed, and the remaining part is formed into a prescribed shape to obtain a composite material member.

Description

【発明の詳細な説明】 本発明はllAl1.ll皺材、ボイス力等の強化材を
マトリックス金属中に含んでいる複合材料部材の製造方
法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to llAl1. The present invention relates to a method of manufacturing a composite material member containing a reinforcing material such as a corrugated material or a voice force material in a matrix metal.

複合材料の一つとして、ボロン、炭素、アルミナ、炭化
ケイ索よりなり高強度、高弾性を有する繊維を強化材と
し、純アルミニウムの如き金属または合金をマトリック
スとする繊維強化金属材料(FRM)は知られており、
かがる繊維強化金属材料の製造方法は従来より種々提案
されている。
As a type of composite material, fiber reinforced metal materials (FRM) are reinforced with high-strength, high-elasticity fibers made of boron, carbon, alumina, and silicon carbide, and the matrix is a metal or alloy such as pure aluminum. It is known,
Various methods for manufacturing darning fiber-reinforced metal materials have been proposed in the past.

これら従来のmI強化金属材料の製造方法の一つとして
、鋳型内に纏雑強化材を充填した後、該鋳型内に更にW
imマトリックス金属を導入し、該鋳型に係合するプラ
ンジャIJllH:よって溶融マトリックス金属を鋳型
内にて加圧し9つ凝固させる所Ils圧鋳造沫が知られ
ている。かがる高圧鋳造法によれば、−々の強化材間に
溶融マトリックス金属が良好に浸透した複合材料部材を
製造することができる。
As one of the manufacturing methods of these conventional mI-reinforced metal materials, after filling a mold with a mixed reinforcing material, the mold is further filled with W.
A plunger IJllH which introduces the matrix metal and engages with the mold: Therefore, pressure casting is known in which the molten matrix metal is pressurized in the mold and solidified. According to the high-pressure casting method, it is possible to produce a composite material member in which the molten matrix metal satisfactorily penetrates between the reinforcing materials.

しかしかかる高圧鋳造法に於ては、鋳型のモールドキャ
ピテイの形状やIFIli及びそれに導入される溶−マ
トリックス金属の農の如き鋳造条件にょつては、鋳造工
程の途中に於てlll1!Il化材が座−変形し、従っ
て一部される複合材料内の繊維強化材の形状や配向状態
が乱れてしまうことがある。
However, in such a high-pressure casting method, casting conditions such as the shape of the mold cavity of the mold, the IFI and the molten matrix metal introduced therein may be changed during the casting process. The Illization material may undergo seat deformation, thereby disrupting the shape and orientation of the fiber reinforcement within the composite material.

特に、所要の製品形状に成形されたステンレス鋼製のケ
ースなどに繊維強化材を充填し、そのケースごと繊維強
化材を鋳型内に配置して行われる^圧鋳造に於ては、上
述の如き座屈変形が生じると、繊維強化材の形状や配向
状態が乱れるだけでなく、所要の形状の一品を得ること
ができなくなってしまう。
In particular, in pressure casting, which is performed by filling a stainless steel case molded into the desired product shape with fiber reinforcement and placing the entire case in a mold, pressure casting is performed as described above. When buckling deformation occurs, not only the shape and orientation of the fiber reinforced material are disturbed, but also it becomes impossible to obtain a product with a desired shape.

本論発明者等は、従来の^圧鋳造法に於ける上述の如き
不具合に鑑み種々の実験的研究を行った結果、上述の如
き繊維強化材の座屈変形は、鋳型内に導入された溶融マ
トリックス金属がプランジャ要素によって加圧されつつ
凝m′する過程に於て、鋳壁に対し実質的に垂直に凝固
し成長した同相の先端部がプランジ?要素によって繊維
強化材に対し押付けられることにより発生するものであ
り、従ってかかる繊維強化材の座屈変形を回避するため
には、鋳型内に導入された溶融マトリックス金材よりも
離れた部分に於て生じるよう、鋳型のモールドキャビテ
ィを加圧室と成形室とにて構成し且溶融マトリックス金
属の導入量の如き鋳造条件を適宜に設定する必要がある
ことを見出した。
The inventors of this paper conducted various experimental studies in view of the above-mentioned problems in the conventional pressure casting method, and found that the above-mentioned buckling deformation of the fiber reinforced material is caused by the molten metal introduced into the mold. In the process of solidifying the matrix metal while being pressurized by the plunger element, the tip of the same phase that solidifies and grows substantially perpendicular to the casting wall plunges. This is caused by the elements being pressed against the fiber reinforced material, and therefore, in order to avoid such buckling deformation of the fiber reinforced material, it is necessary to It has been found that it is necessary to configure the mold cavity of the mold with a pressurizing chamber and a molding chamber, and to appropriately set casting conditions such as the amount of molten matrix metal introduced, so that this occurs.

本発明は、本願発明者等が行った上述の実験的研究の結
果得られた知見に基き、繊維強化材の座屈変形を生じる
ことなく複合材料部材を製造することのできる複合材料
部材の@過方法を提供することを目的としている。
The present invention is based on the findings obtained as a result of the above-mentioned experimental research conducted by the inventors of the present invention, and is based on the findings of the above-mentioned experimental research conducted by the present inventors. The purpose is to provide a method for

かかる目的は、本発明によれば、溶融マトリックス金属
のみを受入れる加圧室と核加圧室と連通し強化材及び溶
融マトリックス金属を受入れる成形室とを有する鋳型と
、前記加圧室及び前記成形室内に導入された溶融マトリ
ックス金属を加圧する加圧手段とを有する鋳造装置を用
い、強化材をマトリックス金属の融点以上に加熱した゛
後咳強化材を前記鋳造装置の前記成形室内に配置し、前
記成形室の容積に対する前記加圧室内の溶融マトリック
ス金属の体積の比が実質的に0.6LA上となるよう前
記加圧室及び1記成形室内に溶融71−リックス金属を
導入し、前記溶融マトリックス金属を前記加圧室及び前
記成形室内にて加圧しつつ凝固させることを特徴とする
複合材料部材の智造り法によって達成される。
Such an object, according to the invention, includes a mold having a pressurizing chamber that receives only molten matrix metal and a forming chamber that communicates with the core pressurizing chamber and receives reinforcing material and molten matrix metal; Using a casting device having a pressurizing means for pressurizing the molten matrix metal introduced into the chamber, the reinforcing material is heated to a temperature higher than the melting point of the matrix metal. Molten 71-Rix metal is introduced into the pressurizing chamber and the first molding chamber so that the ratio of the volume of the molten matrix metal in the pressurizing chamber to the volume of the molding chamber is substantially 0.6 LA, and This is achieved by a composite material member intelligent construction method characterized by solidifying the matrix metal while pressurizing it in the pressurizing chamber and the molding chamber.

かかる本発叫による複合材料部1o製造方法にまれば、
鋳型内に導入された溶融マトリックス金属の最終凝固は
必ず加圧室内に於て生じるので、slI強化材の配向の
乱れや一品形状の変形などのない複合材料部材を一部す
ることができる。
If you follow the method for manufacturing the composite material part 1o according to this invention,
Since the final solidification of the molten matrix metal introduced into the mold always takes place in the pressurized chamber, it is possible to produce a part of the composite material part without any disturbance in the orientation of the slI reinforcement or deformation of the one-piece shape.

尚、本発明による複合材料部材の顎造方払に於ては、鋳
型内に導入された溶融マトリックス金属の半分以上が加
圧室内に於てl1l−!jることとなるが、この場合加
圧室内に於て凝固しlこマトリックス金属を再溶融する
ことにより、次の鋳造工程に於て溶融マトリックス金属
の一部として使用し得るので、それらのマトリックス金
属が無駄になることはない。
In addition, in the jaw molding of a composite material member according to the present invention, more than half of the molten matrix metal introduced into the mold is inside the pressurized chamber. However, in this case, by remelting the matrix metal that has solidified in the pressurized chamber, it can be used as part of the molten matrix metal in the next casting process. No metal is wasted.

以下に添付の図を参照しつつ、本発明を寅1に例につい
て詳報に説明Jる。
The invention will now be described in detail by way of example with reference to the accompanying drawings.

本願発明者等は、従来の^圧鋳i法及び鋳造装置に於け
る上述の如き不具合に鑑み、繊維強化材のJ!!屈麦形
を回避するためには、モールドキャピテイが成形室と加
圧室とにて構成された鋳造装置を用いて如何なる鋳造条
件にて鋳造すべきであるかについての実験を行った。
In view of the above-mentioned problems with the conventional pressure casting method and casting equipment, the inventors of the present application developed J! ! In order to avoid the bending shape, an experiment was conducted to find out under what casting conditions a casting apparatus should be used in which the mold cavity consists of a molding chamber and a pressurizing chamber.

第1図は上述の鋳造実験に使用された鋳造@置をその鋳
造工程にて示す解図的縦断面図、第2図は織報成形体を
示す解図的縦断面図である。第1図に於て、1は鋳造装
Wであり、この鋳造1liIlは溶融マトリックス金属
2のみを受入れる加圧室3と該加圧室と連通し繊維成形
体4及び溶融マトリックス金112f受入れる成形室5
とを有する鋳型6と、加圧室3と液密的に嵌合し加圧室
3及び成形室5内に導入された溶融マトリックス金属2
を加圧するプランジャ7とを有し、更に加圧室3及び成
形室5内にて凝固した凝固体を鋳型6より取出すための
ノッアウトビン8を有している。ノックアウトビン8の
上端部は成形室5の底!I!9の一部を郭定するように
なっている。尚、成形室5は底壁9の直径が35鵬■で
あり、側壁上端部の繊径が40m−であり、長さ901
1である逆円錐台状をなしており、−5加圧室3は直径
が50−一の円柱状をなしている。
FIG. 1 is an illustrative vertical sectional view showing the casting @ used in the above-mentioned casting experiment during the casting process, and FIG. 2 is an illustrative longitudinal sectional view showing the fabric molded body. In FIG. 1, 1 is a casting apparatus W, and this casting 1liIl includes a pressurizing chamber 3 that receives only the molten matrix metal 2 and a molding chamber that communicates with the pressurizing chamber and receives the fibrous molded body 4 and the molten matrix gold 112f. 5
and a molten matrix metal 2 which is fluid-tightly fitted into the pressurizing chamber 3 and introduced into the pressurizing chamber 3 and the molding chamber 5.
It further has a knockout bin 8 for taking out the solidified material solidified in the pressurizing chamber 3 and the molding chamber 5 from the mold 6. The upper end of the knockout bin 8 is the bottom of the molding chamber 5! I! It is designed to define a part of 9. In the molding chamber 5, the diameter of the bottom wall 9 is 35 m, the diameter of the upper end of the side wall is 40 m, and the length is 90 m.
1, and the -5 pressurizing chamber 3 has a cylindrical shape with a diameter of 50-1.

繊維成形体4は長さ80a−のアルミナ繊all(lk
l!20μ、デュポン社製FPファイバ)108一方向
に配向し、これを体積率が50%となるよう成形し、こ
れを底板11にて一端を閉じられた円筒形のステンレス
鋼(JJSM格S U S 310 S )製のケース
12内に装填したものである。尚、ケース12の高さは
90i+−であり、外径は16as−(−あり、板厚は
1.0−一である。更に本願出鵬人と同一の出願人の出
餉にかかる特願昭56−32289号及び特願昭55−
55−1O70408G=:eれぞれ提案されている如
く、個々のアルミ太繊維10の間に溶融マトリックス金
属が良好に浸透づるよう、ケース12の底壁11とアル
ミナ繊維10との闇にはその長手方向の良さが10−一
である空気室13が形成され、また繊維成形体全体が8
00℃の8i1度に予熱された。
The fiber molded body 4 is made of alumina fibers all (lk
l! 20μ, DuPont FP fiber) 108 is oriented in one direction, molded to have a volume ratio of 50%, and then formed into a cylindrical stainless steel (JJSM grade SUS) with one end closed with a bottom plate 11. 310S) is loaded into a case 12. The height of the case 12 is 90i+-, the outer diameter is 16as-(-), and the plate thickness is 1.0-1. No. 56-32289 and patent application 1982-
55-1O70408G=:e As proposed, there is a gap between the bottom wall 11 of the case 12 and the alumina fibers 10 so that the molten matrix metal can penetrate well between the individual thick aluminum fibers 10. An air chamber 13 having a longitudinal quality of 10-1 is formed, and the fiber molded body as a whole has a length of 8.
Preheated to 8i1 degrees of 00°C.

上述の如き鋳造装置及び繊維成形体を用いて以下の如き
]!@にて鋳造実験を行った。先ず繊維成形体4を鋳型
6の成形室5内に配瞳し、次いで加圧室3及び成形室5
内に溶融マトリックス金属2を素早く注湯し、プランジ
ャ7より所定の圧力に加圧し、その加圧状態を溶融マト
リックス金属2が完全に凝固するまで保持し、鋳型6内
の1融マトリツクス金属が完全に凝固した後、その凝固
体を鋳型6より取出し、ケース12の周りにて凝固した
マトリックス金属を除去することにより、鋳造後の繊維
成形体4を取出した。
Using the above-mentioned casting apparatus and fiber molded body, the following]! Casting experiments were conducted at @. First, the fiber molded body 4 is placed in the molding chamber 5 of the mold 6, and then the pressurized chamber 3 and the molding chamber 5 are placed inside the molding chamber 5.
The molten matrix metal 2 is quickly poured into the mold, pressurized to a predetermined pressure by the plunger 7, and held at this pressurized state until the molten matrix metal 2 is completely solidified. After being solidified, the solidified body was taken out from the mold 6, and the solidified matrix metal around the case 12 was removed to take out the cast fiber molded body 4.

この場合、加圧室3及び成形室5内に導入される溶融マ
トリックス金属の曇を変化させることにより、加圧室3
のatni3とプランジ177の下端14との閑の距離
りを種々に変化させ、その場合に於ける距離しと繊維成
形体4の変形1144及び変形位置りとの関係を求めた
。尚、第3図に示されてい◆如く、変形量4は鋳造後に
於ける繊維成形体4のケース12が最大の変形を生じて
いる部分に於けるその元の位置と変形後の位置との閑の
長さくsn)であり、変形位置りはケース12の底壁1
1の下面より最大変形を生じた部分までの長さ(l−)
である。
In this case, by changing the cloudiness of the molten matrix metal introduced into the pressurizing chamber 3 and the molding chamber 5,
The distance between the atni 3 and the lower end 14 of the plunger 177 was varied, and the relationship between the distance, the deformation 1144 of the fiber molded body 4, and the deformation position was determined. As shown in Fig. 3, the amount of deformation 4 is determined by the difference between the original position and the position after deformation at the part where the case 12 of the fiber molded body 4 undergoes maximum deformation after casting. The deformation position is the bottom wall 1 of the case 12.
Length from the bottom surface of 1 to the part where the maximum deformation occurred (l-)
It is.

上述の鋳造実験の鋳造条件及び結果をそれぞれ下記の表
1及び表2に示す。
The casting conditions and results of the above casting experiments are shown in Tables 1 and 2 below, respectively.

表    1 マトリックス金属: /ルミニウム合金〈JISAII
@AC4C) 溶  m   温  度  :  720m鋳  型 
 #A  度  =  250℃プランジャ温度 : 
200℃ 溶湯加圧力   :  1500kMノ表   2 第4図は表2に示された実験結果に基き、成形室の容積
v2に対する加圧室内の溶嬌体f#lvIの比vt /
Viと変形量4との関係を示すグラフである。この第4
図のグラフより、成形室の容積に対する加圧室内の溶湯
体積の比Vl/V!が0゜6以上である場合には、繊維
成形体2の座屈変形は生じないことが解る。
Table 1 Matrix metal: /luminium alloy〈JISAII
@AC4C) Melting temperature: 720m mold
#A degree = 250℃ Plunger temperature:
200℃ Molten metal pressurizing force: 1500 km Table 2 Figure 4 is based on the experimental results shown in Table 2, and the ratio of the molten material f#lvI in the pressurizing chamber to the volume v2 of the molding chamber vt /
3 is a graph showing the relationship between Vi and the amount of deformation 4. FIG. This fourth
From the graph in the figure, the ratio of the volume of molten metal in the pressurizing chamber to the volume of the molding chamber is Vl/V! is 0°6 or more, it is understood that buckling deformation of the fiber molded body 2 does not occur.

また、上述の鋳造実験に於て得られた凝固体各部の結晶
組織を顕微鏡にて観察したところ、成形室の容積に対す
る加圧室内のSS体積の比Vt/v2が0.6以下にて
鋳造された凝固体につい(は、ケース12の座屈変形を
生じた部分近傍に結晶成長方向の乱れた組織が1察され
、従ってこの部分に於て溶融マトリックス金属が最終的
に凝固したものと推測されるのに対し、成形室の容積に
対する加圧室内の1湯体積の比Vt/Vtが06以上の
ものについては、結晶成長方向の乱れlご組織はケース
12の近傍には観察されず、加圧室3内にて凝固した部
分に存在していることが認められた。
In addition, when the crystal structure of each part of the solidified body obtained in the above-mentioned casting experiment was observed using a microscope, it was found that casting was performed when the ratio Vt/v2 of the SS volume in the pressurizing chamber to the volume of the molding chamber was 0.6 or less. Regarding the solidified body (), a structure with a disordered crystal growth direction was observed near the part where the buckling deformation of case 12 occurred, and it is therefore assumed that the molten matrix metal finally solidified in this part. On the other hand, for those where the ratio Vt/Vt of the volume of molten metal in the pressurizing chamber to the volume of the molding chamber is 06 or more, the disordered structure in the crystal growth direction is not observed in the vicinity of case 12, It was recognized that the solidified portion was present in the pressurized chamber 3.

以上の鋳造実験の結果より、^圧鋳造法に於iJる繊維
強化材の座屈変形を回避するためには鋳型内に導入され
た溶融マトリックス金属の最IIi凝固部が繊維強化材
よりも離れた部分に於て生じるよう、鋳型のモールドキ
トビティを成形室と加圧室とにて構成し、成形室の容積
に対する加仕室内の溶湯体積の比が実質的に0.6以上
となる鏝の溶融マトリックス金属を用いて鋳造を行うこ
とが好ましいことが解る。
From the results of the above casting experiments, in order to avoid buckling deformation of the fiber reinforced material in the pressure casting method, the most solidified part of the molten matrix metal introduced into the mold must be separated from the fiber reinforced material. The mold tension of the mold is composed of a molding chamber and a pressurizing chamber, and the ratio of the volume of molten metal in the filling chamber to the volume of the molding chamber is substantially 0.6 or more. It has been found that it is preferable to carry out the casting using a molten matrix metal of .

第5図は本発明による複合材料部材の製造方法に於て使
用されてよい他の一つの鋳造装置を示す解図的縦断面図
である。この鋳造装置21の鋳型は上型22と下型23
とよりなっている。これら上型及び下型は、図には示さ
れていないラム″′装置の如き加圧保持手段により第5
図に示されている如く互いに組付けられた状態に維持さ
れるようになっている。またこれらの上型及び下型は互
に共働して加圧室24と通路25により加圧室24と連
通接続された成形室26とを郭定するようになっている
FIG. 5 is an illustrative longitudinal sectional view showing another casting apparatus that may be used in the method for manufacturing a composite material member according to the present invention. The molds of this casting device 21 are an upper mold 22 and a lower mold 23.
It is becoming more and more. These upper and lower molds are held at a fifth
They are intended to remain assembled together as shown in the figure. Further, these upper molds and lower molds cooperate with each other to define a pressurizing chamber 24 and a molding chamber 26 which is communicated with the pressurizing chamber 24 through a passage 25.

加圧室24は、それに液密的に嵌合するプランジャ27
を受入れており、このプランジャにより加圧室24内に
導入された溶融マトリックス金属28が加圧され、これ
により成形室26内に装入された繊維成形体29の個々
の繊維間に溶融マトリックス金属が浸透せしめられるよ
うになっている。
The pressurizing chamber 24 has a plunger 27 that fits therein in a liquid-tight manner.
The plunger pressurizes the molten matrix metal 28 introduced into the pressurizing chamber 24, thereby causing the molten matrix metal to spread between the individual fibers of the fiber compact 29 charged into the forming chamber 26. It is designed to be permeated.

更に下型23には加圧室24と連通するシリンダボア3
0が形成されており、このシリンダボアにはそれに沿っ
て往復動するノックアウトビン31が挿通されている。
Furthermore, the lower mold 23 has a cylinder bore 3 communicating with the pressurizing chamber 24.
0 is formed, and a knockout bottle 31 that reciprocates along the cylinder bore is inserted through this cylinder bore.

ノックアウトビン31の上端面は加圧室24の底面の一
部を郭定している。
The upper end surface of the knockout bottle 31 defines a part of the bottom surface of the pressurizing chamber 24.

また下型23には成形室26と連通ずるシリンダボア3
2が形成されており、このシリンダボアにはノックアウ
トビン31と同期して上下動され成形室26内に於て凝
固した凝固体を下型23より取出すためのノックアウト
ビン33が挿通されている。
In addition, the lower mold 23 has a cylinder bore 3 that communicates with the molding chamber 26.
2 is formed, and a knockout bin 33 is inserted into this cylinder bore, which is moved up and down in synchronization with the knockout bin 31 to take out the coagulated material solidified in the molding chamber 26 from the lower mold 23.

この第5図に図示された鋳造装置によれば、これにより
鋳造される複合材料部材の実質的に全ての外周面が上型
22及び下型23により郭定される成形室26によって
形成されるので、第1図に図示された鋳造装置の場合の
如く、所定形状の複合材料部材を製′ih′するのにケ
ースなどを用いる必要がなく、また加圧¥24内にて凝
固した部分を除去することを容易に行うことができる。
According to the casting apparatus illustrated in FIG. 5, substantially the entire outer peripheral surface of the composite material member to be cast is formed by the molding chamber 26 defined by the upper die 22 and the lower die 23. Therefore, as in the case of the casting apparatus shown in FIG. It can be easily removed.

以上の説明より、本発明による複合材料の製造方法によ
れば、鋳型内に導入された溶融7トリツクス金属の最I
Fil向は必ず加圧室内に於て生じるので、繊維強化材
の配向の乱れや製品形状の変形などのない複合材料部材
を製造することができることが理解されよう。
From the above explanation, according to the method for manufacturing a composite material according to the present invention, the maximum I
It will be understood that since the filtration direction always occurs in the pressurized chamber, it is possible to manufacture a composite material member without disturbance in the orientation of the fiber reinforcement or deformation of the product shape.

以上に於ては本発明を特定の実施例について詳細に説明
したが、本発明はかかる実施例に限定されるものではな
く、本発明の範囲内にて種々の実施例が可能であること
は当業者にとって明らかであろう。
Although the present invention has been described in detail with respect to specific embodiments above, the present invention is not limited to such embodiments, and it is understood that various embodiments are possible within the scope of the present invention. It will be clear to those skilled in the art.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による複合材料の製造方法に於て使用さ
れてよい一つの鋳造装置を示す解図的縦断面図、第2図
はm雑成形体を示す解図的縦断面図、第3図は鋳造後に
於ける繊維成形体を示す解図的正面図、第4図は成形室
の容積に対する加圧室内の溶嬌体積の比V+/Vtと繊
維成形体の変形量4との関係を示すグラフ、第5図は本
発明による複合材料の製造方法に於て使用されてよい他
の一つの鋳造装置を示す解図的縦断面図である。 1・・・鋳造装置、2・・・1mlマトリックス金属、
3・・・加圧室、4・・−stm*形体、5・・・成形
室、6・・・鋳型、7・・・プランジャ、8・・・ノッ
クアウトビン、9・・・底壁、10・・・アルミナ繊維
、12・・・ケース、13・・・加圧室の底壁、14・
・・プランジャの下端、21・・・鋳造装習、22・・
・上型、23・・・下型、24・・・加圧室、25・・
・通路、26・・・成形室、27・・・プランジャ、2
8・・・溶融マトリックス金職、29・・・軸線成形体
、30・・・シリンダボア、31・・・ノックアウトビ
ン、32・・・シリンダボア、33・・・ノック7ウト
ビン 特許出願人     トヨタ自動傘1栗株式会d代  
理  人        弁理士   明  石  8
  輪第2図   第3図
FIG. 1 is an illustrative longitudinal sectional view showing one casting apparatus that may be used in the method for manufacturing a composite material according to the present invention, FIG. Figure 3 is an illustrative front view showing the fiber molded body after casting, and Figure 4 shows the relationship between the ratio V+/Vt of the melt volume in the pressurizing chamber to the volume of the molding chamber and the amount of deformation 4 of the fiber molded body. FIG. 5 is an illustrative longitudinal sectional view showing another casting apparatus that may be used in the method for manufacturing a composite material according to the present invention. 1... Casting device, 2... 1ml matrix metal,
3... Pressure chamber, 4...-stm* shape, 5... Molding chamber, 6... Mold, 7... Plunger, 8... Knockout bottle, 9... Bottom wall, 10 ...Alumina fiber, 12...Case, 13...Bottom wall of pressurization chamber, 14.
...lower end of plunger, 21...casting training, 22...
・Upper mold, 23... Lower mold, 24... Pressure chamber, 25...
・Passage, 26... Molding chamber, 27... Plunger, 2
8... Molten matrix metal work, 29... Axis molded body, 30... Cylinder bore, 31... Knockout bin, 32... Cylinder bore, 33... Knock 7 Utobin patent applicant Toyota Motor Umbrella 1 Chestnut Co., Ltd.
Attorney Patent Attorney Akashi 8
Ring Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 溶融マトリックス金属のみを受入れる加圧室と該加圧室
と連通し強化材及び溶融マトリックス金属を受入れる成
形室とを有する鋳型と、前記加圧室及び前記成形室内に
導入された溶融マトリックス金属を加圧する加圧手段と
を有する鋳造@−を用い、強化材をマトリックス金属の
融点以上に加熱した債該強化材を舶紀鋳造装ぼの前記成
形室内に配置し、前記成形室の容In対する前記加圧室
内の溶融マトリックス金属の体積の比が実質的に0.6
以上となるよう前記加5圧室及び前記成形室内に溶融マ
トリックス金属を導入し、前記溶融マトリックス金属を
前記加圧室及び前記m形室内にて加圧しつつ凝固させる
ことを特徴とする複合材料部材の一造方払。
A mold having a pressurizing chamber that receives only molten matrix metal, a molding chamber that communicates with the pressurizing chamber and receives the reinforcing material and the molten matrix metal, and pressurizing the molten matrix metal introduced into the pressurizing chamber and the molding chamber. The reinforcing material is heated to a temperature higher than the melting point of the matrix metal using a casting machine having a pressurizing means for applying pressure. The volume ratio of molten matrix metal in the pressurized chamber is substantially 0.6
A composite material member characterized in that a molten matrix metal is introduced into the pressure chamber and the molding chamber, and the molten matrix metal is solidified while being pressurized in the pressure chamber and the m-shaped chamber. One-way payment.
JP17056581A 1981-10-23 1981-10-23 Manufacture of composite material member Pending JPS5871347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17056581A JPS5871347A (en) 1981-10-23 1981-10-23 Manufacture of composite material member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17056581A JPS5871347A (en) 1981-10-23 1981-10-23 Manufacture of composite material member

Publications (1)

Publication Number Publication Date
JPS5871347A true JPS5871347A (en) 1983-04-28

Family

ID=15907191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17056581A Pending JPS5871347A (en) 1981-10-23 1981-10-23 Manufacture of composite material member

Country Status (1)

Country Link
JP (1) JPS5871347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153245A (en) * 1984-12-27 1986-07-11 Tokai Carbon Co Ltd Production of sheet-like whisker reinforced metallic composite material
CN106825507A (en) * 2016-12-29 2017-06-13 中钢集团邢台机械轧辊有限公司 It is a kind of cast the method for connecing to the axle journal of polishing roll using protective case

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668576A (en) * 1979-11-08 1981-06-09 Art Kinzoku Kogyo Kk Manufacturing method of fiber reinforced compound product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668576A (en) * 1979-11-08 1981-06-09 Art Kinzoku Kogyo Kk Manufacturing method of fiber reinforced compound product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153245A (en) * 1984-12-27 1986-07-11 Tokai Carbon Co Ltd Production of sheet-like whisker reinforced metallic composite material
JPH0152109B2 (en) * 1984-12-27 1989-11-07 Tokai Carbon Kk
CN106825507A (en) * 2016-12-29 2017-06-13 中钢集团邢台机械轧辊有限公司 It is a kind of cast the method for connecing to the axle journal of polishing roll using protective case

Similar Documents

Publication Publication Date Title
US4633931A (en) Method of producing fiber-reinforced composite body
JPS5996236A (en) Production of composite material
JPS5871347A (en) Manufacture of composite material member
CN107931581A (en) The more echelon pressure regulation combined shaping methods of aluminum matrix composite
JP3126704B2 (en) Casting method for castings with composite materials cast
JPS5827943A (en) Method and apparatus for manufacturing composite material
JPS5893557A (en) Production of composite fibrous metallic material
JPS5857265B2 (en) Manufacturing method of fiber reinforced composite material
JPS58215263A (en) Production of composite material
KR930005992Y1 (en) Melting forging machine
JP2811452B2 (en) Method for producing fiber-reinforced composite material
JPS6246268B2 (en)
JPS6029433A (en) Production of fiber-reinforced metallic composite material
JPS60213350A (en) Production of fiber reinforced metallic material
JPS58221244A (en) Method and apparatus for manufacturing composite material
JPH03114650A (en) Production of metal base reinforced material
JPS61165223A (en) Work method of fiber reinforced metallic material
JP2836905B2 (en) Method for producing fiber-reinforced metal matrix composite
JPS6142463A (en) Pressure casting method of metal
JPS62151535A (en) Production of fiber reinforced aluminum alloy
JPH0311866B2 (en)
JPS62238062A (en) Production of fiber reinforced metallic composite material
JPS63165041A (en) Production of fiber reinforced metallic composite material
JPH02137661A (en) Production of fiber reinforced metallic parts
JPH05169234A (en) Method and apparatus for producing short fiber reinforced metallic composite material