JPS5867422A - Extrusion expanding polystyrene resin sheet - Google Patents

Extrusion expanding polystyrene resin sheet

Info

Publication number
JPS5867422A
JPS5867422A JP56167671A JP16767181A JPS5867422A JP S5867422 A JPS5867422 A JP S5867422A JP 56167671 A JP56167671 A JP 56167671A JP 16767181 A JP16767181 A JP 16767181A JP S5867422 A JPS5867422 A JP S5867422A
Authority
JP
Japan
Prior art keywords
sheet
shrinkage stress
heat shrinkage
difference
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56167671A
Other languages
Japanese (ja)
Other versions
JPS6132129B2 (en
Inventor
Katsutoshi Ochi
越智 克俊
Takeshi Saburi
佐部利 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kaseihin Kogyo KK
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Sekisui Kaseihin Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd, Sekisui Kaseihin Kogyo KK filed Critical Sekisui Plastics Co Ltd
Priority to JP56167671A priority Critical patent/JPS5867422A/en
Publication of JPS5867422A publication Critical patent/JPS5867422A/en
Publication of JPS6132129B2 publication Critical patent/JPS6132129B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • B29C44/505Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying extruding the compound through a flat die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To mold most efficiently a vessel to be manufactured by making use of heating shrinkage stress difference between both sides of a sheet by a method wherein a sheet is sliced into two sheets of expanded polystyrene resin in which the difference between those maximum heat shrinkage stresses shows a specific value. CONSTITUTION:This is extrusion expanding polystyrene resin sheet applied as molding material and excellent in moldability and obtained by slicing an extrusion molded sheet into two sheets in the middle of thickness. While these two sheets are heated at 130 deg.C for 1min, the shrindage stress shows the maximum value in onesheet but does not in the other sheet. Moreover, this is the extrusion expanding polystyrene resin sheet wherein the maximum heat shrinkage stress shown by the average value of the maximum strinkage stresses in the vertical and lateral directions has a difference 1.652/mm.<2> or greater between one an the other sheet.

Description

【発明の詳細な説明】 この発91ハ押出発泡ポリスチレンAft脂シートに陶
し、特に容器等への成形方法として、シート表裏の加熱
収縮応力差を利用して成形型に沿う成形加工を行なう成
形方法に適した原料シートを提供しようとしている。
Detailed Description of the Invention This invention 91 is made of extruded foamed polystyrene Aft resin sheet, and is particularly used as a molding method for containers, etc., in which the sheet is molded along a mold by utilizing the difference in heat shrinkage stress between the front and back sides of the sheet. We are trying to provide raw material sheets suitable for the method.

従来における発泡ポリスチレンシート等によるトレー容
器等の成形方法としては、プレス成形、プレス成形+真
空成形、などが採用されており、何れも原反シートを雄
雌両型間に挟み込み加熱軟化させた後、外力により強制
的に変形加工を施すものであった。
Press molding, press molding + vacuum forming, etc. have been adopted as conventional methods for forming tray containers, etc. using expanded polystyrene sheets, etc. In both cases, the raw sheet is sandwiched between male and female molds and then heated and softened. , the process was forcibly deformed by external force.

しかし上記従来方法では、金型が複雑で加工精度も要求
される上、金型の型閉め型開き等の油圧・空圧機構が必
要となり、設備が複雑高価になること、また強制的な変
形加工により、成形品に)の立ち上がシ部分(a)など
で発泡シートが成形方向へ引き伸ばされ、その部分の気
泡が偏平に押し潰されて強度が低下したり、緩衝性が悪
くなるなどの欠点がありた(第9図参照)。
However, in the conventional method described above, the mold is complicated and processing precision is required, and hydraulic and pneumatic mechanisms such as closing and opening the mold are required, making the equipment complicated and expensive, and forced deformation. During processing, the foam sheet is stretched in the molding direction at the rising edges (a) of the molded product, and the air bubbles in those areas are flattened, resulting in a decrease in strength and poor cushioning properties. There were several drawbacks (see Figure 9).

そζで、本出願人は上記従来の欠点を解消するため、シ
ートの表裏で加熱時の収縮応力の異なる発泡シートを使
用し、加熱によるシート自体の反)変形によりて雄型に
シートを沿わせ、所要形状に成形加工する方法を開発し
た。
Therefore, in order to eliminate the above-mentioned conventional drawbacks, the present applicant used a foam sheet with different shrinkage stress when heated on the front and back sides of the sheet, and the sheet was molded in a male shape by deformation of the sheet itself due to heating. We have developed a method to mold and process it into the desired shape.

この発明においては、上記成形方法に使用する素材とな
る押出発泡ポリスチレン系樹脂シートとして、成形性が
よく好適なものを提供するものであり、その構成として
は、押出成形されたシートであって、一枚のシートを厚
みの中央で2秋にスライスした後、両シートを180℃
で1分間加熱し、加熱時における収縮応力を測定したと
き、スライスした一方のシートは加熱収縮応力に極大値
を示し、他方のシートは極大値を示さず、さらにシート
の縦方向と横方向の最大収縮応力の平均値で表わされる
最大加熱収縮応力として、一方のシートと他方のシート
との最大加熱収縮応力の差が1.66F/−以上あるこ
とを特徴としている。
The present invention provides an extruded foamed polystyrene resin sheet that is suitable for use as a material in the above molding method and has good moldability. After slicing one sheet at the center of its thickness, both sheets were heated to 180℃.
When heated for 1 minute at The sheet is characterized in that the difference in maximum heat shrinkage stress between one sheet and the other sheet is 1.66 F/- or more as the maximum heat shrinkage stress expressed as the average value of the maximum shrinkage stress.

次いでこの発明の実施喬様について図を参照しながら以
下に例示する。
Next, embodiments of the present invention will be illustrated below with reference to the drawings.

(1)が押出成形にて製造された、発泡ポリスチレン系
樹脂シートであり、特に製造時に1シート(鳳)の表1
17Q(Iと裏面αυとの最大加熱収縮応力の差が大き
くなるように51i、形されたものである。
(1) is a foamed polystyrene resin sheet manufactured by extrusion molding.
17Q (51i) is shaped so that the difference in maximum heat shrinkage stress between I and the back surface αυ is large.

最大加熱収縮応力とは、発泡シート(1)を加熱し走時
に収縮しようとする応力を、シート(1)の縦方向およ
び横方向で測定し、その縦横両方向の最大収縮応力の平
均値として表わされるものであり、上記シート(1)の
両面αG01)における各々の加熱収縮応力を測定する
には、押出成形された一枚の発泡シート(1)を厚みの
中央で2枚にスライスした後、両シートを加熱して各々
の応力値を測定する〇一般に押出成形された発泡シート
の場合、成形加工を施す際の加熱により膨張あるいは収
縮しようとする応力が発生する@ 通常の場合Klri
第2図(1)のごときパターンを示し、加熱初期Ktj
若干膨張応力が生じ、次に急激に収に応力が増大した後
、徐々に収に15力Fi減少する。
The maximum heat shrinkage stress is the stress that causes the foamed sheet (1) to shrink during running when heated, measured in the longitudinal and lateral directions of the sheet (1), and expressed as the average value of the maximum shrinkage stress in both the longitudinal and lateral directions. To measure the heat shrinkage stress on both sides αG01) of the sheet (1), one extrusion-molded foam sheet (1) is sliced into two pieces at the center of the thickness, and then Heat both sheets and measure the stress value of each 〇In the case of extrusion-molded foam sheets, stress that tends to expand or contract due to heating during molding processing is generated @ Normally, Klri
The pattern shown in Fig. 2 (1) is shown, and the initial heating Ktj
A slight expansion stress occurs, then the stress suddenly increases, and then gradually decreases by 15 force Fi.

上記加熱収縮応力の極大点が最大収1M応力(−)とな
り、これをシートの縦横両方向について測定して平均値
を求め、前記鍛大加熱収NjE力を算出するものである
The maximum point of the heat shrinkage stress is the maximum stress yield of 1M (-), which is measured in both the longitudinal and lateral directions of the sheet to obtain an average value, and the forging heat shrinkage NjE force is calculated.

このような収縮応力の値および応カバターンは発泡シー
トの原料樹脂の種類、および押出成形時の成形条件、例
えば押出速度、引取速度、金型と冷却マンドレルの径の
比、押出発泡後の冷却速度QIKよシ大きく影響される
ものであ)、従来の発泡シートにおいては、シートの表
裏何れの面についても上記g152図(1)のごとき/
9ターンを示し、その絶対値に大小の差Fiあるが加熱
収縮応力に極大値が表われるO ところが、例えば押出発泡後の冷却工程において、発泡
シート(1)の表裏のうちどちらか片面のみの冷却度合
を弱くするか、または全く冷却しないことKよシ冷却速
度を低くシ、シート(1)の表裏で冷却度合を異にして
製造された発泡シート(菫)の表裏両面について加熱収
縮応力を・測定すると、通常の冷却を行なりた面につい
ては、上記従来と同様に極大値のある第2図(1)のパ
ターンを示すが、冷却速度の低い側の面については、加
熱収縮応力に極大値が表われず、第2図(1)のごとき
フラットなパターンを示す。従うて最大加熱収縮応力の
値(C4も小さなものとなシ、発泡シート(1)の両面
で最大加熱収縮応力の値切−に明らかに大きな差が生じ
るととKなる。
The value of such shrinkage stress and response pattern depend on the type of raw material resin for the foamed sheet, and the molding conditions during extrusion molding, such as extrusion speed, take-up speed, diameter ratio of the mold and cooling mandrel, and cooling rate after extrusion foaming. In conventional foam sheets, both the front and back sides of the sheet have a
9 turns, and there is a size difference Fi in the absolute value, but the maximum value appears in the heat shrinkage stress O. However, for example, in the cooling process after extrusion foaming, only one of the front and back sides of the foam sheet (1) The degree of cooling should be lowered or not at all.The cooling rate should be lowered and the heat shrinkage stress applied to both the front and back sides of the foam sheet (violet) manufactured by lowering the cooling rate and having different degrees of cooling on the front and back sides of the sheet (1).・When measured, the surface that was cooled normally shows the pattern shown in Figure 2 (1), which has the maximum value as in the conventional case, but the surface that was cooled at a lower rate showed the pattern of heat shrinkage stress. No local maximum value appears, and a flat pattern as shown in FIG. 2 (1) is shown. Therefore, the value of the maximum heat shrinkage stress (C4) must also be small, and if there is a clearly large difference in the value of the maximum heat shrinkage stress on both sides of the foamed sheet (1), then the value is K.

なお従来の押出発泡シートにおいても成形条件の不均一
等の原因により、シート表裏の冷却度合が若干異なるた
め、加熱収縮応力も表裏で全く同じKはならないが、非
常にわずかな差であり、特に従来のプレス成形加工など
に使用する発泡シートの場合に#i、出来るだけ上記表
裏の加熱収縮応力の差を無くすることが成形上必要とさ
れていたものである。従って発泡シート0)の表裏の加
熱収縮応カバターンも、従来は常に極大値を有する第2
図(1)のようになり、仁の発明のような極大値のない
第2図(1)のパターンを示すことはなかった・ 次に1ξの発明の発泡シート0)を製造するKlfi、
前記のごとく押出発泡後の冷却工程において、発泡シー
ト(υの両面に吹き付叶るエアーあるいは冷却ガイド板
のうち、片面のみの冷却度合を弱くするか全(無くして
冷却速度を低くシ、シー)(1)の表裏で冷却度合を大
きく異なえて製造するもののほか、押出ダイ(ロ)の形
状の内、吹出口先端の狭小路の42面を、一方何では短
かく、ノ、他方側では長くの形成しておけど、押出され
た原材料の吹出速度が瀘りてくるため、前記のごとく発
泡シート(1)の両面で加熱収縮応力が異なるものが製
造できる(第3図参照)。 そしてこの発明の場合、発
泡シート(璽)の両11iiKおける最大加熱収縮応力
の差が1.66P/−以上あるものである0上記発泡シ
ー) (1)の具体例について最大加熱収縮応力の測定
例を下表に示す。
In addition, even in conventional extruded foam sheets, the degree of cooling on the front and back sides of the sheet is slightly different due to uneven molding conditions, etc., so the heat shrinkage stress will not be exactly the same K on the front and back sides, but the difference is very small, especially In the case of foamed sheets used in conventional press molding, etc., it is necessary for molding to eliminate the difference in heat shrinkage stress between the front and back surfaces as much as possible. Therefore, the heat-shrinkable pattern on the front and back sides of the foam sheet 0) has always had a maximum value in the past.
The result was as shown in Figure (1), and the pattern in Figure 2 (1) without a maximum value was not shown as in Jin's invention.Next, Klfi, which manufactures the foam sheet 0) of the invention of
As mentioned above, in the cooling process after extrusion foaming, the cooling rate can be lowered by reducing the degree of cooling on only one side of the foam sheet (υ) or by eliminating the cooling rate on one side of the cooling guide plate. ) In addition to manufacturing with greatly different cooling degrees on the front and back sides of (1), in the shape of the extrusion die (B), the 42 sides of the narrow passage at the tip of the outlet are short on one side, and on the other side. Since the blowing speed of the extruded raw material slows down even after forming a long sheet, it is possible to manufacture a foamed sheet (1) with different heat shrinkage stresses on both sides as described above (see Figure 3). In the case of this invention, the difference in the maximum heat shrinkage stress at both 11iiK of the foam sheet (seal) is 1.66 P/- or more (0 above foam sheet) Example of measurement of the maximum heat shrinkage stress for the specific example of (1) are shown in the table below.

表10発泡シートの表裏における 最大加熱収縮応力 測定は発泡ポリスチレンシート(厚みL8〜2..5麿
)を厚みの中央で表裏2枚にスライスして各々測定する
Table 10 The maximum heat shrinkage stress on the front and back sides of a foamed sheet is measured by slicing a foamed polystyrene sheet (thickness L8 to 2.5 mm) into two pieces, the front and back, at the center of the thickness.

測定装置11=  恒温種付テンシロンUTM−4型 
(東洋ボールドツイン 株式会社製) 測定条件 : 180℃、1th加熱 チャック間隔 :  50麿 上表のごとく、この発明の発泡シートの場合、表裏で大
きな最大加熱収縮応力の差が生じており1従米の押出発
泡シートと#i用らかに異なる特性を示している。
Measuring device 11 = Tensilon UTM-4 type with constant temperature seed
(Manufactured by Toyo Bold Twin Co., Ltd.) Measurement conditions: 180°C, 1th heating chuck interval: 50mm As shown in the table above, in the case of the foam sheet of this invention, there is a large difference in maximum heating shrinkage stress between the front and back sides, and the The extruded foam sheet and #i exhibit distinctly different characteristics.

上記のごとく押出成形され、表裏に大きな加熱収1il
iiE)力の差がある発泡シート(l)を加熱すると、
加熱に伴なりて加熱収縮応力が開放され、該応力の大き
な表面側がより大きく収縮しようとして、この表tii
rao側へと発泡シート(I)全体が反シ返えるように
変形するC!1図参照)。
Extrusion molded as above, with large heating capacity 1il on the front and back sides.
iiE) When the foam sheet (l) with a difference in force is heated,
With heating, the heat shrinkage stress is released, and the surface side with the greater stress tends to contract more, resulting in this table tii
C! The entire foam sheet (I) is deformed so that it can be turned back toward the rao side! (See Figure 1).

この反シ変形を利用して、加熱時に発泡シート0)の表
Ii[1alJl側へ雄型を当接しておけば、発泡シー
ト0)は雄型形状に沿って変形し、容器等への成形加工
が施されることになる。
Utilizing this anti-shape deformation, if the male die is brought into contact with the table Ii[1alJl side of the foam sheet 0) during heating, the foam sheet 0) will deform along the male die shape and be molded into containers, etc. It will be processed.

次に上記成形加工の具体例について、トレー容器を製造
する場合を述べる。
Next, as a specific example of the above-mentioned molding process, a case where a tray container is manufactured will be described.

発泡シー1)ti予め容器の概要形状に裁断したものを
準備しておく’ovCK所要の容器形状に沿う雄型(至
)を上記シート片(15に当接したtま、全体を加熱す
る◎ すると、シート片(I5の表面Q(lと、裏面αDとの
加熱収ll14応力が開放され、この加熱収縮応力の差
によりてシート片(15全体が表面(1(l側へと反り
返シ変形しようとする。 そして、シート片(15tx
その表面帥側へ当接した雄型QIjKaって変形し、雄
型■に沿って密着した形状の成形品(4)が得られる。
Foaming sheet 1) Prepare a sheet cut into the general shape of the container in advance.A male mold (to) that follows the desired container shape is heated until it comes into contact with the sheet piece (15).◎ Then, the heat shrinkage stress between the front surface Q(l) and the back surface αD of the sheet piece (I5) is released, and due to the difference in the heat shrinkage stress, the entire sheet piece (15) warps back toward the front surface (1(l) side. Trying to deform. Then, a sheet piece (15tx
The male die QIjKa that has come into contact with the surface side is deformed, and a molded product (4) having a shape that is in close contact with the male die (2) is obtained.

その後、冷却して成形品に)を雄型■から取シ外せば、
所要のトレー容器等の成形品に)が得られる0以上のよ
うな成形方法にてトレー等の容器を成形すれば、成形時
にプレスあるbは真空吸引力等のように外力を加えて発
泡シートを強制変形させるものでは無いため、容器に)
の立ち上がシ部−)など変形加工量の大きな部分くおい
ても、発泡シー) (15の気泡が引き伸ばされたシ押
し潰されて、その部分の強度が級下したり緩衝性が悪く
なるなどの欠陥が生じず、容器(4)全体にわたって良
好な気泡形状を呈し、強度等の諸性質も均質で優れたも
のとなる〇 また成形型として、雄型■のみを使用し、その雄型(2
)もシート片(1)に当接するだけであるから、成形装
置は非常に簡単な構造となり、設備費、加工コストは非
常に安価にでき、雄型■およびシート片(15を同時に
コンペア等の手段で加熱炉内を移送させながら成形すれ
ば、装置の自動化、連続成形も可能で大量生産にも好適
となる。
After that, if the molded product is cooled and removed from the male mold ■,
If a container such as a tray is molded using a molding method such as 0 or more that yields the desired molded product such as a tray container, the press during molding can be applied with an external force such as a vacuum suction force to form a foam sheet. (as it does not forcefully deform the container)
Even if you leave in areas that require a large amount of deformation, such as the rising edge of the foam (15 bubbles), the strength of the area may deteriorate or the cushioning properties may deteriorate. The container (4) will have a good bubble shape throughout the container (4) without any defects such as cracking, and will have uniform and excellent properties such as strength. Type (2
) also comes into contact with the sheet piece (1), so the molding device has a very simple structure, and the equipment and processing costs can be very low. If the molding is carried out while being transferred inside the heating furnace, automation of the device and continuous molding are possible, making it suitable for mass production.

そして、上記成形方法に用いる発泡シート片(15の素
材として、この発明の発泡シート(1)を用いれば、表
面αGと*t1janとの加熱収縮応力の差が1.65
97−以上と特に大きい為、上記成形時には雄型lの形
状に沿って容易に変形でき、複雑な形状の成形品に)も
成形可能になるなど、成形性が非常に優れ、加工能率も
向上させることができる。
If the foam sheet (1) of the present invention is used as the material for the foam sheet piece (15) used in the above molding method, the difference in heat shrinkage stress between the surface αG and *t1jan is 1.65.
Since it is especially large at 97- or more, it can be easily deformed along the shape of the male mold during the above molding, and it is also possible to mold products with complex shapes, resulting in extremely excellent moldability and improved processing efficiency. can be done.

tたシート0)の表裏に加熱収縮応力の差をつけるため
Kは、発泡シート(1)の押出発泡後の冷却工程におい
てシート(1)の表面(1(Iと裏面Iとで冷却度合を
興なえたり、押出ダイ0の形状を従来のものと変えて製
造したものであって、従来の押出成形に比べて、製造が
特に面倒になつたり、装置が複雑になることも無く、発
泡シート(1)の製造コストが高価になることも無い。
In order to create a difference in heat shrinkage stress between the front and back sides of the sheet 0), K is used to adjust the degree of cooling between the front and back sides of the sheet (1) during the cooling process after extrusion and foaming of the foamed sheet (1). It is manufactured by changing the shape of the extrusion die 0 from the conventional one, and compared to conventional extrusion molding, the manufacturing process is not particularly troublesome, and the equipment is not complicated. The manufacturing cost of the sheet (1) does not become expensive.

 また上記表裏の冷却度合等を様々に変更することKよ
り、加熱収縮応力の差も1.65P/−以上の任意の値
のものが容易に得られ、容器の成形条件に対し最適な値
を選択できる。
In addition, by varying the degree of cooling between the front and back sides, it is easy to obtain a difference in heat shrinkage stress of 1.65P/- or more, which is optimal for the molding conditions of the container. You can choose.

即ち、容器等べの成形時に、大きな変形を要する場合に
#i、加熱収縮応力の差が大きな発泡シートを用いれば
良く、そのためKはシートの押出成形の際に表裏の冷却
度合を大きく異なえる等、すれば、容易に対応できる。
That is, when a large deformation is required during molding of a container or the like, #i, a foamed sheet with a large difference in heat shrinkage stress may be used, and therefore, K allows the cooling degree of the front and back surfaces to be greatly different during extrusion molding of the sheet. etc., you can easily deal with it.

従りて、この発明によれば、シート表裏の加熱収縮応力
差を利用した容器等の成形加工方法に対して、最適な原
料シートを安価に提供でき、上記成形方法の普及に大き
く貢献できることKなる。
Therefore, according to the present invention, it is possible to provide an optimal raw material sheet at a low cost for a method of forming containers and the like that utilizes the difference in heat shrinkage stress between the front and back sides of a sheet, and it is possible to greatly contribute to the spread of the above-mentioned forming method. Become.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の実施態様を例示するものであり、第1図
は断面図、第2図(1)  (1)は加熱時の応力線図
、第8図は製造時の押出グイ先端部分の拡大断面図、第
4図および第6図は容器成形過程を示す斜視図、第6図
は断面図、第7図は製造された容器の斜視図、第8図は
前回■−■線拡大断面図、第9図は従来例の一部拡大断
面図である。 (重)・・・・・・押出発泡ポリスチレン系樹脂シート
OG・・・・・・表面     αυ・・・・・・裏面
(ロ)・・・・・・押出ダイ   囚・・・・・・容器
(q・・・・・・雄型
The figures illustrate an embodiment of the present invention, and Fig. 1 is a cross-sectional view, Fig. 2 (1) (1) is a stress diagram during heating, and Fig. 8 is a diagram of the tip of the extruded goo during manufacture. FIG. 4 and FIG. 6 are perspective views showing the container forming process, FIG. 6 is a cross-sectional view, FIG. 7 is a perspective view of the manufactured container, and FIG. 8 is an enlarged cross-section taken along the previous line ■-■. 9 are partially enlarged sectional views of the conventional example. (Heavy)...Extruded polystyrene foam resin sheet OG...Surface αυ...Back (B)...Extrusion die Container...Container (q...male type

Claims (1)

【特許請求の範囲】[Claims] 1、押出成形されたシートでありて、一枚のシートを厚
みの中央で2枚にスライスした後、両シートを180℃
で1分間加熱し、加熱時における収縮応力を測定したと
き、スライスした一方のシートは加熱収縮応力に極大値
を示し、他方のシートは極大値を示さず、さらにシート
の縦方向と一方向の最大収縮応力の平均値で表わされる
最大加熱収縮応力として、一方のシートと他方のシート
との最大加熱収縮応力の差が1.66P/−以上あるこ
とを特徴とする押出発泡ポリスチレン系樹脂シート。
1. It is an extrusion-molded sheet, and after slicing one sheet into two at the center of the thickness, both sheets are heated at 180°C.
When heated for 1 minute at An extruded polystyrene foam resin sheet characterized in that the difference in maximum heat shrinkage stress between one sheet and the other sheet is 1.66 P/- or more as the maximum heat shrinkage stress expressed as the average value of the maximum shrinkage stress.
JP56167671A 1981-10-19 1981-10-19 Extrusion expanding polystyrene resin sheet Granted JPS5867422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56167671A JPS5867422A (en) 1981-10-19 1981-10-19 Extrusion expanding polystyrene resin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56167671A JPS5867422A (en) 1981-10-19 1981-10-19 Extrusion expanding polystyrene resin sheet

Publications (2)

Publication Number Publication Date
JPS5867422A true JPS5867422A (en) 1983-04-22
JPS6132129B2 JPS6132129B2 (en) 1986-07-24

Family

ID=15854055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56167671A Granted JPS5867422A (en) 1981-10-19 1981-10-19 Extrusion expanding polystyrene resin sheet

Country Status (1)

Country Link
JP (1) JPS5867422A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257829A (en) * 1986-05-02 1987-11-10 Sumitomo Electric Ind Ltd Curl processing method for synthetic-resin molded product
JPH0315124U (en) * 1989-06-23 1991-02-15
JP2010538124A (en) * 2007-08-27 2010-12-09 ダウ グローバル テクノロジーズ インコーポレイティド Improved process for forming extruded polystyrene foam and products made therefrom
JP2012180392A (en) * 2011-02-28 2012-09-20 Sekisui Plastics Co Ltd Polystyrene resin foamed sheet, and method of producing foamed molded product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333627A (en) * 1976-09-09 1978-03-29 Canon Inc Cineprojector
JPS5640528A (en) * 1979-09-11 1981-04-16 Mitsui Toatsu Chem Inc Foamed polystylene sheet and manufacture thereof
JPS5641414A (en) * 1979-09-12 1981-04-18 Honda Motor Co Ltd Exhaust gas purifier for engine
JPS56118829A (en) * 1980-02-25 1981-09-18 Mitsui Toatsu Chem Inc Manufacture of foamed polystyrene sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333627A (en) * 1976-09-09 1978-03-29 Canon Inc Cineprojector
JPS5640528A (en) * 1979-09-11 1981-04-16 Mitsui Toatsu Chem Inc Foamed polystylene sheet and manufacture thereof
JPS5641414A (en) * 1979-09-12 1981-04-18 Honda Motor Co Ltd Exhaust gas purifier for engine
JPS56118829A (en) * 1980-02-25 1981-09-18 Mitsui Toatsu Chem Inc Manufacture of foamed polystyrene sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257829A (en) * 1986-05-02 1987-11-10 Sumitomo Electric Ind Ltd Curl processing method for synthetic-resin molded product
JPH0315124U (en) * 1989-06-23 1991-02-15
JP2010538124A (en) * 2007-08-27 2010-12-09 ダウ グローバル テクノロジーズ インコーポレイティド Improved process for forming extruded polystyrene foam and products made therefrom
JP2012180392A (en) * 2011-02-28 2012-09-20 Sekisui Plastics Co Ltd Polystyrene resin foamed sheet, and method of producing foamed molded product

Also Published As

Publication number Publication date
JPS6132129B2 (en) 1986-07-24

Similar Documents

Publication Publication Date Title
US4359160A (en) Nestable foam cup with improved heat retention and the process for its manufacture
US4783303A (en) Method of processing semifinished products made of cross-linked plastic material
US4619806A (en) Method of forming highly oriented thermoplastic articles
JPS5867422A (en) Extrusion expanding polystyrene resin sheet
US3121767A (en) Method and apparatus for fabricating sheet formed molded articles
US4113824A (en) Process for producing receptacles from a thermoplastic resin foam sheet
JP2636040B2 (en) Hollow forming method of flat container having parts with greatly different wall thickness
JPS6144051B2 (en)
USRE28364E (en) Method for forming foam articles
CN112265192A (en) Rubber sealing element with fabric on surface and forming die and forming method thereof
US3803278A (en) Deep-drawable polystyrene foam sheets
JPS629069Y2 (en)
CA1159211A (en) Rotary forming of articles - b
US4411849A (en) Method for forming a plurality of objects from a plurality of superimposed sheets
JPS5857936A (en) Styrene group resin foamed sheet
US2546868A (en) Process of making closed cell cellular soft rubber sheet by single vulcanization andexternal gassing
US3444284A (en) Uniform cooling of blow molded articles
JPS61148021A (en) Blow molding method and its device
JPS5944206B2 (en) Netsukaso Seigou Seijyuushishi - Tonokanetsusei Keihouhou
JPS5828090B2 (en) Netsukaso Seijyuushi Ikeichiyoujiyakuzaino Seizouhouhou
JPS629013B2 (en)
JPS6147230A (en) Blow molding method
JP2002178396A (en) Method for molding foamed sheet of thermoplastic resin and foamed container
SU719973A1 (en) Method of hollow glass articles manufacturing
JP2000229348A (en) Deep drawing method