JPS5865245A - Preparation of glycol monoester - Google Patents

Preparation of glycol monoester

Info

Publication number
JPS5865245A
JPS5865245A JP56163908A JP16390881A JPS5865245A JP S5865245 A JPS5865245 A JP S5865245A JP 56163908 A JP56163908 A JP 56163908A JP 16390881 A JP16390881 A JP 16390881A JP S5865245 A JPS5865245 A JP S5865245A
Authority
JP
Japan
Prior art keywords
aldehyde
alkaline earth
oxide
glycol monoester
isobutyraldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56163908A
Other languages
Japanese (ja)
Inventor
Kiyoshi Fujita
潔 藤田
Keiji Fujita
藤田 慶二
Masaaki Hoshino
正明 星野
Shoji Cho
張 将司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Yuka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Yuka Co Ltd filed Critical Kyowa Yuka Co Ltd
Priority to JP56163908A priority Critical patent/JPS5865245A/en
Publication of JPS5865245A publication Critical patent/JPS5865245A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To improve the selectivity and yield advantageously without requiring expensive corrosion-resistant materials in obtaining the titled compound from an aldehyde as a raw material, by carrying out the reactiok in the presence of an alkaline earth metallic oxide. CONSTITUTION:An aldehyde of formulaI(R1 and R2 are the same or different 1-5C alkyl) is catalytically reacted in the presence of an alkaline earth metallic oxide, e.g. barium oxide or magnesium oxide, at 50-150 deg.C for 0.5-4hr to give a compound of formula II. The amount of the alkaline earth metallic oxide is preferably in the range of 0.5-10wt%, and isobutyraldehyde, 2-methylbutyraldehyde, etc. may be cited as the aldehyde. Preferably, the moisture content in the aldehyde is 5wt% or less, and the acid content in the therein is 2wt% or less.

Description

【発明の詳細な説明】 本発明はグリコールモノエステルの製造の改良方法に関
する。さらに詳しくは本発明はアルカリ土類金属酸化物
の存在下に、 一般式(r) (式中、R8およびR8は同−又は異なって炭素数1−
5のアルキル基を表わす。)で表わされるアルデヒドか
ら 一般式(It) OHR* (式中、R1およびR2は前記と同意義を表わす。)で
表わされるグリコールモノエステルを製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved process for the production of glycol monoesters. More specifically, in the presence of an alkaline earth metal oxide, the present invention provides a compound having the general formula (r) (wherein R8 and R8 are the same or different and have a carbon number of 1-
5 represents an alkyl group. ) The present invention relates to a method for producing a glycol monoester represented by the general formula (It) OHR* (wherein R1 and R2 have the same meanings as above) from an aldehyde represented by the formula (It).

従来、触媒を使用するアルデヒドからグリコールモノエ
ステルの製法としては槙々の方法が知られている。例え
ばアルカリ又はアルカリ土類水酸化物触媒を用いる方法
(USF、 3291821、USF、3718689
.特開昭54−59215号公報等)、アルコール又は
酸共存下にアルカリ又はアルカリ土類水酸化物触媒を用
いる方法(特公昭52−15581号公報、特公昭52
−15582号公報、特開昭54−148716号公報
等)、アルコラード系、触媒を用いる方法(特公昭38
−22857号公報、特公昭52−155809号公報
、特公昭52−15581号公報、特公昭47−376
09号公報等)等が知られている。
BACKGROUND ART Conventionally, Maki's method is known as a method for producing glycol monoester from an aldehyde using a catalyst. For example, methods using alkali or alkaline earth hydroxide catalysts (USF, 3291821, USF, 3718689
.. JP-A-54-59215, etc.), a method using an alkali or alkaline earth hydroxide catalyst in the coexistence of alcohol or acid (Japanese Patent Publication No. 52-15581, JP-B-Sho 52)
-15582, JP-A-54-148716, etc.), Alcolade system, method using a catalyst (Japanese Patent Publication No. 1987-148716, etc.)
-22857 Publication, Japanese Patent Publication No. 52-155809, Japanese Patent Publication No. 52-15581, Japanese Patent Publication No. 47-376
No. 09, etc.) are known.

しかしながら、アルデヒドからグリコールモノエステル
を製造する際にアルカリ又はアルカリ土類水酸化物触媒
を用いた場合には、一般的に反応率が低くなる。又、ア
ルコール又は酸共存下にアルカリ又はアルカリ土類水酸
化物触媒を用いた場合には、次の様な問題が起る。
However, when an alkali or alkaline earth hydroxide catalyst is used when producing a glycol monoester from an aldehyde, the reaction rate is generally low. Further, when an alkali or alkaline earth hydroxide catalyst is used in the coexistence of alcohol or acid, the following problems occur.

即ち、アルコールを添加する場合には反応後未反応アル
デヒドを分離した後、アルコールを蒸留又は水蒸気蒸留
により分離回収しなければならない。酸を用いる場合に
は1反応後、アルカリによる中和、水洗によって塩を分
離するか、又は蒸留によって分離しなければならずかつ
酸濃度、温度によっては高価な耐食性材料を要する。
That is, when adding alcohol, it is necessary to separate unreacted aldehyde after the reaction and then separate and recover the alcohol by distillation or steam distillation. When an acid is used, after one reaction, the salt must be separated by neutralization with an alkali, washing with water, or distillation, and depending on the acid concentration and temperature, expensive corrosion-resistant materials are required.

さらに、又、アルコラード系触媒を用いた場合には、水
分が多いアルデヒドを原料とすると反応率が低下する欠
点がある。
Furthermore, when an alcoholade catalyst is used, there is a drawback that the reaction rate decreases if an aldehyde containing a large amount of water is used as a raw material.

本発明者らは、アルデヒドから高収率、高選択率でグリ
コールモノエステルを製造する方法について種々検討し
た結果、アルカリ土類金属酸化物の存在下に、一般式(
1)で表わされるアルデヒドから一般式(II)で表わ
されるグリコールモノエステルを高収率、高選択率で製
造できることを孔い出し、本発明を完成l〜だ。
The present inventors conducted various studies on methods for producing glycol monoester from aldehydes in high yield and high selectivity.
The present invention was completed by discovering that the glycol monoester represented by the general formula (II) can be produced from the aldehyde represented by 1) in high yield and high selectivity.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

一般式(1)で表わされるアルデヒドとしては、例えば
、イソブチルアルデヒド、2−メチルブチルアルデヒド
、2−エチルブチルアルデヒド、2−メチルペンタナー
ル、2−エチルペンタナールなどがあげられる。
Examples of the aldehyde represented by the general formula (1) include isobutyraldehyde, 2-methylbutyraldehyde, 2-ethylbutyraldehyde, 2-methylpentanal, and 2-ethylpentanal.

アルデヒドとしては、アルデヒド中の酸、水含量の少な
いもの程好ましいが、水分含量5重量−以下、酸含量2
重量−以下のアルデヒドであれば充分、本発明の原料ア
ルデヒドとして使用できる。
As for the aldehyde, the lower the acid and water content in the aldehyde, the more preferable the aldehyde is.
Any aldehyde having a weight of less than - can be used as the raw material aldehyde of the present invention.

アルカリ土類金属酸化物としては酸化バリウム、酸化マ
グネシウム等が用いられる。
Barium oxide, magnesium oxide, etc. are used as the alkaline earth metal oxide.

アルカリ土類金属酸化物の量としては、アルデヒドに対
して0.5−10重量−の範囲が好ましい。接触反応は
50−150℃で0.5−4時間行かう。反応後、反応
液から目的物を得るには、反応液から濾過によ!llま
ず触媒を分離した後、そのF液を通常の蒸留方法で蒸留
することによシ、目的物を分離、精製することができる
The amount of alkaline earth metal oxide is preferably in the range of 0.5-10% by weight relative to the aldehyde. The catalytic reaction is carried out at 50-150°C for 0.5-4 hours. After the reaction, to obtain the target product from the reaction solution, filter the reaction solution! After first separating the catalyst, the target product can be separated and purified by distilling the F liquid using a conventional distillation method.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例1゜ 反応器に無水イソブチルアルデヒド(イソブチルアルデ
ヒド: 99.85重t%、水分:0.03重量%、イ
ソ酪酸: 0.12重量%)を100#入れ、触媒とし
て酸化バリウム(BaO) (和光純系製)を対アルデ
ヒド1重量%添加し、撹拌しながら85℃で2−5時間
反応する。
Example 1゜ 100 # of anhydrous isobutyraldehyde (isobutyraldehyde: 99.85% by weight, water: 0.03% by weight, isobutyric acid: 0.12% by weight) was placed in a reactor, and barium oxide (BaO) was added as a catalyst. (manufactured by Wako Junkei Co., Ltd.) was added in an amount of 1% by weight based on the aldehyde, and the mixture was reacted at 85° C. for 2 to 5 hours with stirring.

反応後、反応液を室温まで冷却し、ついで反応液からp
過によシ触媒を分離したのち、F液を(5) ガスクロマトグラフィーにより分析した結果は次の通シ
After the reaction, the reaction solution was cooled to room temperature, and then p was removed from the reaction solution.
After separating the peroxide catalyst, the F solution was analyzed by gas chromatography (5).The results are as follows.

イソブチルアルデヒドの反応率:s2.3%2、2.4
− )ジメチル−1,3−ベンタンジオールモノインブ
チレートへの選択率:94.9%実施例2゜ 反応器に含水イソブチルアルデヒド(イソブチルアルデ
ヒド794.48重量%、水分:2重量%、イソ酪酸:
1.522重量%を100g入れ、触媒としてBa、o
 (和光紬薬M)を対アルデヒド3重量%添加し、攪拌
しながら120℃で1.5時間反応する。以下実施例1
と同様にして次の結果を得た。
Reaction rate of isobutyraldehyde: s2.3%2, 2.4
- ) Selectivity to dimethyl-1,3-bentanediol monoimbutyrate: 94.9% Example 2 In a reactor, hydrated isobutyraldehyde (794.48% by weight of isobutyraldehyde, water: 2% by weight, isobutyric acid :
Add 100g of 1.522% by weight, and use Ba, O as a catalyst.
(Wako Tsumugi Yaku M) was added in an amount of 3% by weight based on the aldehyde, and the mixture was reacted at 120° C. for 1.5 hours with stirring. Example 1 below
In the same way, we obtained the following results.

イソブチルアルデヒドの反応率:80%2.2.4−)
サメチル−1,3−ベンタンジオールモノイソブチレー
トへの選択率:90.0%(6)
Reaction rate of isobutyraldehyde: 80% 2.2.4-)
Selectivity to samethyl-1,3-bentanediol monoisobutyrate: 90.0% (6)

Claims (1)

【特許請求の範囲】 アルカリ土類金属酸化物の存在下に、 (式中、R1およびR2は同−又は異なって炭素数1−
5のアルキル基を表わす。)で表わされるアルデヒドか
ら 一般式(If) OHR。 (式中、R1およびR2は前記と同意義全表わt。)で
表わされるグリコールモノエステルを製造する方法。
[Claims] In the presence of an alkaline earth metal oxide,
5 represents an alkyl group. ) from the aldehyde represented by the general formula (If) OHR. A method for producing a glycol monoester represented by the formula (wherein R1 and R2 have the same meanings as above).
JP56163908A 1981-10-14 1981-10-14 Preparation of glycol monoester Pending JPS5865245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56163908A JPS5865245A (en) 1981-10-14 1981-10-14 Preparation of glycol monoester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56163908A JPS5865245A (en) 1981-10-14 1981-10-14 Preparation of glycol monoester

Publications (1)

Publication Number Publication Date
JPS5865245A true JPS5865245A (en) 1983-04-18

Family

ID=15783106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56163908A Pending JPS5865245A (en) 1981-10-14 1981-10-14 Preparation of glycol monoester

Country Status (1)

Country Link
JP (1) JPS5865245A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215020B1 (en) 1998-06-30 2001-04-10 Eastman Chemical Company Basic clay catalyst for the production of pentylglycol monoesters
US6632959B2 (en) 1997-08-07 2003-10-14 Chisso Corporation Basic catalysts and process for producing carbonyl compound derivatives

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632959B2 (en) 1997-08-07 2003-10-14 Chisso Corporation Basic catalysts and process for producing carbonyl compound derivatives
US6215020B1 (en) 1998-06-30 2001-04-10 Eastman Chemical Company Basic clay catalyst for the production of pentylglycol monoesters
US6794325B1 (en) 1998-06-30 2004-09-21 Eastman Chemical Company Basic clay catalyst for the production of glycol monoester

Similar Documents

Publication Publication Date Title
HU198437B (en) Process for producing mono- or bis-carbonyl-compounds
US3342858A (en) Preparation of alkoxy-alkanoic acids by the oxidation of alkoxy-alkanols
JPS58159432A (en) Preparation of branched dimerized alcohol
JP2001190954A (en) Palladium catalyst and manufacturing method of ether
JPS5929180B2 (en) Method for producing glycolic acid
JPS5865245A (en) Preparation of glycol monoester
US3972943A (en) Process for preparing alkaliacetylacetonates
JPH0315619B2 (en)
US3238261A (en) Piperitenone process
JP4048578B2 (en) Base catalyst and method for producing carbonyl compound derivative
JP3237541B2 (en) Reduction method of aldehyde or ketone
SU1567565A1 (en) Method of obtaining 1-chlor-4-methylpentan 2-ol
JPH062716B2 (en) Method for producing aromatic secondary amino compound
JPH0228583B2 (en)
JPH0546253B2 (en)
JPS59157039A (en) Production of xylylene glycol
JPS647977B2 (en)
JPS60139634A (en) Production of thymol
JPS6087281A (en) Preparation of dioxanetriol
JPH08119904A (en) Production of lactic acid ester
JPS5933569B2 (en) Method for producing O-alkoxy-P-allylphenol
JP2005060371A (en) Method for producing pyridylethylthio compound, method for producing modified ion-exchanger and bisphenol comound
JPH0791253B2 (en) Method for producing ethylene cyanohydrin
JPH0153273B2 (en)
SU620472A1 (en) Method of obtaining allylvinyl ester