JPH0791253B2 - Method for producing ethylene cyanohydrin - Google Patents

Method for producing ethylene cyanohydrin

Info

Publication number
JPH0791253B2
JPH0791253B2 JP62317448A JP31744887A JPH0791253B2 JP H0791253 B2 JPH0791253 B2 JP H0791253B2 JP 62317448 A JP62317448 A JP 62317448A JP 31744887 A JP31744887 A JP 31744887A JP H0791253 B2 JPH0791253 B2 JP H0791253B2
Authority
JP
Japan
Prior art keywords
ech
bce
catalyst
water
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62317448A
Other languages
Japanese (ja)
Other versions
JPH01160949A (en
Inventor
将実 猪俣
兼光 深山
明 井樋
淳良 山内
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP62317448A priority Critical patent/JPH0791253B2/en
Publication of JPH01160949A publication Critical patent/JPH01160949A/en
Publication of JPH0791253B2 publication Critical patent/JPH0791253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエチレンシアンヒドリン(以下、ECHと略記す
る。)の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing ethylene cyanohydrin (hereinafter abbreviated as ECH).

より詳しくは、イオン交換樹脂触媒の存在下、アクリロ
ニトリルを水で水和・シアノエチル化し、更に強塩基性
触媒を用い、ビスシアノエチルエーテル(以下、BCEと
略記する。)を減圧下、熱分解することにより、ECHを
製造する方法に関するものである。
More specifically, in the presence of an ion exchange resin catalyst, acrylonitrile is hydrated and cyanoethylated with water, and a strongly basic catalyst is used to thermally decompose biscyanoethyl ether (hereinafter abbreviated as BCE) under reduced pressure. To a method of manufacturing ECH.

ECHは、界面活性剤原料及び有機合成の中間体として、
有用な3−アミノプロパノールの水素化原料に用いられ
る。
ECH is a raw material for surfactants and an intermediate in organic synthesis.
Used as a useful feedstock for hydrogenation of 3-aminopropanol.

〔従来の技術〕[Conventional technology]

ECHを製造する方法については、エチレンクロリヒド
リンとシアン化アルカリとを反応させる方法、エチレ
ンオキサイドとシアン化水素をアルカリ触媒の存在下、
反応させる方法及び、アクリロニトリル(以下、ANと
略記する。)の水和法(USP 3,024,267)等が従来から
知られている。
Regarding the method for producing ECH, a method of reacting ethylene chlorhydrin with an alkali cyanide, ethylene oxide and hydrogen cyanide in the presence of an alkali catalyst,
A method of reacting, a hydration method of acrylonitrile (hereinafter abbreviated as AN) (USP 3,024,267) and the like have been conventionally known.

一方、BCEの触媒による熱分解方法は、蟻酸ナトリウ
ム等の弱塩基性触媒を用い、195〜210℃で熱分解を行い
ANを得る方法(USP 2,832,798)及び、酢酸塩系の弱
塩基性触媒を用い、140〜160℃で熱分解を行い、ANと共
にECHを得る方法(特開昭58−185550号)が知られてい
るに過ぎない。
On the other hand, the thermal decomposition method with BCE catalyst uses a weak basic catalyst such as sodium formate to perform thermal decomposition at 195-210 ℃.
A method for obtaining AN (USP 2,832,798) and a method for obtaining ECH together with AN by thermally decomposing at 140 to 160 ° C. using an acetate-based weakly basic catalyst (JP-A-58-185550) are known. I'm just there.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前記の従来法の、はシアン化アルカリ及びシアン化
水素が非常に大きな毒性を有するため、取扱いが極めて
危険である。またのANの水和法によるECHの合成にお
いては、高濃度ANの仕込み下では、ANの重合及びBCEの
生成が大きな比重を占め、高収率でECHを製造すること
は困難である。
The above-mentioned conventional method is extremely dangerous to handle because alkali cyanide and hydrogen cyanide have extremely great toxicity. In the synthesis of ECH by the hydration method of AN, polymerization of AN and formation of BCE occupy a large specific gravity under the preparation of high-concentration AN, and it is difficult to produce ECH in high yield.

一方、のBCEの蟻酸ナトリウム触媒の熱分解では、ECH
が殆ど生成していない。またのBCEの酢酸系触媒を用
いた熱分解法では、熱分解温度が140〜150℃と高く触媒
作用が低いため、留出液中に原料BCEが共沸してくると
いう欠点を有する。
On the other hand, in the thermal decomposition of BCE sodium formate catalyst, ECH
Is hardly generated. Further, in the thermal decomposition method of BCE using an acetic acid-based catalyst, the thermal decomposition temperature is as high as 140 to 150 ° C. and the catalytic activity is low, so that there is a drawback that the raw material BCE is azeotroped in the distillate.

〔問題点を解決するための手段および作用〕[Means and Actions for Solving Problems]

本発明者らは、ANを原料にしてECHを工業的に製造する
うえで、温和な条件で高収率、且つ高純度でECHを製造
することを目的に触媒及びプロセスの探索研究を鋭意行
った。
The inventors of the present invention have diligently conducted a search for a catalyst and a process in order to industrially produce ECH using AN as a raw material, with the objective of producing ECH with high yield and high purity under mild conditions. It was

その結果、先ず初めに強塩基性イオン交換樹脂の存在下
に、ANを所定量の水により水和・シアノエチル化し、高
収率でBCEを製造する。それから反応液中の水相をリサ
イクル用に分離し、残液のAN相に強塩基性触媒を所定量
添加し、水、AN及びECHを減圧下、留出させながら、BCE
の熱分解を行う操作プロセスによって、高収率、且つ高
純度でECHを得ることができることを見出し、更に研究
を重ね本発明を完成させるに至った。
As a result, first, in the presence of a strongly basic ion exchange resin, AN is hydrated and cyanoethylated with a predetermined amount of water to produce BCE in high yield. Then, the water phase in the reaction solution is separated for recycling, a predetermined amount of a strongly basic catalyst is added to the AN phase of the remaining solution, and BCE is added while distilling water, AN and ECH under reduced pressure.
It was found that ECH can be obtained in a high yield and a high purity by the operation process of pyrolyzing the above, and further studies were conducted to complete the present invention.

即ち、本発明は、 強塩基性イオン交換樹脂の存在下、アクリロニトリルを
1.1〜3モル倍の水で水和・シアノエチル化して得られ
た反応液のアクリロニトリル相に、強塩基性触媒を添加
し、熱分解することを特徴とするエチレンシアンヒドリ
ンの製造方法 である。
That is, the present invention, in the presence of a strongly basic ion exchange resin, acrylonitrile
A method for producing ethylene cyanohydrin, characterized in that a strong basic catalyst is added to the acrylonitrile phase of the reaction solution obtained by hydration / cyanoethylation with 1.1 to 3 moles of water to thermally decompose it.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明に用いられるANは、工業的に製造されているもの
を使用することができる。
The AN used in the present invention may be industrially manufactured one.

また、本発明に用いられるANの水和・シアノエチル化触
媒は、架橋性ポリビニルベンジルトリメチルアンモニウ
ム塩型の強塩基性イオン交換樹脂であり、例えばレバチ
ットM−500、アンバーライトIRA−400、ダウエックスI
x8、ダイヤイオンSA−10、ドウライトA−109等のゲル
型樹脂及びレバチットMP−500、アンバーライトIRA−40
2、ダウエックスMSA−1、ダイヤイオンPA−312、ドウ
ライトA−161等のマクロポーラス型樹脂が好ましい。
Further, the hydration / cyanoethylation catalyst of AN used in the present invention is a crosslinkable polyvinylbenzyltrimethylammonium salt type strong basic ion exchange resin, for example, Levatit M-500, Amberlite IRA-400, Dowex I.
x8, Diaion SA-10, Dowlite A-109, etc. gel type resin and Levacit MP-500, Amberlite IRA-40
2, macroporous resins such as Dowex MSA-1, Diaion PA-312, Dowlite A-161 are preferred.

強塩基性イオン交換樹脂は、イオン形がOH形になってい
ないものは、常法に従い水酸化アルカリ等で再生し、純
水での洗浄を行った後、使用に供される。
If the ionic form of the strongly basic ion exchange resin is not in the OH form, it is regenerated with an alkali hydroxide or the like according to a conventional method, washed with pure water, and then used.

本発明における触媒の使用量は、ANに対し1〜10重量%
の範囲で用いるが、この範囲外においても、特に問題は
なく、使用量に応じ、反応時間が相対的に変化する。
The amount of the catalyst used in the present invention is 1 to 10% by weight with respect to AN.
However, there is no particular problem even outside this range, and the reaction time relatively changes depending on the amount used.

また、本発明における水和・シアノエチル化反応の温度
は、下限40℃以上から上限80℃までの範囲であるが、上
限については強塩基性イオン交換樹脂の耐熱温度が商品
によって、多少異なっているため、上限温度は触媒の耐
熱温度とするのが好ましい。
Further, the temperature of the hydration / cyanoethylation reaction in the present invention is in the range of lower limit of 40 ° C. or higher to upper limit of 80 ° C., but the upper limit of the heat resistance temperature of the strongly basic ion exchange resin is slightly different depending on the product. Therefore, the upper limit temperature is preferably set to the heat resistant temperature of the catalyst.

本発明における水は、イオン交換水、蒸留水のどちらで
も使用可能であるが、好ましくは蒸留水、特に強塩基性
イオン交換樹脂の触媒特性を低下させないようにするた
めに、イオン交換水を蒸留した水を使用するのが良い。
The water in the present invention may be either ion-exchanged water or distilled water, but is preferably distilled water, in particular ion-exchanged water is distilled so as not to deteriorate the catalytic properties of the strongly basic ion-exchange resin. It is better to use fresh water.

本発明の第1段目のANの水和・シアノエチル化におい
て、アクリルアマイド(以下、AAMと略記する。)、ポ
リマーへの副反応を極力抑え、BCEを高収率で得る方法
の重要なポイントは、水の仕込量である。
In the first step of hydration / cyanoethylation of AN of the present invention, an important point of a method for obtaining BCE in a high yield by suppressing side reactions to acrylic amide (hereinafter abbreviated as AAM) and a polymer as much as possible Is the charged amount of water.

水の仕込量は、ANに対し1.1〜3モル比の範囲、好まし
くは1.2〜2モル比の範囲であるのが良い。
The amount of water charged is in the range of 1.1 to 3 molar ratio with respect to AN, and preferably in the range of 1.2 to 2 molar ratio.

水の仕込量がANに対し1.1モル比未満では、ANの重合が
かなり多く現れる。一方、3モル比を超えると、生成す
るBCEが水相中に溶解する量が大きくなるに伴い、AN相
中のBCE濃度が低下する。また反応器の容積効率が徐々
に低下するなどの不利益につながる。
If the amount of water charged is less than 1.1 mol ratio with respect to AN, the polymerization of AN appears considerably. On the other hand, when the molar ratio exceeds 3, the BCE concentration in the AN phase decreases as the amount of BCE produced that dissolves in the aqueous phase increases. In addition, the volumetric efficiency of the reactor gradually decreases, which is disadvantageous.

本発明においては、第1段目の水和・シアノエチル化後
の反応液に含まれるBCEを最も効率的に、且つ経済的
に、第2段目の熱分解工程に移行させることを鋭意検討
した。その結果、第1段目の水和・シアノエチル化後の
二相分離した反応液に対し、下層の水相をリサイクル反
応用に分離し、上層のAN相を第2段目の熱分解工程に供
する方法を見出した。
In the present invention, it was earnestly studied to transfer the BCE contained in the reaction solution after the first stage hydration / cyanoethylation to the second stage thermal decomposition step most efficiently and economically. . As a result, the lower aqueous phase was separated for the recycling reaction, and the upper AN phase was used for the second thermal decomposition step, for the two-phase separated reaction liquid after the first stage hydration / cyanoethylation. I found a way to serve.

強塩基性イオン交換樹脂の全量と、AN、ECH、BCE、AAM
等の少量が含まれる水相は、そのまま再び第1段目の反
応に供される。
Total amount of strongly basic ion exchange resin, AN, ECH, BCE, AAM
The aqueous phase containing a small amount such as is used for the first-stage reaction again.

本発明においては、第1段目の水和・シアノエチル化の
反応液より水相を分離し、BCEに富むAN相を第2段目で
強塩基性触媒の存在下、熱分解する。
In the present invention, the aqueous phase is separated from the first stage hydration / cyanoethylation reaction solution, and the BCE-rich AN phase is pyrolyzed in the second stage in the presence of a strongly basic catalyst.

使用される強塩基性触媒は、例えば、水酸化リチウム、
水酸化ナトリウム及び水酸化カリウム等のアルカリ金属
水酸化物、燐酸三リチウム、燐酸三ナトリウム、燐酸三
カリウム等の燐酸三アルカリ金属塩、またはこれらの一
種もしくは二種以上の混合物に、例えば、燐酸二リチウ
ム、燐酸二ナトリウム、燐酸二カリウム等の燐酸二アル
カリ金属塩と、メタ硼酸リチウム、メタ硼酸ナトリウ
ム、メタ硼酸カリウム等のメタ硼酸アルカリ金属塩とお
よび、四硼酸リチウム、四硼酸ナトリウム、四硼酸カリ
ウム等の四硼酸アルカリ金属塩等の塩基性硼酸アルカリ
金属塩とから選ばれる一種もしくは二種以上を混合した
触媒が好ましい。
The strongly basic catalyst used is, for example, lithium hydroxide,
Alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, trilithium phosphate, trisodium phosphate, tripotassium phosphate such as tripotassium phosphate, or a mixture of one or more of these, such as diphosphate Dialkali metal phosphates such as lithium, disodium phosphate and dipotassium phosphate; lithium metaborate, sodium metaborate and potassium metaborate such as potassium metaborate; lithium tetraborate, sodium tetraborate and potassium tetraborate. A catalyst prepared by mixing one or two or more kinds selected from basic alkali metal borate such as alkali metal tetraborate and the like is preferable.

触媒の使用量については、BCEに対し1×10-5〜6.0×10
-3モルの範囲、好ましくは1×10-4〜2.5×10-3モル比
の範囲が良い。多すぎると、ECHから更にANへの分解が
逐次的に起き易くなる。一方、少なすぎると、熱分解速
度は相対的に遅くなる。
The amount of catalyst used is 1 × 10 -5 to 6.0 × 10 relative to BCE.
-3 mol range, preferably a range of 1 x 10 -4 to 2.5 x 10 -3 mol ratio. If it is too large, the decomposition of ECH into AN becomes more likely to occur sequentially. On the other hand, if it is too small, the thermal decomposition rate becomes relatively slow.

本発明において、第1段目の水相分離後のBCEに富むAN
相への触媒の添加時期は、未反応のAN及び生成物のECH
を留出させる前であるのが好ましい。
In the present invention, the BCE-rich AN after the first-stage aqueous phase separation
The catalyst was added to the phase at the unreacted AN and ECH of the product.
Is preferably before distilling.

未反応のAN、水及び生成物のECHを高濃度のBCE溶液から
大部分留出した時点で、触媒を添加する方法では、AN、
水及びECHが留出しにくく、この操作をする段階で長時
間を要すると共に、BCEから2分子のANへの分解が起き
る。
When unreacted AN, water, and ECH of the product were mostly distilled from the high-concentration BCE solution, the method of adding the catalyst was
It is difficult to distill water and ECH, and it takes a long time to perform this operation, and decomposition of BCE into 2 molecules of AN occurs.

本発明における熱分解用の触媒は、直接反応液に添加し
ても差し支えないが、操作性を良くするために、水もし
くはメチルアルコール、エチルアルコール、イソプロピ
ルアルコール等の低級アルコールに触媒を溶解させ、触
媒溶液として反応液に添加することができる。
The catalyst for thermal decomposition in the present invention may be added directly to the reaction solution, but in order to improve the operability, the catalyst is dissolved in water or a lower alcohol such as methyl alcohol, ethyl alcohol or isopropyl alcohol, It can be added to the reaction solution as a catalyst solution.

本発明における熱分解は、BCEを高温、減圧下、ANとECH
に分解させ、速やかに生成物を留出させることが肝要で
ある。そのため本発明の方法においては、熱分解温度は
通常75〜125℃の範囲で行われ、3〜10mmHgの減圧下で
分解生成物であるANとECHを留出させる。75℃以下で
は、熱分解が遅く、125℃以上では、ECHのANへの分解等
が大きくなり不利となる。
Pyrolysis in the present invention, BCE at high temperature under reduced pressure, AN and ECH
It is essential that the product be decomposed into water and the product be immediately distilled. Therefore, in the method of the present invention, the thermal decomposition temperature is usually in the range of 75 to 125 ° C., and the decomposition products AN and ECH are distilled off under a reduced pressure of 3 to 10 mmHg. Below 75 ° C, thermal decomposition is slow, and above 125 ° C, the decomposition of ECH into AN becomes large, which is disadvantageous.

熱分解し、留出したECHは室温捕集器等に、また、ANは
ドライアイス−メチルアルコール等で冷却された定温捕
集器等に捕集される。
The thermally decomposed and distilled ECH is collected in a room temperature collector or the like, and the AN is collected in a constant temperature collector cooled with dry ice-methyl alcohol or the like.

本発明の熱分解操作においては、連続的に反応器に原料
のBCEと触媒を注入し、連続的にANとECHを留出するよう
な連続熱分解方式を選定することも十分可能である。
In the thermal cracking operation of the present invention, it is also possible to sufficiently select a continuous thermal cracking method in which BCE as a raw material and a catalyst are continuously injected into a reactor and AN and ECH are continuously distilled.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.

実施例1 200mlの三つ口丸底フラスコにAN 75.0g(1.40モル)、
水30.2g(1.68モル)、レバチットMP−500 3gを仕込ん
だ後、温度50℃、撹拌速度450rpmで8時間反応させた。
反応液を冷却し、AN相88.5g、水相15.1gを得た。この両
相を分析した結果は表1のとおりであった。
Example 1 75.0 g (1.40 mol) of AN in a 200 ml three neck round bottom flask,
After charging 30.2 g of water (1.68 mol) and 3 g of Levatit MP-500, reaction was carried out at a temperature of 50 ° C. and a stirring speed of 450 rpm for 8 hours.
The reaction solution was cooled to obtain 88.5 g of AN phase and 15.1 g of aqueous phase. The results of analyzing both phases are shown in Table 1.

よって、AN転化率は70.6%、BCE収率は62.6%であっ
た。
Therefore, the AN conversion was 70.6% and the BCE yield was 62.6%.

この下相の水相と触媒を除去した後、AN相に5重量%水
酸化カリウム水溶液0.36g(0.32ミリモル)と燐酸二カ
リウム0.12g(0.69ミリモル)を添加し、圧力5mmHg、温
度72〜100℃で4.4時間熱分解蒸留を行った。留出液とし
て純度98.4重量%のECHが28.5gと純度93.2重量%のANが
51.5g得られた。ECHの熱分解蒸留収率は、仕込みECH及
びBCEに対し80.3%であった。
After removing the lower aqueous phase and the catalyst, 0.36 g (0.32 mmol) of a 5 wt% potassium hydroxide aqueous solution and 0.12 g (0.69 mmol) of dipotassium phosphate were added to the AN phase, and the pressure was 5 mmHg and the temperature was 72-100. Pyrolysis distillation was carried out at ℃ for 4.4 hours. As distillate, 28.5 g of ECH with a purity of 98.4% by weight and AN with a purity of 93.2% by weight were used.
51.5 g was obtained. The pyrolysis distillation yield of ECH was 80.3% based on the charged ECH and BCE.

実施例2 実施例1において、BCEの合成段階において、水の仕込
量を50.4g(2.8モル)に、また温度を68℃に変えること
以外、全く実施例1と同じ仕込みで同様に反応させた。
その結果、AN相67.0g、水相56.8gを得た。両相の分析結
果は表2のとおりであった。
Example 2 In Example 1, except that the amount of water charged was changed to 50.4 g (2.8 mol) and the temperature was changed to 68 ° C. in the BCE synthesis stage, the same reaction was performed as in Example 1. .
As a result, 67.0 g of AN phase and 56.8 g of aqueous phase were obtained. Table 2 shows the analysis results of both phases.

よって、AN転化率は83.6%、BCE収率は68.1%であっ
た。
Therefore, the AN conversion was 83.6% and the BCE yield was 68.1%.

この反応液より、触媒及び水相をリサイクル用に分離し
た。次にAN相に5.0重量%の水酸化カリウム水溶液0.20g
(0.178ミリモル)と燐酸二カリウム0.06g(0.48ミリモ
ル)を添加し、実施例1と同様に熱分解蒸留を行った。
その結果、留出液として純度98.61重量%のECHが23.2g
と純度95.4重量%のANが31.0g得られた。ECHの熱分解蒸
留収率は、仕込ECHとBCEに対し85.5%であった。
From this reaction liquid, the catalyst and the aqueous phase were separated for recycling. Next, in the AN phase, 0.20 g of 5.0 wt% potassium hydroxide aqueous solution
(0.178 mmol) and 0.06 g (0.48 mmol) of dipotassium phosphate were added, and pyrolytic distillation was carried out in the same manner as in Example 1.
As a result, 23.2 g of ECH with a purity of 98.61% by weight was obtained as a distillate.
And 31.0 g of AN having a purity of 95.4% by weight was obtained. The pyrolysis distillation yield of ECH was 85.5% based on the charged ECH and BCE.

〔発明の効果〕〔The invention's effect〕

本発明におけるエチレンシアンヒドリンの製造方法は、
水和・シアノエチル化反応及び熱分解反応に使用される
触媒が入手容易、且つ高活性であると共に、プロセスが
非常に合理的に組み立てられているために、極めて効率
的、且つ経済的な製造方法である。
The method for producing ethylene cyanohydrin in the present invention is
An extremely efficient and economical production method because the catalysts used for the hydration / cyanoethylation reaction and the thermal decomposition reaction are easily available and highly active, and the process is very reasonably assembled. Is.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】強塩基性イオン交換樹脂の存在下、アクリ
ロニトリルを1.1〜3モル倍の水で水和・シアノエチル
化して得られた反応液のアクリロニトリル相に、強塩基
性触媒を添加し、熱分解することを特徴とするエチレン
シアンヒドリンの製造方法。
1. A strong basic catalyst is added to the acrylonitrile phase of a reaction solution obtained by hydrating acrylonitrile with 1.1 to 3 moles of water in the presence of a strongly basic ion exchange resin and cyanoethylation, A method for producing ethylene cyanohydrin, which comprises decomposing.
JP62317448A 1987-12-17 1987-12-17 Method for producing ethylene cyanohydrin Expired - Lifetime JPH0791253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317448A JPH0791253B2 (en) 1987-12-17 1987-12-17 Method for producing ethylene cyanohydrin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317448A JPH0791253B2 (en) 1987-12-17 1987-12-17 Method for producing ethylene cyanohydrin

Publications (2)

Publication Number Publication Date
JPH01160949A JPH01160949A (en) 1989-06-23
JPH0791253B2 true JPH0791253B2 (en) 1995-10-04

Family

ID=18088334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317448A Expired - Lifetime JPH0791253B2 (en) 1987-12-17 1987-12-17 Method for producing ethylene cyanohydrin

Country Status (1)

Country Link
JP (1) JPH0791253B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6462219B2 (en) * 2000-01-25 2002-10-08 Roche Vitamins, Inc. Process for producing 3-hydroxypropionitrile
WO2003087041A1 (en) * 2002-04-18 2003-10-23 Dsm Ip Assets B.V. Continuous process for the manufacture of 3-hydroxy propionitrile
CN102309985A (en) * 2011-10-12 2012-01-11 大连理工大学 Highly active catalyst used for hydrosilation reaction of aldehyde and trimethylsilyl cyanide

Also Published As

Publication number Publication date
JPH01160949A (en) 1989-06-23

Similar Documents

Publication Publication Date Title
JP5860039B2 (en) Process for the preparation of tetrahydropyranol substituted at the 2-position
EP0042412A1 (en) Method of synthesizing fluoromethylhexafluoroisopropyl ether.
KR100483787B1 (en) Process for producing ether compounds
EP3015446B1 (en) Method for producing allyl alcohol and allyl alcohol produced thereby
CN101977922A (en) Method for preparation of anhydrosugar ethers
JPH0791253B2 (en) Method for producing ethylene cyanohydrin
JPS5929180B2 (en) Method for producing glycolic acid
US4608443A (en) Method for the preparation of 1,4-butandial
JPS60149535A (en) Alcohol continuous manufacture
CN104030922A (en) Method for preparing dimethyl n-butyl malonate
JP3818704B2 (en) Method for producing oligoglycerin
CN112028747A (en) Co-production process of hexafluoroisopropyl methyl ether and pentafluoropropionic acid
JPH0745447B2 (en) Method for recovering N-vinylformamide
KR100346498B1 (en) Manufacturing method of lactic acid ester
KR101209572B1 (en) Potassium organocarbonyltrifluoroborate derivatives and method for producing the same
CN117964469A (en) Preparation method and application of 4,4' -difluorobenzophenone
JPH0228583B2 (en)
CN117304068A (en) Preparation method for synthesizing 2, 2-diisopropyl propionitrile from 2, 3-dimethylbutyramide
JPS62164656A (en) Production of cyanoisophorone
JPH0374381A (en) Production of 1,3-dioxolane
JPH06157574A (en) Method of producing 1,2-5,6-diacetone-d-glucose
CN102060813B (en) Method for synthesizing allyl glycidyl ether from medical waste liquid
JPS5865245A (en) Preparation of glycol monoester
JPS6141507B2 (en)
JPS5925337A (en) Preparation of isoprene