JPS5862825A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS5862825A
JPS5862825A JP56160710A JP16071081A JPS5862825A JP S5862825 A JPS5862825 A JP S5862825A JP 56160710 A JP56160710 A JP 56160710A JP 16071081 A JP16071081 A JP 16071081A JP S5862825 A JPS5862825 A JP S5862825A
Authority
JP
Japan
Prior art keywords
layer
magnetic
film
recording medium
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56160710A
Other languages
Japanese (ja)
Inventor
Kenji Yazawa
健児 矢沢
Kenichi Baba
馬場 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP56160710A priority Critical patent/JPS5862825A/en
Publication of JPS5862825A publication Critical patent/JPS5862825A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7369Two or more non-magnetic underlayers, e.g. seed layers or barrier layers

Abstract

PURPOSE:To efficiently obtain a magnetic recording medium for high-density recording by the vertical vapor-deposition of an alloy by forming an amorphous continuous film of Si or an Si compound, a discontinuous islandlike bismuth layer and a magnetic thin film of a Co-Ni alloy having a specified composition on a nonmagnetic support in order. CONSTITUTION:A continuous film 2 of Si or an Si compound such as SiO2, Si3N4 or SiC is formed on the surface of a nonmagnetic support 1 in 50-500Angstrom thickness by vapor deposition or other method. A Bi layer 3 is formed on the film 2 in 10-1,000Angstrom thickness, and an Ni-Co alloy layer 4 contg. 30-50atomic% Ni is formed on the layer 3 in 250-500Angstrom thickness by vapor deposition in a high vacuum without requiring a diagonal vapor deposition method. The magnetic layer 4 is provided with sufficient coercive force and square ratio, and a magnetic recording medium suitable for high-density recording is obtd. with high productivity. Since the layers 2, 3 can be vapor-deposited at low boiling points, the magnetic layer can be formed even on a film support with relatively low heat resistance such as a polyester film without causing thermal deformation, etc.

Description

【発明の詳細な説明】 本発明は磁気記録媒体、49に金属磁性薄膜より成る磁
性層を有する磁気記録媒体に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording medium having a magnetic layer 49 made of a metal magnetic thin film.

金属薄膜磁性層による磁気記録媒体は、磁性層にバイン
ダーが混入されないことから充填密度の向上をはかるこ
とができ、高密度記録に好適で脚光を浴びるに至ってい
る。
Magnetic recording media with metal thin film magnetic layers have been attracting attention because they are suitable for high-density recording and can improve packing density because no binder is mixed into the magnetic layer.

この種、磁気記録媒体の金属磁性層は、コパル) Co
の単体金属、或いはこれにその耐蝕性を向上させるため
のニッケルN1や、クロムCrを添加したCo−Ni合
金、或いはCo −Cr合金より構成される。
The metal magnetic layer of this type of magnetic recording medium is made of copal) Co
, or a Co--Ni alloy to which nickel N1 or chromium Cr is added to improve its corrosion resistance, or a Co--Cr alloy.

このような磁気記録媒体において、高い抗磁力を得るに
、その磁性層の形成に当り、上述した金属を斜め蒸着す
ればよいことが知られている。しかしながら、このよう
な方法による場合、その蒸着方向を被蒸着面に対して4
0°−80’に傾むける必l!があることから蒸着効率
が低く生産性に問題がある。
It is known that in order to obtain a high coercive force in such a magnetic recording medium, the above-mentioned metal may be obliquely deposited when forming the magnetic layer. However, when using such a method, the direction of the vapor deposition is set at 4 degrees with respect to the surface to be vaporized.
It must be tilted to 0°-80'! Because of this, vapor deposition efficiency is low and productivity is problematic.

しかしながら、このような斜め蒸着によらずに高い抗磁
力を有する磁性膜を作製することは容易ではなく1例え
ば結晶磁気異方性が大きく、高抗磁力が得られると期待
される例えばCOを単に蒸着してもその抗磁力は1oo
oe以下であり、磁気記録媒体としては不適轟である。
However, it is not easy to produce a magnetic film with high coercive force without using such oblique deposition. Even if it is vapor deposited, its coercive force is 1oo
oe or less, which is inappropriate for use as a magnetic recording medium.

これに比し1本発明者は、非磁性支持体上に不連続にビ
スマスB1を蒸着し、これの上に金sa性膜1例えばC
oを蒸着することによって高抗磁力の磁性層を得ること
ができるようにした磁気記録媒体を見出すに至ったが、
本発明においては更に安定して確実に、非磁性支持体の
構成材料に依存することなく高い抗磁力の金属磁性膜な
有する磁気記録媒体を提供するものである。
In contrast, the present inventor vapor-deposited bismuth B1 discontinuously on a nonmagnetic support, and deposited bismuth B1 on top of this.
We have discovered a magnetic recording medium in which a magnetic layer with high coercive force can be obtained by vapor-depositing o.
The present invention provides a magnetic recording medium having a metal magnetic film having a high coercive force, which is more stable and reliable, regardless of the constituent material of the nonmagnetic support.

すなわち、本発明においては、第1図に示すように非磁
性支持体(1)上に、シリコン8itたはSiの化合物
の非晶質連続膜(2)を被着し、このII (2)上に
不連続な島状の87層(3)を被着形成し、これの上に
磁性層としての金属磁性膜Jl[(4)として、特にコ
バルトCローニッケルNi合金より成り、そのNiの量
が30〜50原子%の組成とされた金属層によって構成
する。このCo−Ni合金より成る金属磁性薄膜(4)
は100X以上〜1ooo 1以下、好ましくは250
層以上〜500X以下例えば300Xとする。因みにこ
の膜厚が100久より薄いと磁化量が充分にとれず、ま
た1000Xを越えると抗磁力He及び角型比Rsが充
分にとれないことが認められた。なお、この膜厚はこの
層の磁化量から算出した膜厚である。
That is, in the present invention, as shown in FIG. 1, an amorphous continuous film (2) of silicon 8it or Si compound is deposited on a nonmagnetic support (1), A discontinuous island-like 87 layer (3) is deposited on top, and a metal magnetic film Jl (4) is formed as a magnetic layer on top of the discontinuous island-like 87 layer (3). It is constituted by a metal layer having a composition of 30 to 50 atomic %. Metal magnetic thin film (4) made of this Co-Ni alloy
is 100X or more to 1ooo 1 or less, preferably 250
500X or less, for example, 300X. Incidentally, it has been found that if this film thickness is thinner than 100X, sufficient magnetization cannot be obtained, and if it exceeds 1000X, sufficient coercive force He and squareness ratio Rs cannot be obtained. Note that this film thickness is calculated from the amount of magnetization of this layer.

非磁性支持体(1)は、磁気記録媒体の使用目的に適し
た任意の材料、例えばポリエステルフィルムを始めとし
てポリイミドフィルム、或いはAQ板、ガラス板、セラ
ミック板等を用い得る。
The non-magnetic support (1) may be any material suitable for the purpose of use of the magnetic recording medium, such as polyester film, polyimide film, AQ plate, glass plate, ceramic plate, etc.

この非磁性支持体(1)上に、順次被着するSiまたは
S!化合物は、SI単体の膜、或いは8i02.8i3
N4、SiC等のStの化合物膜をsol〜5ool。
Si or S! is sequentially deposited on this non-magnetic support (1)! The compound is a single SI film or 8i02.8i3
St compound film such as N4 and SiC is sol~5oool.

例えばzoo、ts度の厚さにこれが連続膜となるよう
に蒸着、スパッタ等によって形成し得る。ここに非晶質
連続膜(2)の厚さを50X〜500Xに選定すること
が望ましい理由は、50層未満では連続膜が得−くなっ
てくること、 SOO又を超えると、この膜(2)が結
晶化してくることと、媒体において非磁性部分が占める
厚さが大となり過ぎることに因る。
For example, it can be formed by vapor deposition, sputtering, etc. so as to form a continuous film to a thickness of 100 to 200 mm. The reason why it is desirable to select the thickness of the amorphous continuous film (2) from 50X to 500X is that if the thickness is less than 50 layers, it becomes difficult to obtain a continuous film, and if the thickness exceeds SOO, this film ( 2) is crystallized and the thickness occupied by the non-magnetic portion of the medium becomes too large.

また、この非晶質連続膜(2)上に形成する87層(3
)は、蒸着によって形成し得るが、この場合これが不連
続な島状の膜として形成されるためには、その蒸着に当
っての被蒸着体、すなわち非磁性支持体(1)の温度、
すなわち、いわゆる基体温度は1、:。
In addition, 87 layers (3) formed on this amorphous continuous film (2)
) can be formed by vapor deposition, but in this case, in order to form it as a discontinuous island-like film, the temperature of the object to be vaporized, that is, the non-magnetic support (1) during the vapor deposition,
That is, the so-called substrate temperature is 1:.

130℃以上で且つB1の融点以下の例えば150℃に
選ばれる。またこの87層(3)は、その平均膜厚が1
0層以上〜l0GO1以下(1tsg /rxa2〜1
00 pg/cab2)、好ましくは100X以上〜1
000X以下(16、ag /(II”〜100μg/
as” )の例えば200Xとする。但しカッコ内は平
均膜厚を1鋤2当りの出量で換算したときの値である。
The temperature is selected to be 130°C or higher and lower than the melting point of B1, for example 150°C. Moreover, the average thickness of this 87 layer (3) is 1
0 layer or more to 10GO1 or less (1tsg/rxa2 to 1
00 pg/cab2), preferably 100X or more to 1
000X or less (16, ag / (II" ~ 100 μg /
for example, 200X. However, the value in parentheses is the value when the average film thickness is converted into the amount of output per 2 plows.

第2図は本発明に適用される蒸着装置の概略を示すもの
である。同図において、aυは真空ポンプによる排気α
2によって例え□ば真空度10 〜1゜Torrとなし
た真空容器を示し、この容器αυ内に蒸発源α謙と被蒸
着体の非磁性支持体(1)が配される。
FIG. 2 schematically shows a vapor deposition apparatus applied to the present invention. In the same figure, aυ is the exhaust α by the vacuum pump
For example, □ represents a vacuum vessel having a vacuum degree of 10 to 1 Torr, and an evaporation source α and a non-magnetic support (1) for the object to be evaporated are arranged within this vessel αυ.

この非磁性支持体(1)は基板ホルダー(I!19によ
って支持され、且つ基板ホルダーαSに供給される熱媒
体αeによって所定の基板温度に保持される。蒸発源α
濁は例えば電子ビームの衝撃により加熱蒸発される。な
お蒸発源a3の蒸発は、抵抗加熱法、高周波誘導加熱法
によることもできる。又非磁性支持体αりと蒸発源α3
との間にはシャッターaηが配される。
This non-magnetic support (1) is supported by a substrate holder (I!19) and is maintained at a predetermined substrate temperature by a heating medium αe supplied to a substrate holder αS.Evaporation source α
The turbidity is heated and evaporated by, for example, bombardment with an electron beam. Note that the evaporation of the evaporation source a3 can also be performed by a resistance heating method or a high frequency induction heating method. Also, non-magnetic support α and evaporation source α3
A shutter aη is arranged between the two.

噸、上鉤では非磁性支持体上[Sf、Bj−下地層及び
Co−Ni層の3層構造とした場合であるが。
In the case of the upper hook, a three-layer structure of Sf, Bj-base layer and Co--Ni layer was used on the non-magnetic support.

必要な磁束をとるため1csi、87層及びCo−Ni
層の3層構造を基本とした磁性薄膜を多層化することも
可能である。
1csi, 87 layers and Co-Ni to obtain the necessary magnetic flux.
It is also possible to multilayer a magnetic thin film based on a three-layer structure.

次に本発明による実施例を説明する。Next, embodiments according to the present invention will be described.

実施例1 第3図に示すようにポリエステル(ポリエチレンテレフ
タレート)フィルムより成る非磁性支持体(1)上に、
これの温度、すなわち被蒸着体の基体温度150℃とし
て夫々第2図による装置を用いて、夫々電子銃加熱によ
り引の非晶質連続膜(2)を200Xの厚さに蒸着し、
これの上に不連続の島状のBi蒸着属(3)を200X
の平均膜厚に蒸着し、更にこれの上it、Co−Ni合
金磁性薄膜(4)を300Xの厚さに蒸着し、更にこれ
の上に繰返えし、200xの厚さのSi非晶質連続膜(
2)、平均膜厚が2001の不連続の島状のBi蒸着膜
(3)、 300にの厚さのCo−Ni合金磁性薄膜(
4)を夫々順次蒸着して磁気記録媒体Sを得た。
Example 1 As shown in Figure 3, on a non-magnetic support (1) made of polyester (polyethylene terephthalate) film,
Using the apparatus shown in FIG. 2 at this temperature, that is, the substrate temperature of the object to be evaporated, 150° C., an amorphous continuous film (2) was deposited to a thickness of 200× by heating with an electron gun.
On top of this, discontinuous island-shaped Bi evaporated metal (3) was placed at 200X
Then, a Co-Ni alloy magnetic thin film (4) is deposited to a thickness of 300X, and then a Co-Ni alloy magnetic thin film (4) is deposited to a thickness of 300X. quality continuous membrane (
2), a discontinuous island-shaped Bi vapor deposited film with an average thickness of 200 mm (3), a Co-Ni alloy magnetic thin film with a thickness of 300 mm (
4) were sequentially deposited to obtain a magnetic recording medium S.

この構成による媒体8において各Co−Ni磁性薄II
 (4)のNiの量t−30原子%、 4G原子%、5
0原子九に選定した媒体を作製し、夫々試料Sl−82
、B3とした。
In the medium 8 with this configuration, each Co-Ni magnetic thin II
Amount of Ni in (4) t-30 atomic%, 4G atomic%, 5
A medium with 0 atoms and 9 atoms was prepared, and each sample Sl-82
, B3.

一方、上述の冥施例において各Co−Ni磁性薄M(4
)のNiの童を0原子先、すなわちCo単体とした場合
、5原子%とした場合、10原子%とじた場合、20原
子ちとした場合、100原子%とした場合を比較のため
作製し、これらを夫々試料C1、C2、C3,C4及び
C5とした。
On the other hand, in the above-mentioned example, each Co-Ni magnetic thin M (4
) were prepared for comparison when the Ni element was set at 0 atoms, that is, Co alone, when it was set at 5 at%, when it was combined at 10 at%, when it was set at 20 atoms, and when it was set at 100 at%, These were designated as samples C1, C2, C3, C4 and C5, respectively.

そして夫々の試料の磁気特性を測定した。その結果を表
1に示す。
Then, the magnetic properties of each sample were measured. The results are shown in Table 1.

表 1 この磁気特性の測定は、振動試料型磁力針(VSM)で
測定したものであり、外部磁界は50eとした。
Table 1 The magnetic properties were measured using a vibrating sample magnetic needle (VSM), and the external magnetic field was 50e.

表1から明らかなように、Co−N五合金磁性薄膜のN
i量を30〜50原子九とするとき、抗磁力Hcは13
000eとすることができ、ここに本発明においてNi
量を30〜50原子%に特定する所以がある。
As is clear from Table 1, the N of the Co-N five-alloy magnetic thin film
When the amount of i is 30 to 50 atoms, the coercive force Hc is 13
000e, where in the present invention Ni
There is a reason why the amount is specified to 30 to 50 atomic %.

尚、各層(2)〜(4)の付着力を上げるために、その
蒸着に当り、適宜酸素の導入を行ってボンバード処理t
mすようkすることができる。
In order to increase the adhesion of each layer (2) to (4), during the vapor deposition, oxygen is appropriately introduced and bombarded.
You can do as you like.

上述したよ5)C本発明による磁気記録媒体は、斜め蒸
着によらずして高枕磁力の磁性層を得ることができるの
で、蒸着効率を高めることができ、更に、特に本発明に
よるときは、ベース、すなわち非磁性支持体の材料によ
らずKすぐれた磁気特性の媒体を得ることができた。こ
れがため、各種使用態様、目的に応じて廉価な材料によ
って支持体を構成することができる。すなわち本発明に
おいては、支持体上に非晶質、、、、層、特に非晶質層
を作り易い、81又は8ムの化合物層(2)を形′成し
たことにより、支持体の結晶学約1IPを回避でき、こ
の状態でBlの蒸着がなされ、これの上に金属磁性薄膜
Co−Nfの蒸着がなされるので、Biの不連続層によ
ってこれの上のCo−N1の配向をより効果的になすこ
とができるものと思われる。
As mentioned above, 5)C The magnetic recording medium according to the present invention can obtain a magnetic layer with high magnetic force without using oblique deposition, so that the deposition efficiency can be increased. It was possible to obtain a medium with excellent magnetic properties regardless of the material of the base, that is, the nonmagnetic support. Therefore, the support can be constructed from inexpensive materials depending on various usage modes and purposes. That is, in the present invention, an amorphous layer, especially an amorphous layer, is formed on the support, and a compound layer (2) of 81 or 8 μm is formed on the support. In this state, Bl is deposited and a metal magnetic thin film Co-Nf is deposited on top of this, so the discontinuous layer of Bi can improve the orientation of Co-N1 on top of it. It seems that this can be done effectively.

又、非磁性支持体としてポリエチレンテレフタレートの
如き比較的耐熱性に乏しい高分子フィルムを用いた場合
においても、その高分子フィルム上に先ず第1層として
低沸点例えばSi層及び用層を蒸着するものであり、こ
れら8i、Bi層蒸着に際しての蒸発の加熱パワーは少
なくて済み、高分子フィルムへの熱輻射は小さいもので
あるから高分子フィルムへの熱的影響は小さく、次いで
比較的高沸点で加熱パワーの大きいCo−Ni層を蒸着
してもこのときの熱輻射は強いがこれの下のSi。
Furthermore, even when a polymer film with relatively poor heat resistance such as polyethylene terephthalate is used as a nonmagnetic support, a low boiling point layer such as a Si layer and a silicon layer are first deposited on the polymer film as a first layer. The heating power for evaporation during evaporation of these 8i and Bi layers is small, and the thermal radiation to the polymer film is small, so the thermal influence on the polymer film is small. Even if a Co--Ni layer with high heating power is deposited, the thermal radiation at this time is strong, but the Si below this layer.

Si層の介在によって高分子フィルムへの熱輻射が抑制
されるので、この熱輻射による熱変形が回避されるとい
う利益もある。
Since thermal radiation to the polymer film is suppressed by the presence of the Si layer, there is also the advantage that thermal deformation due to this thermal radiation can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第3図は夫々本発明の磁気記録媒体の例を示
す拡大断面図、第2図は本発明に適用される蒸着装置の
概略図である。 (1)は非磁性支持体、(2)は別又はSi化合物層、
(3)はBi下地層、(4)は金属磁性薄膜Co−Ni
合金層である。
1 and 3 are enlarged sectional views showing examples of the magnetic recording medium of the present invention, respectively, and FIG. 2 is a schematic diagram of a vapor deposition apparatus applied to the present invention. (1) is a non-magnetic support, (2) is a separate or Si compound layer,
(3) is a Bi underlayer, and (4) is a metal magnetic thin film Co-Ni.
It is an alloy layer.

Claims (1)

【特許請求の範囲】[Claims] 非磁性支持体上に、シリコンまたはシリコンの化合物の
非晶質連続膜と、不連続に島状に形成されたビスマス層
と、金属磁性薄膜とが順次被着されて成る磁気記録媒体
において、上記金属磁性薄膜がコバルトCローニッケル
N3合金より成り、且つそのNi量が30〜50原子%
に選ばれて成る磁気記録媒体。
A magnetic recording medium in which an amorphous continuous film of silicon or a silicon compound, a bismuth layer discontinuously formed in the form of islands, and a metal magnetic thin film are sequentially deposited on a nonmagnetic support. The metal magnetic thin film is made of a cobalt-C rho-nickel N3 alloy, and the Ni content is 30 to 50 at%
A magnetic recording medium selected from
JP56160710A 1981-10-08 1981-10-08 Magnetic recording medium Pending JPS5862825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56160710A JPS5862825A (en) 1981-10-08 1981-10-08 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56160710A JPS5862825A (en) 1981-10-08 1981-10-08 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS5862825A true JPS5862825A (en) 1983-04-14

Family

ID=15720790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56160710A Pending JPS5862825A (en) 1981-10-08 1981-10-08 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5862825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189922A (en) * 1989-10-05 1991-08-19 Internatl Business Mach Corp <Ibm> Magnetic memory medium and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189922A (en) * 1989-10-05 1991-08-19 Internatl Business Mach Corp <Ibm> Magnetic memory medium and method of manufacturing the same
JPH0561685B2 (en) * 1989-10-05 1993-09-06 Ibm

Similar Documents

Publication Publication Date Title
US4539265A (en) Magnetic recording medium
JPS60214417A (en) Vertical magnetic recording medium
JPS5961014A (en) Magnetic recording medium
JPS5862825A (en) Magnetic recording medium
JPS5968815A (en) Magnetic recording medium
US4645690A (en) Method of manufacturing a magnetic media
JPH01238106A (en) Corrosion-resistant ferromagnetic thin-film
JP2819839B2 (en) Magnetic disk substrate and magnetic recording medium using the same
JPS6255207B2 (en)
JPS62128019A (en) Magnetic recording medium
JPS6313256B2 (en)
JPS60231911A (en) Magnetic recording medium
JPS60138736A (en) Production of magnetic recording medium
JP2707560B2 (en) Artificial lattice magneto-optical recording medium
JPS59198707A (en) Perpendicularly magnetic recording material and manufacture thereof
JPS60113318A (en) Magnetic recording medium
JPH0311531B2 (en)
JPH0256724B2 (en)
JPS5845624A (en) Magnetic recording medium
JPS59157830A (en) Magnetic recording medium
JPS641851B2 (en)
JPS62164205A (en) Magnetic recording medium
JPS6256570B2 (en)
JPS61211818A (en) Vertical magnetic recording medium
JPS60202524A (en) Magnetic recording medium