JPS5857034A - Fuel injection method of electronically controlled fuel injection device - Google Patents

Fuel injection method of electronically controlled fuel injection device

Info

Publication number
JPS5857034A
JPS5857034A JP15433181A JP15433181A JPS5857034A JP S5857034 A JPS5857034 A JP S5857034A JP 15433181 A JP15433181 A JP 15433181A JP 15433181 A JP15433181 A JP 15433181A JP S5857034 A JPS5857034 A JP S5857034A
Authority
JP
Japan
Prior art keywords
pulse
fuel injection
fuel
engine
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15433181A
Other languages
Japanese (ja)
Other versions
JPS6160256B2 (en
Inventor
Naomi Tomizawa
冨澤 尚己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP15433181A priority Critical patent/JPS5857034A/en
Publication of JPS5857034A publication Critical patent/JPS5857034A/en
Publication of JPS6160256B2 publication Critical patent/JPS6160256B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To increase stability of control at low loaded time and improve fuel consumption, by changing a number of injection times per one revolution of an engine when a pulse width of the basic pulse, calculated in accordance with an operational condition, is larger and smaller than a prescribed width. CONSTITUTION:At operation, a microcomputer 9 firstly performs arithmetic operation of a basic pulse Tp, corresponding to a basic injection quantity, on the basis of outputs of a rotary pulse generator circuit 1 and intake air quantity measuring unit 3. Then in accordance with a flag register content, which of upper or lower limit value shall be compared with the Tp is decided, and a pulse width of the Tp is changed in accordance with the decision result. That is, control is performed in such a manner that fuel is injected once a half cycle of an engine when the pulse width of the Tp is larger than a prescribed width while fuel is injected once a cycle of the engine in a classified state by a cylinder or cylinder group when the pulse width of the Tp is smaller than the prescribed width. Then the microcomputer 9 correctively calculates an injection pulse on the basis of outputs of a throttle opening sensor 5, water temperature sensor 6, etc. to perform excess fuel correction.

Description

【発明の詳細な説明】 本発明は内燃機関の電子制御燃料噴射装置の燃料噴射方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection method for an electronically controlled fuel injection device for an internal combustion engine.

内燃機関の電子制御燃料噴射装置は、機関が常に適正な
燃焼を行なうように各種エンジンパラメータに基づいた
パルス幅の燃料噴射パルスを算出し、その燃料噴射パル
スによって電磁噴射弁を駆動して機関へ間欠的に燃料を
供給するものである。
An electronically controlled fuel injection system for an internal combustion engine calculates a fuel injection pulse with a pulse width based on various engine parameters so that the engine always performs proper combustion, and uses the fuel injection pulse to drive an electromagnetic injection valve to inject the fuel into the engine. It supplies fuel intermittently.

かかる電子制御燃料噴射装置を第1図を参照して説明す
る。
Such an electronically controlled fuel injection device will be explained with reference to FIG.

第1図において、1は回転パルス発生回路であり、イグ
ニションコイル(図示せず)の1次側より得られるイグ
ニション信号を波形整形して回転パルスを発生する。回
転パルス発生回路】の出力端には基本パルス発生回路2
が接続されており、基本パルス発生回路2には吸気管(
図示せず)に設けられた吸入空気量測定器3の出力端も
別に接続されている。基本パルス発生回路2の出力端に
は増量補正回路4が接続されている。増量補正回路4に
は基本パルスのパルス幅の補正を指令するように機関の
運転状態を検出するスロットル開度センサ5.冷却水温
センサ6等の各種センサが接続されている。増量補正回
路4の出力端には駆動回路7が接続され、駆動回路7は
気筒毎に設けられた電磁噴射弁8を、駆動する。
In FIG. 1, reference numeral 1 denotes a rotation pulse generation circuit, which shapes the waveform of an ignition signal obtained from the primary side of an ignition coil (not shown) to generate rotation pulses. Basic pulse generation circuit 2 is installed at the output end of the rotating pulse generation circuit.
is connected to the basic pulse generating circuit 2, and the intake pipe (
The output end of an intake air amount measuring device 3 provided in the air conditioner (not shown) is also connected separately. An increase correction circuit 4 is connected to the output end of the basic pulse generation circuit 2. The increase correction circuit 4 includes a throttle opening sensor 5 which detects the operating state of the engine so as to command correction of the pulse width of the basic pulse. Various sensors such as a cooling water temperature sensor 6 are connected. A drive circuit 7 is connected to the output end of the increase correction circuit 4, and the drive circuit 7 drives an electromagnetic injection valve 8 provided for each cylinder.

ト記構成の電子制御燃料噴射装置においては、回転パル
ス発生回路1の出力端から機関の点火すなわちクランク
シャフトの回転に同期した回転パルスが基本パルス発生
回路2に供給される。一方、吸入空気量測定器3は機関
の画人空気量に応じた電圧を発生する。この吸入空気量
測定器3の出力電圧と回転パルスとに応じて基本パルス
発生回路2が基本噴射量に対応する基本パルスを発生し
、基本パルスは増量補正回路4において各種センサの出
力信号に応じてそのパルス幅が補正されて燃料噴射パル
スとなる。こうして発生した燃料噴射パルスのパルス幅
に応じて駆動回路7が電磁噴射弁8を駆動して燃料が機
関に供給されるのである。
In the electronically controlled fuel injection system having the above configuration, a rotational pulse synchronized with engine ignition, that is, rotation of the crankshaft, is supplied from the output end of the rotational pulse generation circuit 1 to the basic pulse generation circuit 2. On the other hand, the intake air amount measuring device 3 generates a voltage according to the amount of air in the engine. The basic pulse generation circuit 2 generates a basic pulse corresponding to the basic injection amount according to the output voltage and rotation pulse of the intake air amount measuring device 3, and the basic pulse is generated in the increase correction circuit 4 according to the output signals of various sensors. Then, the pulse width is corrected and becomes a fuel injection pulse. The drive circuit 7 drives the electromagnetic injection valve 8 according to the pulse width of the fuel injection pulse generated in this way, and fuel is supplied to the engine.

かかる電子制御燃料噴射装置においては、1つの気筒に
対して機関lサイクル(吸入、圧縮、爆発、排気)の間
に2回噴射する方法が採られており、燃料噴射量は、2
回の噴射で機関の要求燃料量になる。これは、電磁噴射
弁の噴射容量を大きくしても限度があるため機関の高負
荷、高回転のときの要求燃料量を機関lサイクルに1回
の噴射では供給できないからである。
In such an electronically controlled fuel injection system, a method is adopted in which the fuel is injected twice per engine cycle (intake, compression, explosion, exhaust) to one cylinder, and the fuel injection amount is 2 times.
The amount of fuel required by the engine is achieved with one injection. This is because even if the injection capacity of the electromagnetic injection valve is increased, there is a limit, and the amount of fuel required when the engine is under high load and high speed cannot be supplied by one injection per engine cycle.

ところが、電磁噴射弁は通常第2図に示すように噴射量
が少ない部分で燃料噴射パルスによる印加電圧時間に比
例した噴射量とならない非直線領域を有する。しかし、
小噴射量の電磁噴射弁を容易に開発することができない
ため、小排気量の機関においては、アイドル時等の噴射
量が少ないときには非直線領域によって噴射量が燃料噴
射パルスのパルス幅に比例しないという問題点があった
However, as shown in FIG. 2, electromagnetic injection valves usually have a non-linear region where the injection amount is not proportional to the duration of the voltage applied by the fuel injection pulse in a portion where the injection amount is small. but,
Because it is not easy to develop electromagnetic injection valves with small injection quantities, in small displacement engines, when the injection quantity is small, such as during idling, the injection quantity is not proportional to the pulse width of the fuel injection pulse due to the nonlinear region. There was a problem.

そこで、本発明の目的は、噴射量が少ない場合に電磁噴
射弁の非直線領域での動作を防止する燃料噴射方法を提
供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a fuel injection method that prevents an electromagnetic injection valve from operating in a non-linear region when the injection amount is small.

本発明による燃料噴射方法は、基本パルスのパルス幅が
所定幅より犬の場合には機関1/2サイクルに1回燃料
噴射し、基本パルスのパルス幅が所定幅より小の場合に
は気筒別に若しくは気筒群別に機関1サイクルに1回燃
料噴射する方法である。
In the fuel injection method according to the present invention, if the pulse width of the basic pulse is smaller than a predetermined width, fuel is injected once every 1/2 engine cycle, and if the pulse width of the basic pulse is smaller than the predetermined width, fuel is injected for each cylinder. Alternatively, there is a method in which fuel is injected once per engine cycle for each cylinder group.

以下、本発明の実施例を第′3図ないし第5図を参照し
て詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 3 to 5.

第3図は4気筒4サイクル内燃機関のマイクロコンピュ
ータを用いた電子制御燃料噴射装置のブロック図を示し
ている。第3図において、第1図と同等部分は同一符号
で示されており、回転ノ(ルス発生回路1の出力端はマ
イクロコンピュータ9に接続され、また吸入空気量測定
器3、スロットル開度センサ5及び水温センサ6等のセ
ンサの各各の出力端はに/D変換器10を介してマイク
ロコンピュータ9に接続されている。マイクロコンピュ
ータ9はワンチップ型であり、その出力端P1には駆動
回路7aを介して電磁噴射弁f3a、 8bが接続され
、また出力端P2には駆動回路7bを介して電磁噴射弁
Bc、 8dが接続されている。またマイクロコンピュ
ータ9には基準気筒である第1気筒が点火時にあるごと
き高レベルになる基準気筒、パルスが供給されている。
FIG. 3 shows a block diagram of an electronically controlled fuel injection system using a microcomputer for a four-cylinder, four-cycle internal combustion engine. In FIG. 3, parts equivalent to those in FIG. The output terminals of the sensors such as 5 and the water temperature sensor 6 are connected to the microcomputer 9 via the digital/digital converter 10.The microcomputer 9 is a one-chip type, and the output terminal P1 has a drive The electromagnetic injection valves f3a, 8b are connected via the circuit 7a, and the electromagnetic injection valves Bc, 8d are connected to the output terminal P2 via the drive circuit 7b. A reference cylinder is supplied with a pulse, which is at a high level when one cylinder is ignited.

この基準気筒パルスはディストリビュータの回転シャフ
トの回転角、又はカムシャフトの回転角により検出され
る。なお、電磁噴射弁8aは第1気筒に、電磁噴射弁8
bは第3気筒に、電磁噴射弁8Cは第2気筒に、そして
電磁噴射弁8dは第4気筒に各々設けられている。
This reference cylinder pulse is detected from the rotation angle of the rotary shaft of the distributor or the rotation angle of the camshaft. Note that the electromagnetic injection valve 8a is connected to the first cylinder.
b is provided in the third cylinder, the electromagnetic injection valve 8C is provided in the second cylinder, and the electromagnetic injection valve 8d is provided in the fourth cylinder.

次にマイクロコンピュータ9の動作を第4図及び第5図
の動作フロー図を参照して説明する。
Next, the operation of the microcomputer 9 will be explained with reference to the operation flow diagrams of FIGS. 4 and 5.

マイクロコンピュータ9は先ず、動作を開始する( 1
01)と、回転パルスと吸入空気量測定器3のA/D変
換器10を介した出力信号とから基本噴射量に対応する
基本パルスTPを演算する( 102 )。
First, the microcomputer 9 starts operating (1
A basic pulse TP corresponding to the basic injection amount is calculated from the rotation pulse and the output signal via the A/D converter 10 of the intake air amount measuring device 3 (102).

そして、フラッグレジスタへの内容を判断する(103
)。フラッグレジスタAKは前回の処理において演算し
た基本パルスの・Z)レス幅を2倍にした場合11“が
、そうでない場合゛0“が記憶されている。フラッグレ
ジスタAの内容が′OIの場合には基本パルスTpのパ
ルス幅が1.7mSより大か小かを判断する( 104
 )。フラッグレジスタAの内容が+1”の場合には基
本パルスTpのパルス幅が2.0mSより犬か小かを判
断する( 105 )。このように、基本パルスのパル
ス幅と比較する所定幅にヒステリシスを持たせであるの
で上限値(2,0m8)或いは下限値(1,7m5)の
どちらと比較するかをフラッグレジスタへの内容で判断
するのである。次に、Tpく17m5場合にはフラッグ
レジスタへの内容を11Nに変更して(106)、基本
パルスTpのパルス幅を2倍にする( 107 ) 。
Then, the contents of the flag register are determined (103
). The flag register AK stores 11" if the .Z) response width of the basic pulse calculated in the previous process is doubled, and 0 otherwise. If the content of flag register A is 'OI, it is determined whether the pulse width of basic pulse Tp is larger or smaller than 1.7 mS (104
). If the content of the flag register A is +1", it is determined whether the pulse width of the basic pulse Tp is smaller than 2.0 mS (105). In this way, hysteresis is applied to a predetermined width to be compared with the pulse width of the basic pulse. Since it has , it is determined whether to compare with the upper limit value (2,0m8) or the lower limit value (1,7m5) by the contents of the flag register.Next, if Tp is 17m5, the flag register is The content of the basic pulse Tp is changed to 11N (106), and the pulse width of the basic pulse Tp is doubled (107).

Tp< 2.o m8の場合には直接、基本パルスTp
のパルス幅を2倍にする( 107 )。
Tp<2. o In the case of m8, directly the fundamental pulse Tp
double the pulse width (107).

またTp≧2.0mSの場合にはフラッグレジスタAの
内容を10“に変更する( 108 )。次いで、マイ
クロコンピュータ9は燃料増量補正をスヘ<スロッ正T
sから第1燃料噴射パルスTLt(= &Tp+Ts)
を演算する( 110 )。また水温センサ6の出力信
号に応じて低温始動時の第2燃料噴射パルスTi2も演
算する( 111 )。次(・で、第1及び第2燃料噴
射パルスTi、、  Ti2のパルス幅を比較する(1
12)。
If Tp≧2.0mS, the contents of the flag register A are changed to 10" (108).Then, the microcomputer 9 adjusts the fuel increase correction to
s to the first fuel injection pulse TLt (= &Tp+Ts)
(110). Also, a second fuel injection pulse Ti2 at the time of low temperature starting is also calculated according to the output signal of the water temperature sensor 6 (111). Next, the pulse widths of the first and second fuel injection pulses Ti, , Ti2 are compared (1).
12).

TZI≧T12の場合には第1燃料噴射パルスT乙1を
燃料噴射パルスTiとしく 113 )、再びフラッグ
レジスタAの内容を判断する( 114 )oフラッグ
レジスタAの内容が11″の場合にはフラッグレジスタ
Bの内容を11“とする( 11S )。フラッグレジ
スタAの内容が1“の場合には第2燃料噴射パルスTt
2を燃料噴射パルスTiにする( 116 )ときと共
にフラッグレジスタBの内容を知“にする(117)。
In the case of TZI≧T12, the first fuel injection pulse T1 is set as the fuel injection pulse Ti (113), and the contents of the flag register A are judged again (114) o If the contents of the flag register A are 11'', The contents of flag register B are set to 11" (11S). If the content of flag register A is 1", the second fuel injection pulse Tt
2 as the fuel injection pulse Ti (116), and at the same time, the contents of the flag register B are made known (117).

そして、再び基本パルスTp演算の行程(102)に戻
る(118)のである。なお、フラッグレジスタBには
最終的な燃料噴射方法が機関1/2サイクルに1回噴射
の場合には110”が記憶され、機関1サイクルに1回
噴射の場合には町“が記憶される。
Then, the process returns to step (102) of calculating the basic pulse Tp (118). In addition, flag register B stores "110" when the final fuel injection method is injection once every 1/2 engine cycle, and "cho" when the final fuel injection method is injection once every 1 engine cycle. .

また、マイクロコンピュータ9は回転パルスの発生に応
じて割込み動作を開始する( 119 )。ただし、マ
イクロコンピュータ9は回転パルスによる割込処理ルー
チン内で基準気筒パルスの発生に応じて気筒判別を行な
う。割込み動作を開始すると、先ず、カウンタ数Nから
1を減算する(120)。
Further, the microcomputer 9 starts an interrupt operation in response to the generation of the rotation pulse (119). However, the microcomputer 9 performs cylinder discrimination according to the generation of the reference cylinder pulse within the rotation pulse interrupt processing routine. When the interrupt operation is started, first, 1 is subtracted from the counter number N (120).

次に、カウンタ数Nの数値を判断しく 121 )、N
)0の場合には割込み処理を中止して中断された主ルー
チンのプログラム番地に戻る( 122 )。N−〇の
場合にはカウンタ数を2トシ(123)、ソして、フラ
ッグレジスタBの内容を判断する(124)。
Next, let's judge the value of the counter number N (121), N
) If it is 0, interrupt processing is canceled and the program returns to the interrupted main routine program address (122). In the case of N-0, the counter number is incremented by 2 (123) and the contents of flag register B are determined (124).

なお、カウンタ数Nは回転パルスを2つ計数するように
セットさせるのである。フラッグレジスタBがゝゝ0”
の場合には燃料噴射パルスTiを出力端P1゜P2へ供
給しく 125 )、駆動回路7z、 7Aを介して電
磁噴射弁8aないし8dを駆動する。またフラッグレジ
スタBがゝ11“の場合には基準気筒パルスが発生して
いるか否かを判断する( 126 )。基準気筒パルス
が発生している場合には燃料噴射パルスT、Lを出力端
P1へ供給しく 127 )、駆動回路7αを介して電
磁噴射弁8a、 8bを駆動する。また基準気筒パルス
が発生していない場合には燃料噴射パルスT、を出力端
P2へ供給しく 128 )、駆動回路7hを介して電
磁噴射弁8C,8dを駆動する。そして、行程(125
)、  (127)或いは(128)が終了すると割込
み処理によって中断されたプログラム番地に戻る( 1
22 )のである。
Note that the counter number N is set so as to count two rotation pulses. Flag register B is “0”
In this case, the fuel injection pulse Ti is supplied to the output terminals P1 and P2 (125), and the electromagnetic injection valves 8a to 8d are driven via the drive circuits 7z and 7A. If the flag register B is "11", it is determined whether or not a reference cylinder pulse is generated (126).If a reference cylinder pulse is generated, the fuel injection pulses T and L are sent to the output terminal P1. 127), and drive the electromagnetic injection valves 8a and 8b via the drive circuit 7α.Furthermore, when the reference cylinder pulse is not generated, a fuel injection pulse T is supplied to the output end P2. The electromagnetic injection valves 8C and 8d are driven via the circuit 7h. Then, the stroke (125
), (127) or (128), the program returns to the program address where it was interrupted by the interrupt process (1
22).

このような噴射方法によって第3図の回路の動作波形は
第6図(a)ないしくg)の各波形図のようになる。第
6図(a)は各気筒の点火タイミングを示しており、第
1気筒、第2気筒、第4気筒そして第3気筒の順序で点
火が行なわれる。第6図(h)はイグニション信号より
得た回転パルス、第6図(C)は基準気筒パルスであり
、第1気筒が基準気筒になっている。従って、基本パル
スTpのパルス幅がヒステリシスを有する所定幅より犬
の場合には燃旧噴射パルスTiは第6図(d)のように
回転パルスが2つ発生する毎にすなわち機関1/2サイ
クルに1回全気筒同時に噴射するように出力端P1.P
2に供給される。ところが、基本パルスTpのパルス幅
が所定幅より小の場合には燃料噴射パルスT、は基本パ
ルスTpのパルス幅を2倍にして算出され、第1及び第
3気筒と第2及び第4気筒との気筒群別に機関1サイク
ルに1回噴射するよう−に出力端P1へ第6図(−)の
ように供給され、出力端P、へ第6図(イ)のように供
給される。そして、第1及び第3気筒と第2及び第4気
筒との噴射には機関1/2サイクルの位相差がある。ま
た第6図(g)に示す吸入行程気筒タイミングのように
第1及び第3気筒の噴射時には第2及び第4気筒は吸入
行程を含み、第2及び第4気筒の噴射時には第1及び第
3気筒は吸入行程を含む。また低温始動時には基本パル
スTpのパルス幅が所定幅より小であっても冷却水温に
応じた燃料噴射パルスT、により機関1/2サイクルに
1回全気筒同時に噴射するのである。なお、第6図(b
)の回転パルスの発生間隔は、実際には基本パルスTp
のパルス幅が小さくなるほど大きくなる。
With this injection method, the operating waveforms of the circuit shown in FIG. 3 become as shown in the waveform diagrams shown in FIGS. 6(a) to 6(g). FIG. 6(a) shows the ignition timing of each cylinder, and ignition is performed in the order of the first cylinder, second cylinder, fourth cylinder, and third cylinder. FIG. 6(h) shows the rotation pulse obtained from the ignition signal, and FIG. 6(C) shows the reference cylinder pulse, where the first cylinder is the reference cylinder. Therefore, if the pulse width of the basic pulse Tp is longer than a predetermined width with hysteresis, the fuel injection pulse Ti is generated every two rotational pulses as shown in FIG. The output end P1. P
2. However, if the pulse width of the basic pulse Tp is smaller than the predetermined width, the fuel injection pulse T is calculated by doubling the pulse width of the basic pulse Tp, and the fuel injection pulse T is calculated by doubling the pulse width of the basic pulse Tp, and the fuel injection pulse T is The fuel is supplied to the output end P1 as shown in FIG. 6(-) so as to be injected once per engine cycle for each cylinder group, and is supplied to the output end P as shown in FIG. 6(a). There is a phase difference of 1/2 engine cycle between the injections in the first and third cylinders and the second and fourth cylinders. Furthermore, as shown in the intake stroke cylinder timing shown in FIG. 6(g), when the first and third cylinders are injecting, the second and fourth cylinders include the intake stroke, and when the second and fourth cylinders are injecting, the first and fourth cylinders are injecting. Three cylinders include the intake stroke. Furthermore, even if the pulse width of the basic pulse Tp is smaller than a predetermined width at low temperature startup, the fuel injection pulse T corresponding to the cooling water temperature injects fuel into all cylinders simultaneously once every 1/2 cycle of the engine. In addition, Fig. 6 (b
) is actually the basic pulse Tp.
The smaller the pulse width, the larger the pulse width becomes.

このように14本発明の燃料噴射方法によれば、基本パ
ルスのパルス幅が所定幅より大の場合には機関1/2サ
イクルに1回燃料噴射し、基本パルスのパルス幅が所定
幅より小の場合には気筒別巻しくは気筒群別に機関1サ
イクルに1回燃料噴射するため、低排気量の機関におい
て、アイドル時等の特に噴射量が少ない場合に電磁噴射
弁の非直線領域での動作がなくなり、噴射量は常に、燃
料噴射パルスのパルス幅に比例する。この結果、小排気
量の内燃機関でも燃料噴射方式が十分使用でき、またア
イドル時等の軽負荷時の制御が安定するため燃費の向り
が図れるのである。また本発明による燃料噴射方法は、
機関1サイクルに1回噴射する場合に噴射気筒における
作動が吸入行程以外の行程にあるとき噴射する方法であ
るため、空燃比の悪化が防止されて排ガス特性が良好と
なるのである。
As described above, according to the fuel injection method of the present invention, if the pulse width of the basic pulse is larger than the predetermined width, fuel is injected once every 1/2 cycle of the engine, and when the pulse width of the basic pulse is smaller than the predetermined width. In this case, fuel is injected once per engine cycle for each cylinder or group of cylinders, so in low-displacement engines, when the injection amount is particularly small, such as when idling, the electromagnetic injector operates in a non-linear region. is eliminated, and the injection amount is always proportional to the pulse width of the fuel injection pulse. As a result, the fuel injection system can be used satisfactorily even in a small-displacement internal combustion engine, and control during light loads such as when idling is stabilized, leading to improved fuel efficiency. Further, the fuel injection method according to the present invention includes:
When injecting once per engine cycle, this method injects when the operation in the injection cylinder is in a stroke other than the intake stroke, which prevents deterioration of the air-fuel ratio and improves exhaust gas characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電子制御燃料噴射装置のブロック図、第2図は
電磁噴射弁の噴射量特性図、第3図は本発明による燃料
噴射方法を用いた電子制御燃料噴射装置のブロック図、
第4図及び第5図は第3図のマイクロコンピュータによ
る本発明の実施例を示す動作フロー図、第6図(α)な
いしくg)は第3図の回路の動作波形図である。 主要部分の符号の説明 1 ・・・・・・・・・回転パルス発生回路2 ・・・
・・・・・・基本パルス発生回路3 ・・・・・・・・
・吸入空気量測定器4 ・・・・・・・・・増量補正回
路 8.8αないし8d・・・電磁噴射弁 9 ・・・・・・・・・マイクロコンピュータ出願人 
 日本電子機器株式会社 代理人  弁理士 藤村元彦
FIG. 1 is a block diagram of an electronically controlled fuel injection device, FIG. 2 is an injection quantity characteristic diagram of an electromagnetic injection valve, and FIG. 3 is a block diagram of an electronically controlled fuel injection device using the fuel injection method according to the present invention.
4 and 5 are operational flowcharts showing an embodiment of the present invention by the microcomputer shown in FIG. 3, and FIGS. 6(α) to g) are operational waveform diagrams of the circuit shown in FIG. 3. Explanation of symbols of main parts 1 ...... Rotating pulse generation circuit 2 ...
...Basic pulse generation circuit 3 ......
・Intake air amount measuring device 4 ......Increase correction circuit 8.8α to 8d...Solenoid injection valve 9 ......Microcomputer applicant
Japan Electronics Co., Ltd. Representative Patent Attorney Motohiko Fujimura

Claims (4)

【特許請求の範囲】[Claims] (1)機関の運転状態に応じて基本噴射量に対応する基
本パルスを算出する内燃機関の電子制御燃料噴射装置の
燃料噴射方法であって、基本パルスのパルス幅が所定幅
より大の場合には機関1/2サイクルに1回燃料噴射し
、基本パルスのパルス幅が所定幅より小の場合には気筒
別に若しくは気筒群別に機関1サイクルに1回燃料噴射
することを特徴とする燃料噴射方法。
(1) A fuel injection method for an electronically controlled fuel injection device for an internal combustion engine that calculates a basic pulse corresponding to a basic injection amount according to the operating state of the engine, when the pulse width of the basic pulse is larger than a predetermined width. A fuel injection method characterized in that fuel is injected once per 1/2 engine cycle, and when the pulse width of the basic pulse is smaller than a predetermined width, fuel is injected for each cylinder or cylinder group once per 1 engine cycle. .
(2)基本パルスのパルス幅が小の場合には気筒におけ
る作動が吸入行程以外の行程にあるとき気筒別若しくは
気筒群別に機関1サイクルに1回燃料噴射することを特
徴とする特許請求の範囲第1項記載の燃料噴射方法。
(2) Claims characterized in that when the pulse width of the basic pulse is small, fuel is injected once per engine cycle for each cylinder or cylinder group when the operation in the cylinder is in a stroke other than the intake stroke. The fuel injection method according to item 1.
(3)機関の低温始動時には基本パルスのパルス幅が所
定幅より小であっても機関1/2サイクルに1回燃料噴
射することを特徴とする特許請求の範。 間第1項記載の燃料噴射方法。
(3) A claim characterized in that, when the engine is started at a low temperature, fuel is injected once every 1/2 cycle of the engine even if the pulse width of the basic pulse is smaller than a predetermined width. 1. The fuel injection method according to item 1.
(4)所定幅を検出するセンサ手段にはヒステリシス特
性をもたしていることを特徴とする特許請求の範囲第1
項記載の燃料噴射方法。
(4) Claim 1, characterized in that the sensor means for detecting the predetermined width has a hysteresis characteristic.
Fuel injection method described in section.
JP15433181A 1981-09-29 1981-09-29 Fuel injection method of electronically controlled fuel injection device Granted JPS5857034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15433181A JPS5857034A (en) 1981-09-29 1981-09-29 Fuel injection method of electronically controlled fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15433181A JPS5857034A (en) 1981-09-29 1981-09-29 Fuel injection method of electronically controlled fuel injection device

Publications (2)

Publication Number Publication Date
JPS5857034A true JPS5857034A (en) 1983-04-05
JPS6160256B2 JPS6160256B2 (en) 1986-12-19

Family

ID=15581806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15433181A Granted JPS5857034A (en) 1981-09-29 1981-09-29 Fuel injection method of electronically controlled fuel injection device

Country Status (1)

Country Link
JP (1) JPS5857034A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237138A (en) * 1984-05-09 1985-11-26 Honda Motor Co Ltd Fuel injection controller for internal-combustion engine
JPS62255555A (en) * 1986-04-29 1987-11-07 Mitsubishi Electric Corp Fuel control device of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237138A (en) * 1984-05-09 1985-11-26 Honda Motor Co Ltd Fuel injection controller for internal-combustion engine
JPS62255555A (en) * 1986-04-29 1987-11-07 Mitsubishi Electric Corp Fuel control device of internal combustion engine

Also Published As

Publication number Publication date
JPS6160256B2 (en) 1986-12-19

Similar Documents

Publication Publication Date Title
JP2592342B2 (en) Control device for internal combustion engine
JPH1122512A (en) Control device for direct injection spark ignition internal combustion engine
EP0924420B1 (en) Torque controller for internal combustion engine
JP2577210B2 (en) Electronically controlled fuel injection device for internal combustion engine
US4589390A (en) Air-fuel ratio feedback control method for internal combustion engines
JPH03194144A (en) Air-fuel ratio control device for internal combustion engine
EP0296464B1 (en) Air/fuel ratio control system for internal combustion engine with correction coefficient learning feature
JPH0723582Y2 (en) Ignition timing control device for internal combustion engine
US4572129A (en) Air-fuel ratio feedback control method for internal combustion engines
JPH1122515A (en) Engine torque calculating device
JPS5857034A (en) Fuel injection method of electronically controlled fuel injection device
US4653451A (en) Method and apparatus for detecting surging in internal combustion engine
JPS6217332A (en) Fuel-injection control device for internal-combustion engine
US4787358A (en) Fuel supply control system for an engine
US4713766A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
JP3536596B2 (en) Fuel injection control device for direct injection spark ignition type internal combustion engine
JP3197642B2 (en) Control device for multi-cylinder internal combustion engine
JPH02536B2 (en)
JP2518669B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH09287494A (en) Controller for internal combustion engine having electronically controlled throttle
JP2590823B2 (en) Air-fuel ratio control device for internal combustion engine
JP2692082B2 (en) Air-fuel ratio control device
JP3680505B2 (en) Fuel injection control device for direct-injection spark-ignition internal combustion engine
JP3047633B2 (en) Fuel injection device for two-stroke engine
JP2917417B2 (en) Engine control device