JPS5852545B2 - Cast material for copper alloy pipe fittings with excellent weldability - Google Patents

Cast material for copper alloy pipe fittings with excellent weldability

Info

Publication number
JPS5852545B2
JPS5852545B2 JP189178A JP189178A JPS5852545B2 JP S5852545 B2 JPS5852545 B2 JP S5852545B2 JP 189178 A JP189178 A JP 189178A JP 189178 A JP189178 A JP 189178A JP S5852545 B2 JPS5852545 B2 JP S5852545B2
Authority
JP
Japan
Prior art keywords
zinc
copper
copper alloy
nickel
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP189178A
Other languages
Japanese (ja)
Other versions
JPS5495919A (en
Inventor
正人 上田
啓 納富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP189178A priority Critical patent/JPS5852545B2/en
Publication of JPS5495919A publication Critical patent/JPS5495919A/en
Publication of JPS5852545B2 publication Critical patent/JPS5852545B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 本発明は、加工性の良好な、かつ溶接性に優れた銅合金
管継手用鋳物材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cast material for copper alloy pipe fittings that has good workability and excellent weldability.

一般に、銅合金は加工が容易で、耐食性、特に耐海水性
に優れているために、各種船舶蟻装用配管材として、純
銅管、アルミプラス管、キュプロニッケル管等が広く利
用され、これらの管継手材としてはコスト低減のために
鋳造の容易な銅−亜鉛合金鋳物、例えば重量比で亜鉛3
〜40%、硅素0.1%以下、残部銅よりなるJIS規
格の黄銅鋳物、高力黄銅鋳物、青銅鋳物等が多数使用さ
れている。
In general, copper alloys are easy to process and have excellent corrosion resistance, especially seawater resistance, so pure copper pipes, aluminum plastic pipes, cupronickel pipes, etc. are widely used as piping materials for various types of ship ant control. Copper-zinc alloy castings that are easy to cast, such as zinc 3 by weight, are used as joint materials to reduce costs.
A large number of JIS standard brass castings, high-strength brass castings, bronze castings, etc., which are made of silicon up to 40%, silicon 0.1% or less, and the balance copper, are used.

これらの銅合金管と管継手材例えばフランジとの接合の
際、従来は銀ろう打法または銅−亜鉛系のろう即ち真鍮
付法が採用されている。
Conventionally, when joining these copper alloy pipes to pipe fitting materials such as flanges, a silver soldering method or a copper-zinc based brazing method is employed.

第1図A、Bは、従来一般に採用されている銅合金管と
フランジとの銀ろう打法を示したもので。
Figures 1A and 1B show the silver soldering method used to connect copper alloy tubes and flanges.

第1′図Aは加熱前の状態、第1図Bは加熱後の状態で
ある。
FIG. 1'A shows the state before heating, and FIG. 1B shows the state after heating.

第1図A、Bにかいて、1は銅合金管、2はフランジ、
3はフランジに加工された銀ろう置き溝、4は畝溝3に
挿入された銀ろう材、5は銀ろう材4が管1と7ランジ
2との間隙に溶融侵入してこれらをろう付した状態を示
すものである。
In Figure 1 A and B, 1 is a copper alloy tube, 2 is a flange,
3 is a silver soldering groove machined into the flange, 4 is a silver soldering material inserted into the ridge groove 3, and 5 is a silver soldering material 4 that melts and enters the gap between the tube 1 and the 7 flange 2 to braze them together. This indicates the state in which the

なか、フランジ2に管1を挿入する前に管1の被ろう何
面およびフランジ2の内在には脱酸作用を行うフラック
スが塗布される。
Before inserting the tube 1 into the flange 2, a flux for deoxidizing is applied to the wax surface of the tube 1 and the inside of the flange 2.

しかる後、フランジ2に管1を挿入し、通常は酸素、ア
セチレンなどの加熱焔で銀ろう材4の溶融点以上に加熱
して第1図Bに示されるような接合部が得られる。
Thereafter, the tube 1 is inserted into the flange 2 and heated to a temperature above the melting point of the silver brazing filler metal 4, usually with a heated flame of oxygen, acetylene, etc., to obtain a joint as shown in FIG. 1B.

銀ろう打法は、このようにフランジの溝加工。The silver soldering method involves machining grooves on the flange like this.

銀ろう材の挿入、置きろう、フラックスの塗布という複
雑な工作が必要であるとともに銀ろう材が極めて高価で
あるというコスト上の問題があり、また管とフランジと
の間隙を均一に維持することが困難なために接合部の品
質保証、技術管理が容易ではないという問題もちる。
There is a cost problem in that complicated work is required to insert silver solder, place it, and apply flux, and the silver solder is extremely expensive, and it is also difficult to maintain a uniform gap between the pipe and the flange. This poses a problem in that quality assurance and technical management of the joints are difficult because of the difficulty in manufacturing.

これらの問題から最近銀ろう打法に代ってアーク溶接法
が採用されるようになった。
Due to these problems, arc welding has recently been adopted in place of silver soldering.

第2図A。Bはこのアーク溶接法を示すもので、第2図
Aは溶接前の状態、第2図Bは溶接後の状態である。
Figure 2A. B shows this arc welding method; FIG. 2A shows the state before welding, and FIG. 2B shows the state after welding.

第2図A、Hにかいて、11は銅合金管、12は銅−亜
鉛合金鋳物フランジ、16.17はアーク溶接を行った
接合部である。
In FIGS. 2A and 2H, 11 is a copper alloy tube, 12 is a copper-zinc alloy casting flange, and 16.17 is a joint portion subjected to arc welding.

しかしながら、アーク溶接法にかいても、(1)銅−亜
鉛合金鋳物は亜鉛の蒸発点が低く、亜鉛ガス発生のため
にアーク不安定となり、溶接部にブローホールが発生し
易すい、(2)ブローホール発生を小さくするために亜
鉛量を少なくすると、熱伝導が大きくなってアーク熱の
集中が困難となり、アーク溶接施工のためには高温予熱
が必要となる。
However, even in the arc welding method, (1) copper-zinc alloy castings have a low evaporation point of zinc, and the arc becomes unstable due to the generation of zinc gas, which easily causes blowholes in the welded part; (2) ) If the amount of zinc is reduced in order to reduce the occurrence of blowholes, heat conduction will increase, making it difficult to concentrate arc heat, and high temperature preheating will be required for arc welding.

また、(3)亜鉛量が少ないものでは高温割れが発生し
易いなどの欠点を有する。
In addition, (3) those containing a small amount of zinc have the disadvantage that hot cracking is likely to occur.

そこで本発明者等は、アーク溶接実施に当って亜鉛蒸気
の発生を抑えて溶接性を良くし、さらにブローホールを
減少させ、高温割れ発生をなくした銅−亜鉛合金鋳物を
提供して、銅合金管と溶接継手部材との溶接4合を容易
にし、銅合金管と継手部材との溶接施工法を確立しよう
として鋭意研究の結果、前記したJIS規格の銅−亜鉛
合金鋳物成分のうち亜鉛を30〜35%とし、これにク
ロムを0.01〜0.05%添加するとアーク溶接によ
る高温割れを防止することができ、更にJIS規格では
0.1%以下であった硅素を0.5〜1.0%に増量す
るとアーク溶接による亜鉛酸化物の発生を抑制し、ブロ
ホールを減少させることができるという知見を得た。
Therefore, the present inventors have provided a copper-zinc alloy casting that suppresses the generation of zinc vapor during arc welding, improves weldability, reduces blowholes, and eliminates hot cracking. As a result of intensive research in an effort to facilitate welding between alloy pipes and welded joint members and to establish a welding method for copper alloy pipes and joint members, we found that zinc is one of the components of copper-zinc alloy castings specified in the JIS standard. 30 to 35%, and adding 0.01 to 0.05% of chromium to this can prevent hot cracking due to arc welding, and furthermore, silicon, which is 0.1% or less in JIS standards, can be reduced to 0.5 to 0.05%. It was found that increasing the amount to 1.0% suppresses the generation of zinc oxide during arc welding and reduces blowholes.

本発明は上記知見に基づいてなされたもので、重量比で
亜鉛30〜35%、アルミニウム0.5〜1.0%、硅
素0.5〜1.0%、マンガン0.5〜1.0%、鉄0
.1〜0.5%、ニッケル0,1%以上0.5%未満、
クロム0.01〜0.05%、残部銅よりなる溶接性に
優れた銅合金管継手用鋳物材を要旨とするものである。
The present invention was made based on the above findings, and the weight ratio is 30 to 35% zinc, 0.5 to 1.0% aluminum, 0.5 to 1.0% silicon, and 0.5 to 1.0% manganese. %, iron 0
.. 1 to 0.5%, nickel 0.1% or more and less than 0.5%,
The gist of this invention is a cast material for copper alloy pipe joints with excellent weldability, consisting of 0.01 to 0.05% chromium and the balance copper.

以下、本発明鋳物材を上記のように規定した理由を本発
明者等が行なった実験結果などに基づいて更に詳細に説
明する。
Hereinafter, the reason why the casting material of the present invention was defined as described above will be explained in more detail based on the results of experiments conducted by the present inventors.

第3,4図は各種元素が銅の物理的性質に及ぼす影響を
示すもので、第3図は電気伝導度、第4図は熱伝導度を
各々示し、第5図は銅−亜鉛合金にかける亜鉛量と電気
伝導率、熱伝導率の関係を示すものである。
Figures 3 and 4 show the influence of various elements on the physical properties of copper. Figure 3 shows the electrical conductivity, Figure 4 shows the thermal conductivity, and Figure 5 shows the effect on copper-zinc alloy. This shows the relationship between the amount of zinc applied, electrical conductivity, and thermal conductivity.

銅−亜鉛系合金鋳物にかいて、アーク溶接作業性を向上
させるためには、熱伝導度を小さくしてアーク熱の集中
性を良くすることである。
In order to improve the arc welding workability of copper-zinc alloy castings, it is necessary to reduce the thermal conductivity and improve the concentration of arc heat.

ところで、銅−亜鉛系合金鋳物にかいては、電気伝導度
を低下させれば一般に熱伝導度も低下するから、第5図
より鋼中の亜鉛量を増大させれば、該増大量に伴って電
気伝導度、熱伝導度ともに小さくなることが判る。
By the way, when it comes to copper-zinc alloy castings, if the electrical conductivity is lowered, the thermal conductivity will also generally be lowered, so as shown in Figure 5, if the amount of zinc in the steel is increased, the It can be seen that both electrical conductivity and thermal conductivity become smaller.

ところが第5図によれば、電気伝導率、熱伝導率ともに
亜鉛量約30%(重量%。
However, according to FIG. 5, the amount of zinc in both electrical conductivity and thermal conductivity is approximately 30% (wt%).

以下の%は全て同じ)で最低となり、あとは亜鉛量がさ
らに増加しても大差ないことが明らかである。
It is clear that the following percentages are the same), and that there is no significant difference even if the amount of zinc is further increased.

従って本発明鋳物材では亜鉛量を30〜35重量%とし
た。
Therefore, in the casting material of the present invention, the amount of zinc is set to 30 to 35% by weight.

更に、第3図より、銀、クロム以外の金属元素が銅に添
加されれば、その量は1%以下であっても電気伝導度が
50%以下となること、第4図よシ砒素、ニッケルがも
つとも熱伝導度を低下させる元素であることがそれぞれ
認められる。
Furthermore, from Figure 3, if metal elements other than silver and chromium are added to copper, the electrical conductivity will be less than 50% even if the amount is less than 1%, and Figure 4 shows that arsenic, It is recognized that nickel is an element that lowers thermal conductivity.

しかしながら、砒素は有毒物質であるため取扱いが困難
であり実用上問題があるため使用することはできない。
However, arsenic cannot be used because it is a toxic substance, difficult to handle, and has practical problems.

また、銅−亜鉛合金鋳物に卦よぼすアルミニウムの影響
については脱亜鉛現象による応力腐食が問題となり、亜
鉛含有量が30〜40%の場合にはアルミニウム量が2
%以上になると応力腐食割れを良くシ、鋳造割れを防止
するために有効となるので1本発明鋳物材では、アルミ
ニウムの上限を1.0%とし、下限を0.5%とした。
In addition, regarding the influence of aluminum on copper-zinc alloy castings, stress corrosion due to dezincification phenomenon becomes a problem, and when the zinc content is 30 to 40%, the amount of aluminum is 2
% or more is effective in suppressing stress corrosion cracking and preventing casting cracks. Therefore, in the casting material of the present invention, the upper limit of aluminum is set to 1.0% and the lower limit is set to 0.5%.

硅素ならびにマンガンは脱酸効果を示す元素であり、硅
素はさらに亜鉛の蒸発を抑制する効果を有する元素であ
って、それぞれ0.2%以下ではブローホールや酸化亜
鉛の発生量が多く、また1、5%以上になると溶接作業
性が低下するため、本発明鋳物材では、硅素、マンガン
ともに0,5〜1.0%をもってもつとも有効な組成範
囲とした。
Silicon and manganese are elements that exhibit a deoxidizing effect, and silicon is an element that also has the effect of suppressing the evaporation of zinc, and if each is less than 0.2%, a large amount of blowholes and zinc oxide will be generated. , 5% or more, the welding workability deteriorates, so in the casting material of the present invention, an effective composition range is set in which both silicon and manganese are in the range of 0.5 to 1.0%.

鉄、ニッケル、クロムはともに銅−亜鉛合金鋳物の強度
ならびに耐食性を向上するものであるが。
Iron, nickel, and chromium all improve the strength and corrosion resistance of copper-zinc alloy castings.

鉄、ニッケルは0.05%程度では全く効果が明らかで
なく、またニッケルは0.5%以上となると鋳造品のコ
ストアップとなり、鉄は0.6%以上となると鋳造時の
濃泥れや鋳造性を阻害するため、本発明鋳物材では、鉄
の有効な組成範囲をそれぞれ0.1〜0.5%とし、ニ
ッケルなo、i%以上0.5%未満とし、クロムは0.
01%未満では効果が明らかでなく、0.06%以上に
なると鋳造性を阻害するため、本発明鋳物材ではクロム
の有効な組成範囲を0.01〜0.05%とした。
Iron and nickel have no obvious effect at around 0.05%, nickel over 0.5% will increase the cost of castings, and iron over 0.6% will cause thick mud during casting. In order to inhibit castability, in the casting material of the present invention, the effective composition range of iron is 0.1 to 0.5%, nickel is o, i% or more and less than 0.5%, and chromium is 0.1 to 0.5%.
If it is less than 0.01%, the effect is not obvious, and if it is more than 0.06%, castability is inhibited. Therefore, in the casting material of the present invention, the effective composition range of chromium is set to 0.01 to 0.05%.

なか、下表は銅−亜鉛合金鋳物の亜鉛、アルミニウム、
硅素、マンガン、鉄、ニッケル、クロムの容量を変化
させて溶接性試験を実施し、酸化亜鉛の発生状態、溶接
割れの発生状態ならびに溶接部のブローホールの発生状
態を観察した結果を示すものである。
Among them, the table below shows zinc, aluminum, and copper-zinc alloy castings.
This shows the results of weldability tests conducted with varying amounts of silicon, manganese, iron, nickel, and chromium, and observations of the state of zinc oxide formation, weld cracking, and blowhole formation in welds. be.

上表に釦いて、試片1〜3は、亜鉛的11〜17%、銅
約80〜85%で、その他の成分として、アルミニウム
、マンガン、鉄、ニッケルを含んだものであり、溶接試
験結果によると、酸化亜鉛の発生は少なく、3種とも溶
接作業を阻害するような亜鉛の蒸発は見られなかったが
溶接部の割れ即ち高温割れが大きく発生し、特に試片1
と3とが激しく割れた。
As shown in the table above, specimens 1 to 3 are 11 to 17% zinc, approximately 80 to 85% copper, and contain aluminum, manganese, iron, and nickel as other components, and the welding test results According to the study, the generation of zinc oxide was small, and no evaporation of zinc that would impede welding work was observed in all three types, but cracking in the weld zone, that is, hot cracking, occurred significantly, especially in specimen 1.
and 3 cracked violently.

また試片1はブローホールの発生も大きかった。In addition, specimen 1 also had large blowholes.

試片4は、亜鉛をやや増加して25%とし、アルミニウ
ム2.5%、硅素0.1%、マンガン0.02%、鉄0
.2%、ニッケル0.02%としたものであるが、上記
試片1〜3に比較して酸化亜鉛の発生量がやや増加し、
溶接部の高温割れが減少した。
Specimen 4 has slightly increased zinc to 25%, aluminum 2.5%, silicon 0.1%, manganese 0.02%, and iron 0.
.. 2% and 0.02% nickel, but the amount of zinc oxide generated was slightly increased compared to the above specimens 1 to 3.
Hot cracking in welds has decreased.

試片5〜7は、亜鉛を30%とし、アルミニウムを0.
5 、1.0%、硅素を0.2 、0.5 、1.0%
Specimens 5 to 7 contain 30% zinc and 0.0% aluminum.
5, 1.0%, silicon 0.2, 0.5, 1.0%
.

マンガンを0.5、■、0%、鉄を0.1,0.5%、
ニッケルを0.5.0.1%、クロムを0.05.0.
01%と全く含1ないものとしたものであるが、酸化亜
鉛の発生量は試片7で極小となり、溶接部の高温割れ卦
よびブローホールの発生も認められなくなった。
Manganese 0.5, ■, 0%, iron 0.1, 0.5%,
Nickel 0.5.0.1%, chromium 0.05.0.
Although the amount of zinc oxide generated was extremely small in specimen 7, no hot cracking or blowholes were observed in the welded part.

試片8〜10は、亜鉛を35%として、アルミニウムを
0.5 、 i、0%、硅素を0.5 、1.0%、マ
ンカンをo、5 、1.o%、鉄を0.1,0.5%、
ニッケルを0.5,0.1%、クロムを0.05 、0
.01%と全く含1ないものとしたものである。
Specimens 8 to 10 contain zinc at 35%, aluminum at 0.5, i, 0%, silicon at 0.5, 1.0%, mankan at o, 5, 1. o%, iron 0.1, 0.5%,
Nickel 0.5, 0.1%, chromium 0.05, 0
.. 01%, which is completely free of 1.

これらは酸化亜鉛の発生量が亜鉛を25%または30重
量%含有している試片4,5より少なく、また試片8.
9では溶接部の高温割れが発生せず、更に試片8ではブ
ローホールも認められなかった。
These produced less zinc oxide than specimens 4 and 5 containing 25% or 30% by weight of zinc, and specimen 8.
In sample No. 9, no hot cracking occurred in the weld zone, and in sample No. 8, no blowholes were observed.

試片11〜13では、亜鉛を40%とし、試片14では
亜鉛を45%として、アルミニウム、硅素、マンガン、
鉄、ニッケル、クロムを表1のように変化させたもので
、いずれも酸化亜鉛の発生量が溶接作業性を阻害し、ブ
ローホールの発生が非常に大きくなった。
In specimens 11 to 13, zinc was 40%, and in specimen 14, zinc was 45%, and aluminum, silicon, manganese,
The iron, nickel, and chromium were changed as shown in Table 1, and in all cases, the amount of zinc oxide generated inhibited welding workability, and the generation of blowholes became extremely large.

以上より、アーク溶接される銅−亜鉛合金鋳物としでは
、亜鉛含有量30〜35%が最適であり、これにアルミ
ニウムを0.5〜1.0%、硅素を0.5〜i、o%、
マンガンを0.5〜1.0%、鉄を0.1〜0.5%、
ニッケルを0.1%以上0.5%未満、クロムを0.0
1〜0.05%添加し、残部を銅とすれば。
From the above, for copper-zinc alloy castings to be arc welded, the optimal zinc content is 30-35%, plus 0.5-1.0% aluminum and 0.5-i,o% silicon. ,
0.5-1.0% manganese, 0.1-0.5% iron,
Nickel: 0.1% or more and less than 0.5%, chromium: 0.0%
If 1 to 0.05% is added and the remainder is copper.

溶接作業性を阻害するような酸化亜鉛の発生はなく、ま
た溶接部の高温割れやプローホール等の欠陥も発生する
ことがない。
There is no generation of zinc oxide that would impede welding workability, and there are no defects such as hot cracks or blowholes in the welded area.

なか、上表の試片番号1、試片番号7を用いて行なった
溶接部の表面状態を第6図、第7図の模式図にそれぞれ
示す。
The surface conditions of the welds made using sample number 1 and sample number 7 in the above table are shown in schematic diagrams in FIGS. 6 and 7, respectively.

第6図、第7図にかいて21.31はそれぞれ上表の試
片番号1卦よび試片番号7と同一成分の鋳物板で板厚2
mw、幅35U、長さ65mmの矩形板に22.32に
示すようにスリットを加工し板の中央部に23.33の
ように溶接ピードな置いたものであるが、試片番号1で
は24に示すように溶接割れが発生するとともにスリッ
ト部から25に示すような母材割れも発生し、また26
に見られるように酸化亜鉛が広い範囲に付着して溶接作
業性が不良であったが、試片番号7では33に示すよう
に溶接割れの発生はなく、また、34に示すように酸化
亜鉛の付着域が狭く溶接作業が良好であった。
In Figures 6 and 7, 21.31 is a cast plate with the same composition as specimen number 1 and specimen number 7 in the table above, respectively, and has a thickness of 2.
A rectangular plate with mw, width 35U, and length 65mm was machined with a slit as shown in 22.32, and was placed at the welding speed in the center of the plate as shown in 23.33. As shown in 25, weld cracks occur, and base metal cracks as shown in 25 also occur from the slit, and 26
As shown in Figure 3, zinc oxide adhered over a wide area, resulting in poor welding workability. However, in specimen number 7, no weld cracking occurred as shown in 33, and as shown in 34, zinc oxide The adhesion area was narrow and the welding work was good.

以上説明したように、銅合金管とアーク溶接してフラン
ジ継手、枝継手1曲り継手を製作する場口のフランジ、
テイーズ、ペンドピース、レジューサ−、エルボとして
本発明の銅−亜鉛合金鋳造材を用いれば、溶接性、鋳造
性の点からもつとも実用的であり、配管工作上いちじる
しく有効である。
As explained above, when manufacturing flange joints, branch joints, and single-bend joints by arc welding with copper alloy pipes,
If the copper-zinc alloy casting material of the present invention is used for teeth, pend pieces, reducers, and elbows, it is practical in terms of weldability and castability, and is extremely effective in piping work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A、Bは銅合金管とフランジとの従来の銀ろう何
派を示す説明図、第2図A、Bは銅合金管とフランジと
の従来とのアーク溶接法を示す説明図、第3〜5図は本
発明の成立根拠となった実験結果を示す図表で、第3図
は各種元素が銅の電気伝導度に及ぼす影響を、第4図は
各種元素が銅の熱伝導度に及ぼす影響を、第5図は銅−
亜鉛合金中の亜鉛含有量と該合金の電気および熱伝導率
との関係をそれぞれ示す図表、第6図は従来の銅−亜鉛
合金鋳物を用いて行なった溶接部の表面状態を示す模式
図、第7図は本発明の鋳物材を用いて行なった溶接部の
表面状態を示す模式図である。
Figures 1A and B are explanatory diagrams showing a conventional silver soldering method for a copper alloy tube and a flange, and Figures 2A and B are explanatory diagrams illustrating a conventional arc welding method for a copper alloy tube and a flange. Figures 3 to 5 are charts showing the experimental results that served as the basis for the establishment of the present invention. Figure 3 shows the effects of various elements on the electrical conductivity of copper, and Figure 4 shows the effects of various elements on the thermal conductivity of copper. Figure 5 shows the effect of copper on
A diagram showing the relationship between the zinc content in a zinc alloy and the electrical and thermal conductivity of the alloy, FIG. 6 is a schematic diagram showing the surface condition of a welded part using a conventional copper-zinc alloy casting, FIG. 7 is a schematic diagram showing the surface condition of a welded part using the casting material of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比で亜鉛30〜35%、アルミニウム0.5〜
1.0%、硅素0.5〜1.0%、マンガン0.5〜1
.0%、鉄0.1〜0.5%、ニッケル0.1%以上0
.5%未満、クロム0.01〜0.05%、残部銅より
なる溶接性に優れた銅合金管継手用鋳物材。
1. Zinc 30-35%, aluminum 0.5-35% by weight
1.0%, silicon 0.5-1.0%, manganese 0.5-1
.. 0%, iron 0.1-0.5%, nickel 0.1% or more 0
.. A casting material for copper alloy pipe fittings with excellent weldability, consisting of less than 5% chromium, 0.01 to 0.05% chromium, and the balance copper.
JP189178A 1978-01-13 1978-01-13 Cast material for copper alloy pipe fittings with excellent weldability Expired JPS5852545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP189178A JPS5852545B2 (en) 1978-01-13 1978-01-13 Cast material for copper alloy pipe fittings with excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP189178A JPS5852545B2 (en) 1978-01-13 1978-01-13 Cast material for copper alloy pipe fittings with excellent weldability

Publications (2)

Publication Number Publication Date
JPS5495919A JPS5495919A (en) 1979-07-28
JPS5852545B2 true JPS5852545B2 (en) 1983-11-24

Family

ID=11514195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP189178A Expired JPS5852545B2 (en) 1978-01-13 1978-01-13 Cast material for copper alloy pipe fittings with excellent weldability

Country Status (1)

Country Link
JP (1) JPS5852545B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU671795B3 (en) * 1993-12-17 1996-09-05 Gary Allan Hocking Coupling member
AU680392B3 (en) * 1993-12-17 1997-07-24 Gary Allan Hocking Coupling assembly
JP6023557B2 (en) * 2012-11-09 2016-11-09 大豊工業株式会社 Copper alloy
CN109161721A (en) * 2018-08-20 2019-01-08 黄山名伦精密五金有限公司 Welding copper-based alloy material and its manufacturing method

Also Published As

Publication number Publication date
JPS5495919A (en) 1979-07-28

Similar Documents

Publication Publication Date Title
US3184577A (en) Welding material for producing welds with low coefficient of expansion
US4041274A (en) Maraging stainless steel welding electrode
EP1107846A1 (en) Welding alloy and articles for use in welding, weldments and methods for producing weldments
US4291104A (en) Brazed corrosion resistant lined equipment
EP0005945B1 (en) Method of welding metal parts
US3063145A (en) Soldering of aluminum
JP2010264510A (en) Welding alloy and articles for use in welding, welded product and method for producing welded product
US3967036A (en) Flux-coated arc welding electrode
JPS5831267B2 (en) Manufacturing method of aluminum heat exchanger
JP2018153834A (en) Method of performing torch soldering of aluminum members with each other, or of aluminum member with copper member
JPS5852545B2 (en) Cast material for copper alloy pipe fittings with excellent weldability
US6730876B2 (en) Highly ductile reduced imperfection weld for ductile iron and method for producing same
US11427891B2 (en) Low silicon copper alloy piping components and articles
CN112170996A (en) Welding method for butt joint of T2 red copper and S32168 stainless steel tube
JPS5937157B2 (en) Single-sided welding method for stainless steel fittings
US5407124A (en) Low temperature aluminum brazing alloy and process of brazing
US2458688A (en) Welding cupro-nickel alloys
JPS617088A (en) Aluminum brazing filler metal for fluxless brazing in non-oxidizing atmosphere
US2220464A (en) Alloy
JPH0156874B2 (en)
JPS6328704B2 (en)
JPS6045992B2 (en) Automatic welding wire used for welding spheroidal graphite cast iron
FR2766210A1 (en) NICKEL BASE ALLOY AND NICKEL BASED ALLOY WELDING ELECTRODE
JP2011036915A (en) Aluminum alloy brazing sheet
JPH01157768A (en) Method for brazing stainless steel/heat resistant steel and other metal