JPS5852408A - Production of metallic particles - Google Patents

Production of metallic particles

Info

Publication number
JPS5852408A
JPS5852408A JP14945381A JP14945381A JPS5852408A JP S5852408 A JPS5852408 A JP S5852408A JP 14945381 A JP14945381 A JP 14945381A JP 14945381 A JP14945381 A JP 14945381A JP S5852408 A JPS5852408 A JP S5852408A
Authority
JP
Japan
Prior art keywords
chamber
atmosphere
molten metal
bar
metallic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14945381A
Other languages
Japanese (ja)
Other versions
JPS5914084B2 (en
Inventor
Hiroo Suga
菅 広雄
Naohiro Nishimoto
西本 直博
Nobuo Sakuma
信夫 佐久間
Kazushige Kamihira
上平 一茂
Nobutaka Oguro
小黒 信高
Yoichi Ogawa
洋一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP14945381A priority Critical patent/JPS5914084B2/en
Publication of JPS5852408A publication Critical patent/JPS5852408A/en
Publication of JPS5914084B2 publication Critical patent/JPS5914084B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force

Abstract

PURPOSE:To produce spherical metallic particles easily with a device of a relatively small size by dispersing molten metal by centrifugal forces in an atmosphere of an inert gaseous mixture having different heat conductivities. CONSTITUTION:A metallic bar 5 provided in a sealed chamber 2 is rotated at a high speed by a high speed rotating device 4, and an electrode 3 is brought closely to the preceding end part of the bar 5, whereby arcs are generated and the bar is melted. The molten metal is scattered from a horizontal direction toward above from the edge of a V shape by centrifugal forces, and before the scattered metals arrive at the inside wall of the chamber 2, they are cooled by the inert gaseous mixture filled in the chamber 2. The metals are solidified to spherical metallic particles 6. If the molten drops fail to solidify before they arrive at the inside wall of the chamber 2, the mixing ratio of the gas having the larger conductivity out of the inert gases in the atmosphere is increased. The heat of the molten metal is removed via the gaseous atmosphere by a heat exchanger 7 and a heat exchanger 9 for the circulating gas.

Description

【発明の詳細な説明】 本発明は金属粒子、特に球状の金属粒子の製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing metal particles, particularly spherical metal particles.

従来、金属粒子の製造法として、チャンバー内に設けた
金属棒を高速回転させ、該金属棒の先端を溶融し、遠心
力によって溶融金属を分散させて金属粒子を製造する方
法は知られている。
Conventionally, as a method for manufacturing metal particles, a method is known in which metal particles are manufactured by rotating a metal rod provided in a chamber at high speed, melting the tip of the metal rod, and dispersing the molten metal by centrifugal force. .

この場合、遠心力により分散した溶融金属が周囲のチャ
ンバー内壁に到達するまでの間に凝固固化しなければ球
状の金属粒子は得難い。金属の材質や雰囲気ガスの冷却
速度によって、凝固固化するまでの時間が長くなると、
溶滴は周囲のチャンバー内壁に付着してしまうため、希
望する球状の粒子は得られない。したがって、溶滴の凝
固固化速度が小さいと、チャンバーの大きさを大きくし
なければならず、装置が大型化してしまう欠点があった
In this case, it is difficult to obtain spherical metal particles unless the molten metal dispersed by centrifugal force solidifies before reaching the surrounding inner wall of the chamber. Depending on the material of the metal and the cooling rate of the atmospheric gas, the time it takes to solidify becomes longer.
Since the droplets adhere to the surrounding inner wall of the chamber, the desired spherical particles cannot be obtained. Therefore, if the solidification rate of the droplets is low, the size of the chamber must be increased, resulting in an increase in the size of the apparatus.

本発明の目的は、従来の前記欠点を解消し得る、すなわ
ち、比較的小型の装置で容易に球状の金属粒子を製造す
る方法を擾供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for easily producing spherical metal particles using a relatively small-sized apparatus, which can overcome the above-mentioned drawbacks of the conventional method.

本発明は金属溶滴がチャンバーの内壁に到達するまでに
凝固固化するように、チャンバー内の雰囲気を、熱伝導
度の異なる不活性ガスの混合ガス雰囲気とし、その不活
性ガスの種類またはその混合比を変えることなどKより
、金属溶滴の凝固固化速度を制御し球状の金属粒子を製
造する方法である。
In the present invention, the atmosphere inside the chamber is a mixed gas atmosphere of inert gases having different thermal conductivities so that the metal droplets are solidified by the time they reach the inner wall of the chamber. This is a method for producing spherical metal particles by controlling the solidification rate of metal droplets by changing the ratio.

本発明の方法の実施態様を示すと、例えば第1図に示す
ように、不活性ガスをガス導入管1より密閉チャンバー
2中に導入する。#密閉チャンバー2の上部には金属棒
5の先端部を溶融するアークを発生させる電極3が設け
られている。密閉チャンバー2内に設けられた金属棒5
を高速回転装置4により高速回転させ、電極3を金属棒
5の先端部に接近させ、アークを発生させて溶融させる
。金属棒の先端部はアークが中央に集中するように、V
字形であることが好ましい。溶融した金属はV字形の縁
から遠心力によって水平方向よ炒上方へ向って飛散し、
周一の密閉チャンバー2の内壁に到達する間に該チャン
バーに満たされている不活性混合ガスによりて冷却され
、凝固固化されて球状の金属粒子6と々る。もし、密閉
チャンバーの内壁に到達するまでに溶滴が凝固固化しな
い場合は、雰囲気の不活性ガス中に熱伝導度の大きな例
えばヘリウムガスを混入、あるいはその混合割合を多く
することにより解決し得られる。溶融金属の熱は、雰囲
気不活性ガスを介してチャンバー内部または外部に設け
られた熱交換器7および、循環ポンプ8によって外部に
導かれ、不活性ガスの冷却能力を維持し得られる。さら
に、雰囲気ガスの冷却効果を高めるために、ガス導入管
の前に熱交換器9を設けることもできる。
In an embodiment of the method of the present invention, for example, as shown in FIG. 1, an inert gas is introduced into a closed chamber 2 through a gas introduction pipe 1. #An electrode 3 is provided at the top of the sealed chamber 2 to generate an arc that melts the tip of the metal rod 5. A metal rod 5 provided inside the sealed chamber 2
is rotated at high speed by a high-speed rotation device 4, the electrode 3 is brought close to the tip of the metal rod 5, and an arc is generated to melt the metal rod. The tip of the metal rod is set at V so that the arc is concentrated in the center.
Preferably, it is in the form of a letter. The molten metal is scattered horizontally and upwards from the V-shaped edge due to centrifugal force.
While reaching the inner wall of the closed chamber 2, the metal particles 6 are cooled by the inert gas mixture filling the chamber and solidified into spherical metal particles 6. If the droplets do not solidify by the time they reach the inner wall of the sealed chamber, this can be solved by mixing helium gas, which has a high thermal conductivity, into the inert gas atmosphere, or by increasing the mixing ratio. It will be done. The heat of the molten metal is guided to the outside via an atmospheric inert gas by a heat exchanger 7 provided inside or outside the chamber and a circulation pump 8, thereby maintaining the cooling ability of the inert gas. Furthermore, in order to enhance the cooling effect of the atmospheric gas, a heat exchanger 9 may be provided in front of the gas introduction pipe.

本発明において言う不活性ガスとは、溶融せんとする溶
融金属と反応しないガスを言う。従って、使用金属の種
類によって異なるので、使用金属によって選定する。い
ずれの金属にも共通に使用し得られる点でアルボ/、ヘ
リムラ等−裟好ましい。
In the present invention, the inert gas refers to a gas that does not react with the molten metal to be melted. Therefore, since it differs depending on the type of metal used, it is selected depending on the metal used. Albo/Helimura etc. are preferred because they can be used commonly for any metal.

本発明において使用し得られる不活性ガスおよびそれら
の熱伝導度(C&1e (4Ml−” @ B@Cニー
1 mdeg−1で示す)を例示すると次の通りである
Examples of inert gases that can be used in the present invention and their thermal conductivities (expressed as C&1e (4Ml-"@B@Cnie1 mdeg-1) are as follows.

これらのガスを適当量混合して、混合ガスの熱伝導度を
調整する。
Appropriate amounts of these gases are mixed to adjust the thermal conductivity of the mixed gas.

本発明の方法によると、密閉チャ7ノ(−内の雰囲気を
混合不活性ガスの種類、または混合割合を変えることに
より、飛散した溶滴の冷却速度が容易に調整し得られる
ため、高融点金属において本、小型チャンバーで容易に
球状の金属粒子を製造し得られる優れた効果を有する。
According to the method of the present invention, the cooling rate of the scattered droplets can be easily adjusted by changing the type of mixed inert gas or the mixing ratio of the atmosphere in the closed chamber 7 (-). In metals, this method has excellent effects in that spherical metal particles can be easily produced in a small chamber.

実施例 内径430■のチャy)(−をもつ小型アーク溶解炉の
下部に高速回転機構を設け、直径20■のチタンの丸棒
を毎分20,000回転させた。この丸棒の上端とタン
グステ/電極との間に直流アーク電圧20ボルト、アー
ク電流4007yベアのアーク放電を行わせ、チタンの
丸棒を溶解した。雰IILガスはアルゴン50S1ヘリ
ウム50−の混合ガスとして毎分1リツトルをチャンノ
(−に導入したところ、50〜100メツシユア0qI
bのチタンの球状粒子が得られた。
Example A high-speed rotation mechanism was installed at the bottom of a small arc melting furnace with an internal diameter of 430 cm, and a titanium round bar with a diameter of 20 cm was rotated at 20,000 revolutions per minute. A titanium round rod was melted by arc discharge with a direct current arc voltage of 20 volts and an arc current of 4007 y between the tungsten electrode and the electrode. When introduced into Channo (-, 50 to 100 mesh 0qI
Spherical titanium particles of b were obtained.

比較のため、雰囲気ガスをアルゴンのみにして同様にし
て行ったところ、球状の粒子が得られず、偏平あるいは
角ばったものとなり、甚しいときはチャンバー内壁に1
部蕃着した。
For comparison, when the same procedure was carried out using only argon as the atmosphere gas, spherical particles were not obtained, but instead were flat or angular, and in severe cases, particles formed on the inner wall of the chamber
I arrived at the party.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の縦断面である。 1:不活性ガス導入管 2:密閉チャンバー3=電極 
      4:高速回転装置5:金属棒      
6;金属粒子 7:熱交換器     8:循環ポンプ9:熱交換器 特許出願人 科学技術庁金属材料技術研究所長%1回 手続補正書 昭和57年 g 月  / H 特許庁長官 島田春樹  殿 (特許庁審査官       殿) l、事件の表示 昭和56年特許願第149453号2
、発明の名称 金N粒子の製造法 自発補正 5、補正の対象 明細古の発明の詳細な説明の欄6、補
正の内容 (リ 第5頁8行〜4行「または混合割合を」の記載を
、[その混合割合またはその流量を」と訂正する。
FIG. 1 is a longitudinal section through an apparatus for carrying out the method of the invention. 1: Inert gas introduction pipe 2: Sealed chamber 3 = electrode
4: High-speed rotation device 5: Metal rod
6; Metal particles 7: Heat exchanger 8: Circulation pump 9: Heat exchanger Patent applicant Director of the National Research Institute for Metals and Materials, Science and Technology Agency % One-time procedural amendment 1982 G Month / H Commissioner of the Japan Patent Office Mr. Haruki Shimada (Patent Office Examiner) l, Indication of the case 1982 Patent Application No. 149453 2
, Title of the invention Spontaneous amendment 5 to the method for producing gold N particles, Subject of the amendment Column 6 for detailed explanation of the invention in the old specification, Contents of the amendment (li) Statement of "or the mixing ratio" on page 5, lines 8 to 4 should be corrected as [the mixing ratio or the flow rate].

Claims (1)

【特許請求の範囲】[Claims] 溶融金属を遠心力で分散させて金属粒子を製造する方法
において、雰囲気ガスとして熱伝導像の異なる不活性ガ
スの混合ガスを使用することを特徴とする金属粒子の製
造法。
A method for producing metal particles by dispersing molten metal using centrifugal force, the method comprising using a mixed gas of inert gases having different thermal conductivity patterns as an atmospheric gas.
JP14945381A 1981-09-24 1981-09-24 Method for manufacturing metal particles Expired JPS5914084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14945381A JPS5914084B2 (en) 1981-09-24 1981-09-24 Method for manufacturing metal particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14945381A JPS5914084B2 (en) 1981-09-24 1981-09-24 Method for manufacturing metal particles

Publications (2)

Publication Number Publication Date
JPS5852408A true JPS5852408A (en) 1983-03-28
JPS5914084B2 JPS5914084B2 (en) 1984-04-03

Family

ID=15475448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14945381A Expired JPS5914084B2 (en) 1981-09-24 1981-09-24 Method for manufacturing metal particles

Country Status (1)

Country Link
JP (1) JPS5914084B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2595595A1 (en) * 1986-03-17 1987-09-18 Aubert & Duval Acieries Method for cooling and collecting metallic powders produced by atomisation of liquid metal
FR2607492A1 (en) * 1986-11-04 1988-06-03 Toyo Kohan Co Ltd PROCESS AND APPARATUS FOR THE PRODUCTION OF HIGHLY SOLIDIFIED CERAMIC ALLOY POWDERS
WO2011124455A1 (en) * 2010-04-09 2011-10-13 Siemens Aktiengesellschaft Device for generating granules from a mineral melt
CN102689015A (en) * 2012-06-21 2012-09-26 北京有色金属研究总院 Metal powder preparation device and method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2595595A1 (en) * 1986-03-17 1987-09-18 Aubert & Duval Acieries Method for cooling and collecting metallic powders produced by atomisation of liquid metal
FR2607492A1 (en) * 1986-11-04 1988-06-03 Toyo Kohan Co Ltd PROCESS AND APPARATUS FOR THE PRODUCTION OF HIGHLY SOLIDIFIED CERAMIC ALLOY POWDERS
WO2011124455A1 (en) * 2010-04-09 2011-10-13 Siemens Aktiengesellschaft Device for generating granules from a mineral melt
CN102689015A (en) * 2012-06-21 2012-09-26 北京有色金属研究总院 Metal powder preparation device and method therefor

Also Published As

Publication number Publication date
JPS5914084B2 (en) 1984-04-03

Similar Documents

Publication Publication Date Title
US3896203A (en) Centrifugal method of forming filaments from an unconfined source of molten material
CN108213406B (en) Spherical atomized aluminum-zinc amorphous alloy powder and preparation method thereof
US3407057A (en) Molybdenum powder for use in spray coating
US3887667A (en) Method for powder metal production
CN110625127A (en) Preparation method of cobalt-chromium-nickel-tungsten alloy brazing filler metal powder
US8845781B2 (en) Method and apparatus for melting aluminum powder
US20050223849A1 (en) Method for making and using a rod assembly
JPS6046305A (en) Alloy powder manufacturing process and device
JPS5852408A (en) Production of metallic particles
JP3270118B2 (en) Method and apparatus for producing spheroidized particles by high-frequency plasma
US3021562A (en) Production of group iv, subgroup a, metal prills
JPH02156003A (en) Manufacture of alloy powder containing titanium-aluminum intermetallic compound
GB2117417A (en) Producing high-purity ceramics- free metallic powders
JP2002339006A (en) Method for manufacturing titanium and titanium alloy powder
JPS63210206A (en) Apparatus for producing metal powder
JPS62164804A (en) Production of pulverized metallic powder
JPH03505474A (en) Method for refining light metal crystals
JPS63145703A (en) Apparatus for producing powder
Moss et al. The arc-melting of niobium, tantalum, molybdenum and tungsten
JPS63266001A (en) Production of composite spherical powder
JPS5929928Y2 (en) Metal particle manufacturing equipment
JPH01205A (en) powder manufacturing equipment
JP3511718B2 (en) How to dissolve titanium
JPS62263902A (en) Production of pulverized metallic powder
JPH0657355A (en) Production of oxide dispersion strengthening alloy and its device