JP2002339006A - Method for manufacturing titanium and titanium alloy powder - Google Patents

Method for manufacturing titanium and titanium alloy powder

Info

Publication number
JP2002339006A
JP2002339006A JP2001144470A JP2001144470A JP2002339006A JP 2002339006 A JP2002339006 A JP 2002339006A JP 2001144470 A JP2001144470 A JP 2001144470A JP 2001144470 A JP2001144470 A JP 2001144470A JP 2002339006 A JP2002339006 A JP 2002339006A
Authority
JP
Japan
Prior art keywords
titanium
powder
raw material
alloy powder
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001144470A
Other languages
Japanese (ja)
Inventor
Nobuhiro Arimoto
伸弘 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2001144470A priority Critical patent/JP2002339006A/en
Publication of JP2002339006A publication Critical patent/JP2002339006A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing fine titanium powder and titanium-alloy powder of minimal contamination by a gas atomizing method. SOLUTION: In this method, the titanium powder and the titanium alloy powder can be manufactured by the gas atomizing method where bar-shaped raw materials constituted of compacts are subjected to high-frequency induction melting. Melting is performed while regulating the chlorine concentration in the bar-shaped raw materials to 300-1,500 ppm to manufacture the fine titanium powder and titanium alloy powder. Moreover, salts of magnesium chloride and sodium chloride or titanium containing these salts in high concentration is added and mixed to and with the raw materials to regulate the chlorine concentration in the bar-shaped raw materials to a value within the above range and carry out melting.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉末冶金や射出成
形、溶射などの粉体加工に用いられる細粒以下のチタン
粉末及びチタン合金粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine-grained titanium powder and titanium alloy powder used for powder processing such as powder metallurgy, injection molding and thermal spraying.

【0002】[0002]

【従来の技術】粉体加工に用いられる金属粉末は、組織
が均質で微細であることが要求されるので、一般に金属
溶湯を噴霧し、急冷微細化するアトマイズ法が用いられ
る。この中で、球状で流動性のよい金属粉末が得られる
ガスアトマイズ法が多く用いられている。
2. Description of the Related Art Since a metal powder used for powder processing is required to have a uniform and fine structure, an atomizing method of spraying a molten metal and rapidly cooling and atomizing is used. Among them, a gas atomizing method that can obtain a spherical metal powder having good fluidity is often used.

【0003】上記ガスアトマイズ法は、原料金属を溶解
した溶湯を、高速噴射される気体流れ中に供給して粉化
する方法であり、原料金属を溶解する手段として、従来
から耐火物製溶解るつぼや水冷式の銅製溶解るつぼなど
が使用されている。また、本発明者らは、先に高周波誘
導溶解を利用した溶解方法(特開平6−116609号
公報)を提案している。この高周波誘導溶解した原料を
使用してガスアトマイズした粉体は、汚染が少ないの
で、他のるつぼ溶解などに比べ有利である。
[0003] The gas atomization method is a method in which a molten metal in which a raw material metal is dissolved is supplied into a high-speed jet gas stream to be pulverized. As a means for melting the raw material metal, a refractory melting crucible made of a refractory material has been used. A water-cooled copper melting crucible is used. Further, the present inventors have previously proposed a melting method using high frequency induction melting (Japanese Patent Application Laid-Open No. 6-116609). Gas atomized powder using the high-frequency induction-melted raw material is less contaminated, and is therefore more advantageous than other crucible melting and the like.

【0004】ガスアトマイズ法の諸条件と粉末粒径との
関係について多くの経験式などが報告されている。その
1例として、下記に示すルバンスカの式について見る
と、溶湯金属の溶湯密度、表面張力、粘性率などの基本
物性が影響していることがわかる。
[0004] Many empirical formulas have been reported on the relationship between various conditions of the gas atomization method and the particle size of the powder. As an example, looking at the Lubanska equation shown below, it can be seen that the basic physical properties such as the molten metal density, surface tension, and viscosity are affected.

【0005】[0005]

【数1】 (Equation 1)

【0006】従って、ガスアトマイズ法によりチタン粉
末及びチタン合金粉末を製造する場合には、製造される
粉末粒径に影響を及ぼす溶湯の粘性、表面張力が大きい
ため、細粒化されにくい性質がある。更に、チタンは高
融点金属である等の条件が重なり、一般には、ガスアト
マイズ法でチタン及びチタン合金を粉末化しても粗粒し
か得られない。
[0006] Therefore, when titanium powder and titanium alloy powder are produced by the gas atomization method, the viscosity and surface tension of the molten metal, which affect the particle diameter of the produced powder, are large, so that there is a tendency that the particles are hardly refined. Furthermore, conditions such as the fact that titanium is a high melting point metal overlap, and in general, only coarse particles can be obtained even if titanium and a titanium alloy are powdered by a gas atomizing method.

【0007】しかるに、近年チタン及びチタン合金の優
れた特性を生かして各種の機械部品や時計バンドなどに
使用されるようになり、用途の拡大とともに緻密な焼結
体を作るため、チタン及びチタン合金の粉末としては、
細粒のものが要求されるようになり、具体的には80μ
m以下のものが望まれている。
However, in recent years, titanium and titanium alloys have been used in various mechanical parts and watch bands by utilizing the excellent properties of titanium and titanium alloys. As powder of
Fine-grained ones are required, specifically 80μ
m or less is desired.

【0008】[0008]

【発明が解決しようとする課題】従来のガスアトマイズ
法では、原料として溶製材が使用されている。これは密
度のばらつきがないために安定して溶解できるためであ
る。しかし、この場合、チタン及びチタン合金の粉末粒
径を粗粒化することはできなかった。また、スポンジチ
タンやスポンジチタンとチタンスクラップ片をプレスで
圧縮してコンパクトを作製し、これを複数個溶接により
接合して棒状原料として使用することもある。この場合
でもチタン及びチタン合金の粉末粒径を細粒化すること
はできなかった。
In the conventional gas atomizing method, an ingot is used as a raw material. This is because there is no variation in the density, so that it can be stably dissolved. However, in this case, the powder particle size of titanium and titanium alloy could not be coarsened. In addition, titanium sponge or titanium sponge and titanium scrap pieces are compressed by a press to produce a compact, and a plurality of compacts are joined by welding to be used as a rod-shaped raw material. Even in this case, it was not possible to reduce the powder particle size of titanium and titanium alloy.

【0009】本発明は、上記従来法に見られる問題点を
排除し、汚染の少ない細粒のチタン粉末及びチタン合金
粉末を、ガスアトマイズ法により製造する方法を提供す
ることにある。
An object of the present invention is to provide a method for producing fine-grained titanium powder and titanium alloy powder with less contamination by a gas atomization method, eliminating the problems encountered in the conventional method.

【0010】[0010]

【課題を解決するための手段】本発明者は、上記目的を
達成するため、ガスアトマイズ法により製造されるチタ
ン粉末及びチタン合金粉末の製造条件による細粒化への
影響について検討した。すなわち、ガスアトマイズ法に
よりチタン及びチタン合金粉末を製造する場合、前記ル
バンスカの式に示されるガス噴射能力(ガス圧力、ガス
流量、ガス流速)と溶湯径が同じであれば、粉末粒径は
溶融チタン及び溶融チタン合金の粘性、表面張力、密度
の基本物性によって決定される。
Means for Solving the Problems In order to achieve the above object, the present inventor studied the effects of the production conditions of titanium powder and titanium alloy powder produced by the gas atomization method on grain refinement. That is, when producing titanium and a titanium alloy powder by the gas atomization method, if the gas injection capacity (gas pressure, gas flow rate, gas flow rate) shown by the above-mentioned Lubanska equation is the same as the molten metal diameter, the powder particle diameter becomes molten titanium. And the basic properties of viscosity, surface tension, and density of the molten titanium alloy.

【0011】例えば、チタン及びチタン合金は、アルミ
ニウムに比べると密度は大きく細粒化方向であるが、粘
性や表面張力といった物性値は大きくなり粗粒化方向と
なる。そこで、これらの現象をとらえて種々検討の結
果、溶解原料中の塩素濃度を制御することにより細粒化
の効果があることを見いだした。この知見に基づいて、
次のとおり発明を完成した。
For example, titanium and titanium alloys have a higher density and a finer grain direction than aluminum, but have large physical property values such as viscosity and surface tension, and thus have a coarser grain direction. Therefore, as a result of various studies taking these phenomena into consideration, it has been found that controlling the chlorine concentration in the dissolved raw material has an effect of grain refinement. Based on this finding,
The invention was completed as follows.

【0012】本発明のチタン粉末及びチタン合金粉末の
製造方法は、コンパクトで構成された棒状原料を高周波
誘導溶解するガスアトマイズ法によりチタン粉末及びチ
タン合金粉末を製造する方法において、棒状原料の塩素
濃度を300〜1500ppmの範囲に調整して溶解す
ることにある。
The method for producing titanium powder and titanium alloy powder according to the present invention is a method for producing titanium powder and titanium alloy powder by a gas atomization method in which a compact rod-shaped raw material is subjected to high frequency induction melting. It is to adjust and dissolve in the range of 300 to 1500 ppm.

【0013】また、上記チタン及びチタン合金粉末の製
造方法において、塩化マグネシウムや塩化ナトリウムの
塩、またはそれらの塩を高濃度に含有するチタンを原料
中に添加・混合することにより、棒状原料の塩素濃度を
調整することにある。
[0013] In the above method for producing titanium and titanium alloy powder, a magnesium chloride or sodium chloride salt or titanium containing a high concentration of such a salt is added to and mixed with the raw material so that the rod-shaped raw material chlorine is removed. The purpose is to adjust the density.

【0014】[0014]

【発明の実施の形態】本発明は、棒状原料を高周波誘導
溶解するガスアトマイズ法によりチタン粉末及びチタン
合金粉末を製造する方法において、棒状原料の塩素濃度
を300〜1500ppmの範囲に調整して溶解するこ
とにある。このように、棒状原料中の塩素濃度を規制す
ることにより、粉末の細粒化が促進される。その理由は
つまびらかではないが、次のように推測される。すなわ
ち、塩化マグネシウムや塩化ナトリウムといった塩は、
溶解時に蒸気となって揮発するが、その蒸発する際に、
溶融チタン及び溶融チタン合金の粘性や表面張力を小さ
くする。または、塩化マグネシウム蒸気や塩化ナトリウ
ム蒸気が溶湯の雰囲気を包み、見かけ上の粘性や表面張
力が小さくなるような現象が発生するのではないかと推
定される。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method for producing titanium powder and titanium alloy powder by a gas atomization method in which a rod-shaped raw material is subjected to high frequency induction melting, wherein the rod-shaped raw material is dissolved by adjusting the chlorine concentration in the range of 300 to 1500 ppm. It is in. In this way, by regulating the chlorine concentration in the rod-shaped raw material, finer powder is promoted. The reason is not obvious, but is speculated as follows. That is, salts such as magnesium chloride and sodium chloride
When dissolved, it evaporates as a vapor, but when it evaporates,
Reduce the viscosity and surface tension of molten titanium and molten titanium alloy. Alternatively, it is presumed that magnesium chloride vapor or sodium chloride vapor envelops the atmosphere of the molten metal, causing a phenomenon in which apparent viscosity and surface tension are reduced.

【0015】従って、粉末原料となる溶解前のチタン及
びチタン合金、あるいは目標のチタン合金組成に配合さ
れたチタンと合金元素との混合物に塩化マグネシウムや
塩化ナトリウムの塩、またはこれらの塩を高濃度に含有
するチタンを添加・混合することにより、細粒化したチ
タン粉末及びチタン合金粉末を得ることができる。
Therefore, magnesium chloride, sodium chloride salt, or a salt thereof is added to the undissolved titanium or titanium alloy as a powder raw material or the mixture of titanium and alloy element blended in the target titanium alloy composition. By adding and mixing the titanium contained in the powder, fine-grained titanium powder and titanium alloy powder can be obtained.

【0016】上記塩は、粉末原料の塩素濃度が300〜
1500ppmの範囲となるように添加する必要があ
る。その理由は、粉末原料の塩素濃度が300ppm未
満では、アトマイズされた粉末は細粒化されず、また1
500ppmを超えると溶解時のスプラッシュの発生が
激しくなり、安定した溶解が困難となるからである。な
お、ガスアトマイズ法における溶解上のトラブルを避
け、効率良く経済的に細粒化粉末を製造するには、塩素
濃度を更に狭めて500〜1200ppmの範囲とする
ことが望ましい。
The above salt has a powder material having a chlorine concentration of 300 to 300.
It is necessary to add so as to be in a range of 1500 ppm. The reason is that if the chlorine concentration of the powder raw material is less than 300 ppm, the atomized powder will not be refined,
If the content exceeds 500 ppm, the generation of splash during dissolution becomes severe and stable dissolution becomes difficult. In order to efficiently and economically produce a finely divided powder while avoiding a trouble in dissolution in the gas atomization method, it is desirable to further narrow the chlorine concentration to be in the range of 500 to 1200 ppm.

【0017】粉末原料の塩素濃度を調整するには、原料
コンパクトを製作する際、塩化マグネシウムや塩化ナト
リウムの塩を添加するか、あるいはこれらの塩を高濃度
に含有するスポンジチタンを使用する。
In order to adjust the chlorine concentration of the powder raw material, when manufacturing a raw material compact, a salt of magnesium chloride or sodium chloride is added, or sponge titanium containing a high concentration of these salts is used.

【0018】[0018]

【実施例】実施例1 塩素濃度の異なるスポンジチタン及びチタンスクラップ
原料を、目標とする塩素濃度に配合した後にプレスで圧
縮してコンパクト(直径40mm、長さ40mm)を各
種塩素濃度ごとに複数個ずつ作製し、次に、このコンパ
クトを溶接により接合することにより各種塩素濃度ごと
の棒状原料を作製した。この棒状原料を高周波非接触誘
導溶解ガスアトマイズ法によって粉末化し、純チタン粉
末を製造した。この際の高周波誘導溶解は周波数100
kHz,溶解電力50kwの条件で溶解し、噴霧媒体と
して40kg/cm2、15Nm2/minのアルゴンガ
スを使用した。得られた純チタン粉末の平均粒径、溶解
状況を表1に示す。
Example 1 Titanium sponge and titanium scrap raw materials having different chlorine concentrations were blended to a target chlorine concentration and then compressed by a press to produce a plurality of compacts (diameter 40 mm, length 40 mm) for each chlorine concentration. Then, the compacts were joined by welding to produce rod-shaped raw materials for various chlorine concentrations. This rod-shaped raw material was powdered by a high-frequency non-contact induction melting gas atomizing method to produce pure titanium powder. The high-frequency induction melting at this time is performed at a frequency of 100.
Melting was performed under the conditions of kHz and a melting power of 50 kW, and argon gas of 40 kg / cm 2 and 15 Nm 2 / min was used as a spray medium. Table 1 shows the average particle size and the dissolution state of the obtained pure titanium powder.

【0019】[0019]

【表1】 [Table 1]

【0020】上記表1の結果より、本発明の実施により
塩素濃度を300〜1500ppmの範囲に規制した実
施例1〜6は、いずれも粉末粒径が80μm以下の細粒
が得られており、また安定操業性もよいことがわかる。
これに対し、塩素濃度が300〜1500ppmの範囲
を外れた比較例1〜3は、いずれも粉末粒径が80μm
を超えており、細粒化していないことがわかる。比較例
3では安定操業ができなかった。具体的には、棒状原料
の下端部の溶解部分から発生するスプラッシュが激しか
ったためか、棒状原料の下端から流下する溶湯流が乱れ
ていた。そのため、噴霧ガスの集中部分に安定して溶湯
流を供給することができなかったために、細粒化が阻害
されたものと考えられる。
From the results shown in Table 1 above, in Examples 1 to 6 in which the chlorine concentration was controlled in the range of 300 to 1500 ppm by implementing the present invention, fine particles having a powder particle size of 80 μm or less were obtained. Also, it can be seen that the stable operability is good.
On the other hand, in Comparative Examples 1 to 3 in which the chlorine concentration was out of the range of 300 to 1500 ppm, the powder particle size was 80 μm.
, And it can be seen that the particles were not refined. In Comparative Example 3, stable operation could not be performed. Specifically, the flow of the molten metal flowing down from the lower end of the rod-shaped raw material was disturbed, probably because of the violent splash generated from the melting portion at the lower end of the rod-shaped raw material. Therefore, it is considered that the melt flow could not be stably supplied to the concentrated portion of the spray gas, and thus the grain refinement was inhibited.

【0021】実施例2 塩素濃度の異なるスポンジチタン及びチタンスクラップ
原料をアルミ・バナジウム母合金と共に、目標とする合
金組成と塩素濃度に配合して実施例1と同様に各種塩素
濃度の直径40mmの棒状原料を作り、高周波誘導溶解
ガスアトマイズ法によりTi−6Al−4V合金粉末を
製造した。この際、噴霧媒体として40kg/cm2
15Nm2/minのアルゴンガスを使用した。得られ
たTi−6Al−4V合金粉末の平均粒径、溶解状況を
表2に示す。
EXAMPLE 2 A mixture of titanium sponge and titanium scrap materials having different chlorine concentrations together with an aluminum / vanadium master alloy to a target alloy composition and chlorine concentration was prepared. A raw material was prepared, and a Ti-6Al-4V alloy powder was manufactured by a high-frequency induction melting gas atomizing method. At this time, 40 kg / cm 2 as a spray medium,
15 Nm 2 / min of argon gas was used. Table 2 shows the average particle size and the dissolution state of the obtained Ti-6Al-4V alloy powder.

【0022】[0022]

【表2】 [Table 2]

【0023】上記表2の結果より、本発明の実施により
塩素濃度を300〜1500ppmの範囲に規制した実
施例7〜9は、いずれも粉末粒径が80μm以下の細粒
が得られており、また安定操業性もよいことがわかる。
これに対し、塩素濃度が300〜1500ppmの範囲
を外れた比較例4〜6は、いずれも粉末粒径が80μm
を超えており、細粒化していないことがわかる。
From the results in Table 2 above, in Examples 7 to 9 in which the chlorine concentration was controlled to be in the range of 300 to 1500 ppm by implementing the present invention, fine particles having a powder particle size of 80 μm or less were obtained. Also, it can be seen that the stable operability is good.
On the other hand, in Comparative Examples 4 to 6 in which the chlorine concentration was out of the range of 300 to 1500 ppm, the powder particle size was 80 μm.
, And it can be seen that the particles were not refined.

【0024】[0024]

【発明の効果】本発明の実施によれば、ガスアトマイズ
法において、塩素濃度を300〜1500ppmの範囲
に規制した原料を使ってアトマイズすることにより、効
率良くチタン及びチタン合金の細粒粉末を製造すること
ができる。
According to the present invention, fine particles of titanium and titanium alloy can be produced efficiently by atomizing using a raw material whose chlorine concentration is regulated in the range of 300 to 1500 ppm in the gas atomization method. be able to.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コンパクトで構成された棒状原料を高周
波誘導溶解するガスアトマイズ法によりチタン粉末及び
チタン合金粉末を製造する方法において、棒状原料の塩
素濃度を300〜1500ppmの範囲に調整して溶解
するチタン粉末及びチタン合金粉末の製造方法。
1. A method for producing a titanium powder and a titanium alloy powder by a gas atomization method in which a compact rod-shaped raw material is subjected to high frequency induction melting by dissolving the rod-shaped raw material by adjusting the chlorine concentration of the raw material to a range of 300 to 1500 ppm. Method for producing powder and titanium alloy powder.
【請求項2】 塩化マグネシウムや塩化ナトリウムの
塩、またはそれらの塩を高濃度に含有するチタンを原料
中に添加・混合することにより、棒状原料の塩素濃度を
調整する請求項1記載のチタン粉末及びチタン合金粉末
の製造方法。
2. The titanium powder according to claim 1, wherein the chlorine concentration of the rod-shaped raw material is adjusted by adding / mixing a salt of magnesium chloride or sodium chloride, or titanium containing a high concentration thereof to the raw material. And a method for producing titanium alloy powder.
JP2001144470A 2001-05-15 2001-05-15 Method for manufacturing titanium and titanium alloy powder Pending JP2002339006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001144470A JP2002339006A (en) 2001-05-15 2001-05-15 Method for manufacturing titanium and titanium alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001144470A JP2002339006A (en) 2001-05-15 2001-05-15 Method for manufacturing titanium and titanium alloy powder

Publications (1)

Publication Number Publication Date
JP2002339006A true JP2002339006A (en) 2002-11-27

Family

ID=18990416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001144470A Pending JP2002339006A (en) 2001-05-15 2001-05-15 Method for manufacturing titanium and titanium alloy powder

Country Status (1)

Country Link
JP (1) JP2002339006A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308755A (en) * 2006-05-18 2007-11-29 Sumitomo Titanium Corp Method for producing titanium-based alloy spherical powder
US7833472B2 (en) * 2005-06-01 2010-11-16 General Electric Company Article prepared by depositing an alloying element on powder particles, and making the article from the particles
CN104120304A (en) * 2014-07-21 2014-10-29 东北大学 Method for preparing titanium aluminum alloy based on aluminum heat self-propagation-injection depth reduction
CN104131128A (en) * 2014-07-21 2014-11-05 东北大学 Aluminum thermal self-propagating-injection depth reduction based method for preparing ferro-titanium
CN107099696A (en) * 2017-06-13 2017-08-29 东北大学 The method for preparing ferro-titanium with wash heat refining is reduced based on aluminothermy self- propagating gradient
CN107151752A (en) * 2017-06-13 2017-09-12 东北大学 The method for preparing titanium alloy with wash heat refining is reduced based on aluminothermy self- propagating gradient
CN108291272A (en) * 2015-08-14 2018-07-17 库吉钛私人有限公司 Use the method for high surface area/volume reactive particle
CN108350526A (en) * 2015-08-14 2018-07-31 库吉钛私人有限公司 The method that metal-containing material is recycled from composite material
US11078556B2 (en) 2015-08-14 2021-08-03 Coogee Titanium Pty Ltd Method for production of a composite material using excess oxidant
WO2021157156A1 (en) * 2020-02-07 2021-08-12 株式会社大阪チタニウムテクノロジーズ Titanium alloy powder production method
CN114101692A (en) * 2021-11-30 2022-03-01 山东迈得新材料有限公司 Preparation method of 3D printing titanium alloy powder

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833472B2 (en) * 2005-06-01 2010-11-16 General Electric Company Article prepared by depositing an alloying element on powder particles, and making the article from the particles
JP2007308755A (en) * 2006-05-18 2007-11-29 Sumitomo Titanium Corp Method for producing titanium-based alloy spherical powder
WO2007135806A1 (en) * 2006-05-18 2007-11-29 Osaka Titanium Technologies Co., Ltd. Process for producing spherical titanium alloy powder
CN104120304A (en) * 2014-07-21 2014-10-29 东北大学 Method for preparing titanium aluminum alloy based on aluminum heat self-propagation-injection depth reduction
CN104131128A (en) * 2014-07-21 2014-11-05 东北大学 Aluminum thermal self-propagating-injection depth reduction based method for preparing ferro-titanium
CN104131128B (en) * 2014-07-21 2016-04-06 东北大学 A kind of method preparing ferro-titanium based on aluminothermy self-propagating-winding-up drastic reduction
CN108291272A (en) * 2015-08-14 2018-07-17 库吉钛私人有限公司 Use the method for high surface area/volume reactive particle
CN108350526A (en) * 2015-08-14 2018-07-31 库吉钛私人有限公司 The method that metal-containing material is recycled from composite material
US10960469B2 (en) 2015-08-14 2021-03-30 Coogee Titanium Pty Ltd Methods using high surface area per volume reactive particulate
US11078556B2 (en) 2015-08-14 2021-08-03 Coogee Titanium Pty Ltd Method for production of a composite material using excess oxidant
US11162157B2 (en) 2015-08-14 2021-11-02 Coogee Titanium Pty Ltd Method for recovery of metal-containing material from a composite material
CN107151752A (en) * 2017-06-13 2017-09-12 东北大学 The method for preparing titanium alloy with wash heat refining is reduced based on aluminothermy self- propagating gradient
CN107099696A (en) * 2017-06-13 2017-08-29 东北大学 The method for preparing ferro-titanium with wash heat refining is reduced based on aluminothermy self- propagating gradient
CN107151752B (en) * 2017-06-13 2018-10-23 东北大学 The method for preparing titanium alloy with wash heat refining based on the reduction of aluminothermy self- propagating gradient
WO2018228140A1 (en) * 2017-06-13 2018-12-20 东北大学 Method for preparing ferrotitanium alloy based on aluminothermic self-propagating gradient reduction and slagging refining
WO2021157156A1 (en) * 2020-02-07 2021-08-12 株式会社大阪チタニウムテクノロジーズ Titanium alloy powder production method
CN114101692A (en) * 2021-11-30 2022-03-01 山东迈得新材料有限公司 Preparation method of 3D printing titanium alloy powder
CN114101692B (en) * 2021-11-30 2023-12-29 山东迈得新材料有限公司 Preparation method of 3D printing titanium alloy powder

Similar Documents

Publication Publication Date Title
Sun et al. Review of the methods for production of spherical Ti and Ti alloy powder
Sun et al. A novel method for production of spherical Ti-6Al-4V powder for additive manufacturing
US20220288684A1 (en) Methods and apparatuses for producing metallic powder material
CA1301462C (en) Hydrometallurgical process for producing finely divided spherical refractory metal based powders
JP5746207B2 (en) Method for producing high-purity copper powder using thermal plasma
EP2701869B1 (en) LOW COST PROCESSING TO PRODUCE SPHERICAL TITANIUM ALLOY POWDER Ti6Al4V
JP2014515792A5 (en)
JP2005002356A (en) Process for production of titanium alloy
US5114471A (en) Hydrometallurgical process for producing finely divided spherical maraging steel powders
JP2002339006A (en) Method for manufacturing titanium and titanium alloy powder
JP2009287106A (en) Method for producing titanium spherical powder, and titanium spherical powder
KR20050039690A (en) Method and apparatus for the production of metal powder
JP5576701B2 (en) Method for melting aluminum powder
US4913731A (en) Process of making prealloyed tungsten alloy powders
WO2004108989A1 (en) Electrode for discharge surface treatment, and method for manufacturing and storing the same
WO2015146604A1 (en) SPUTTERING TARGET COMPRISING Ni-P ALLOY OR Ni-Pt-P ALLOY AND PRODUCTION METHOD THEREFOR
JP2004124257A (en) Metal copper particulate, and production method therefor
JPH02156003A (en) Manufacture of alloy powder containing titanium-aluminum intermetallic compound
JP2002241807A (en) Method for manufacturing titanium-aluminum alloy powder
JP4042095B2 (en) High purity metal powder manufacturing method and high purity metal powder manufacturing apparatus
JP2010189678A (en) Cr-containing copper alloy wire, and method for producing the same
JP4653140B2 (en) Melting method of metal ingot by electron beam melting
JPH0920938A (en) Method for adding refining agent to molten al and molten al alloy
JPH08209207A (en) Production of metal powder
WISMOGROHO Investigation of Effect of Various Hot Gas Atomisation and Melting Pot Temperatures on Tin Alloy Powder Product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040901