JPS5851779B2 - Molten steel stirring method in continuous casting equipment - Google Patents

Molten steel stirring method in continuous casting equipment

Info

Publication number
JPS5851779B2
JPS5851779B2 JP4329180A JP4329180A JPS5851779B2 JP S5851779 B2 JPS5851779 B2 JP S5851779B2 JP 4329180 A JP4329180 A JP 4329180A JP 4329180 A JP4329180 A JP 4329180A JP S5851779 B2 JPS5851779 B2 JP S5851779B2
Authority
JP
Japan
Prior art keywords
side wall
molten steel
electromagnetic
phase
short side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4329180A
Other languages
Japanese (ja)
Other versions
JPS56139263A (en
Inventor
精二 稲崎
武夫 塩沢
賢太 吉井
弘一 藤原
政彦 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4329180A priority Critical patent/JPS5851779B2/en
Publication of JPS56139263A publication Critical patent/JPS56139263A/en
Publication of JPS5851779B2 publication Critical patent/JPS5851779B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Description

【発明の詳細な説明】 本発明は、連続鋳造設備における溶鋼攪拌方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for stirring molten steel in continuous casting equipment.

近年、高級鋼種を対象とする連続鋳造設備においては、
鋳造銅壁内溶鋼に水平回転運動を与えて、等軸晶率の向
上と介在物の浮上を図る電磁攪拌装置を組み込んだ鋳型
が提供されている。
In recent years, in continuous casting equipment for high-grade steel,
A mold is provided that incorporates an electromagnetic stirring device that imparts horizontal rotational motion to molten steel within a cast copper wall to improve equiaxed crystallinity and float inclusions.

この電磁攪拌装置は、誘導電動機の原理を応用したもの
であって、鋳型鋼壁自溶鋼中に回転磁界を生じしめ、該
溶鋼に水平回転運動を与えるようにしたものである。
This electromagnetic stirring device applies the principle of an induction motor, and generates a rotating magnetic field in self-molten steel with a mold steel wall to impart horizontal rotational motion to the molten steel.

上記のように、電磁攪拌装置を用いれば、等軸晶率の向
上や介在物の浮上を図れるのであるが、従来の円筒鉄心
形電磁攪拌装置においては、鋳型鋼壁が水平断面長方形
又は正方形等の角形である場合、鋳型鋼壁のコーナ部に
乱流が発生しやすくこの乱流が原因で鋳型的溶鋼表面上
のフラックスの溶鋼中への巻き込みが発生したり、ある
いは製造された鋼片の攪拌相当位置に発生する負偏析量
が顕著になる等の不具合がある。
As mentioned above, by using an electromagnetic stirrer, it is possible to improve the equiaxed crystallinity and to float inclusions, but in the conventional cylindrical core type electromagnetic stirrer, the mold steel wall has a horizontal cross section of rectangular or square shape. When the mold steel wall has a rectangular shape, turbulence is likely to occur at the corners of the mold steel wall, and this turbulence can cause the flux on the surface of the mold-like molten steel to get caught up in the molten steel, or cause the manufactured steel billet to become turbulent. There are problems such as a significant amount of negative segregation occurring at the position corresponding to stirring.

特に、鋳型鋼壁が水平断面長方形である場合。Especially if the molded steel wall has a rectangular horizontal section.

長側壁沿いの溶鋼流動速度が短側壁沿いの溶鋼流動速度
より強くなる関係で、溶鋼回転方向に見て長側壁から短
側壁に至る2つのコーナ部における乱流が激しく、溶鋼
の円滑な水平回転運動が得られないという不具合があっ
た。
Because the flow velocity of molten steel along the long side wall is stronger than the flow velocity of molten steel along the short side wall, the turbulence at the two corners from the long side wall to the short side wall is intense when viewed in the direction of molten steel rotation, and smooth horizontal rotation of the molten steel is prevented. There was a problem with not being able to exercise.

本発明は、水平断面が長方形である鋳型鋼壁に適用する
電磁攪拌装置において、鋳型鋼壁の各長側壁と各短側壁
に沿って流れる溶鋼の流動速度を制御することによって
、溶鋼の上記コーナ部における乱流を緩和し、円滑な水
平回転運動を行なわしめ、以って、フラックスの巻き込
みに起因する介在物の増加や、攪拌相当位置に生成する
負偏析量の不均一化と顕著化の改善を図ろうとするもの
である。
The present invention provides an electromagnetic stirring device that is applied to a mold steel wall having a rectangular horizontal cross section, by controlling the flow rate of the molten steel flowing along each long side wall and each short side wall of the mold steel wall. This reduces turbulence in the area and enables smooth horizontal rotation, thereby reducing the increase in inclusions caused by flux entrainment and the unevenness and intensification of the amount of negative segregation generated at the position equivalent to stirring. This is an attempt to make improvements.

本発明に係る溶鋼攪拌方法では、従来の円筒鉄心形では
なく、鋳型鋼壁より一回り大きくかっこれと相似形をな
す角筒鉄心形電磁攪拌装置を使用する。
In the molten steel stirring method according to the present invention, instead of the conventional cylindrical core type, a rectangular cylindrical core type electromagnetic stirrer which is slightly larger than the mold steel wall and has a similar shape to the parentheses is used.

そして、この角筒鉄心は、各側壁の内面に1つの凸形磁
極を有し、各長側壁の凸形磁極に1つの電磁コイルがま
た各短側壁の凸形磁極に今1つの電磁コイルが夫々巻回
されている。
This rectangular cylindrical core has one convex magnetic pole on the inner surface of each side wall, one electromagnetic coil on the convex magnetic pole on each long side wall, and one electromagnetic coil on the convex magnetic pole on each short side wall. They are each wrapped around each other.

各凸形磁極は、各種の中立位置もしくは、溶鋼回転方向
に見て長側壁から短側壁に至る2つのコーナ部の側に偏
位した位置に設けられる。
Each convex magnetic pole is provided at various neutral positions or at positions offset toward two corner portions extending from the long side wall to the short side wall when viewed in the direction of rotation of the molten steel.

本発明に係る溶鋼攪拌方法は、上記構造の装置を鋳型鋼
壁の外周に嵌め込み、略電気角π/2の位相差を有しか
つ電流値の異なる2相の正弦波状の交流u、v(u<v
とすると)を、U相の交流を各長側壁の凸形磁極の電磁
コイルにまたV相の交流を各短側壁の凸形磁極の電磁コ
イルに夫々流して、長側壁沿いの電磁力が小さく、短側
壁沿いの電磁力が大きくなる回転磁界を発生せしめて鋳
型銅壁内溶鋼を円滑に水平回転させることを特徴として
いる。
The method for stirring molten steel according to the present invention involves fitting the device having the above-mentioned structure onto the outer periphery of the steel mold wall, and generating two phases of sinusoidal alternating current u, v ( u<v
), the U-phase alternating current is passed through the electromagnetic coil with the convex magnetic pole on each long side wall, and the V-phase alternating current is passed through the electromagnetic coil with the convex magnetic pole on each short side wall, so that the electromagnetic force along the long side wall is small. , it is characterized by generating a rotating magnetic field in which the electromagnetic force along the short side wall increases, thereby smoothly horizontally rotating the molten steel within the copper mold wall.

以下に、本発明を図示の実施例について具体的に説明す
る。
The present invention will be specifically described below with reference to illustrated embodiments.

第1図に角筒鉄心形電磁攪拌装置1を、第3図に該装置
を鋳型鋼壁5の外周に嵌め込んだ状態を示している。
FIG. 1 shows a rectangular cylindrical core type electromagnetic stirring device 1, and FIG. 3 shows a state in which the device is fitted onto the outer periphery of a molded steel wall 5.

装置1の鉄心は鋳型鋼壁5と大略相似形であって、両者
井水平断面長方形状である。
The iron core of the device 1 has a substantially similar shape to the mold steel wall 5, and both have a rectangular horizontal cross section.

鉄心の各種2a 、2a’;2b、2b’はその内面に
凸形磁極3a、3a’;3b、3b’を有している。
Each type of iron core 2a, 2a'; 2b, 2b' has a convex magnetic pole 3a, 3a'; 3b, 3b' on its inner surface.

この実施例では、各凸形磁極3 a p 3 a’ p
3 b s3b’は各種2a、2a’;2b、2b’
の中立位置(中心線o 、 o’上)に位置しているが
、凸形磁極3aと3bを、また、凸形磁極3 a/と3
b/を夫々互いに近ずけるようにしてもよい。
In this example, each convex magnetic pole 3 a p 3 a' p
3 b s3b' is various 2a, 2a'; 2b, 2b'
The convex magnetic poles 3a and 3b are located at the neutral position (on the center lines o, o'), and the convex magnetic poles 3a/ and 3
b/ may be moved closer to each other.

上記長側壁2a、28′の対向凸形磁極3a。Opposed convex magnetic poles 3a of said long side walls 2a, 28'.

33′には1つの電磁コイル4aを同方向に巻回し。33', one electromagnetic coil 4a is wound in the same direction.

また、短側壁2b、2b’の対向凸形磁極3b。Also, opposed convex magnetic poles 3b on the short side walls 2b, 2b'.

3b’には今1つの電磁コイル4bを同方向に巻回して
いる。
Another electromagnetic coil 4b is wound around 3b' in the same direction.

尚、これらの電磁コイル4a、4bは自己冷却形であっ
て、第2図に示すように、本体4cの中心が中空になっ
ていて、該中空部4b内に冷却水を流すようにしている
These electromagnetic coils 4a and 4b are of a self-cooling type, and as shown in FIG. 2, the center of the main body 4c is hollow, and cooling water is allowed to flow into the hollow part 4b. .

本体4Cの外周には絶縁層4eを形成している。An insulating layer 4e is formed on the outer periphery of the main body 4C.

また、磁気抵抗を小さくするため上記各凸形磁極3 a
、3 a’ r 3 b s 3 b’と、鋳型鋼壁
5の各種6a、6、a’ + 5 b t 6 b’と
のエヤーギャップを小さくしている。
In addition, in order to reduce magnetic resistance, each of the above-mentioned convex magnetic poles 3 a
, 3 a' r 3 b s 3 b' and the various types 6 a, 6, a' + 5 b t 6 b' of the mold steel wall 5 are made small.

さて、この攪拌方法では、上記各電磁コイル4a、4b
に第4図(I>に示した電気角π/2の位相差を有しか
つ電流値の異なる2相の正弦波状の交流u、v(但し、
u<v)を流す。
Now, in this stirring method, each of the electromagnetic coils 4a, 4b
In Fig. 4 (I>), two-phase sinusoidal alternating current u, v having a phase difference of electrical angle π/2 and different current values (however,
Flow u<v).

すなわち。U相の交流を各長側壁の凸形磁極の電磁コイ
ル4aに、またV相の交流を各短側壁の凸形磁極の電磁
コイル4bに夫々流す。
Namely. U-phase alternating current is passed through the electromagnetic coils 4a with convex magnetic poles on each long side wall, and V-phase alternating current is passed through the electromagnetic coils 4b with convex magnetic poles on each short side wall.

今、各相の交流の電磁コイル4a、4b内の流れ方向が
例えば第3図に示す方向(図中■印は紙面奥方向への流
れを示し、■印は紙面手前方向の流れを示す)であると
すれば、U相の電流の流れによってφUの磁界が生じ、
またV相の交流の流れによってφVの磁界が生じる。
Now, the flow direction of each phase of alternating current in the electromagnetic coils 4a and 4b is, for example, the direction shown in FIG. If so, a magnetic field of φU is generated by the flow of U-phase current,
Further, a magnetic field of φV is generated by the V-phase alternating current flow.

各相の交流の電磁コイル内の流れ方向が逆方向になれば
磁界の方向も逆方向となる。
If the flow direction of each phase of alternating current in the electromagnetic coil is reversed, the direction of the magnetic field is also reversed.

尤も何れの場合も一定の漏れ磁束は生じる。However, in either case, a certain amount of leakage flux occurs.

U相の電流Iu 、v相の電流Ivは夫々次式で表わさ
れる(但し、Imu 、ImvはU相、■相の最大値) Iu=ImuIlsin wt Iv=Imv−sin(wt−y) 磁界φU、φVの強さは夫々電流の大きさに対応するが
、各電気角π/4.π・・・における磁界を第4図(I
I)イ〜チに示している。
The U-phase current Iu and the V-phase current Iv are respectively expressed by the following formulas (Imu and Imv are the maximum values of the U-phase and ■phase) Iu=ImuIlsin wt Iv=Imv-sin(wt-y) Magnetic field φU , φV correspond to the magnitude of the current, but each electrical angle π/4. The magnetic field at π... is shown in Figure 4 (I
I) Shown in I to H.

尚1図中矢印は磁界分布をベクトル表示したものである
Note that the arrows in Figure 1 represent the magnetic field distribution as vectors.

今、電気角wtがOの場合について考えると、■相の電
流は−Imvであり、U相の電流はOである。
Now, considering the case where the electrical angle wt is O, the current of the ■ phase is -Imv, and the current of the U phase is O.

したがって、磁界φVのみがイに示す方向、つまり、凸
形磁極3b/から3bへの方向に作用する。
Therefore, only the magnetic field φV acts in the direction shown in A, that is, in the direction from the convex magnetic poles 3b/to 3b.

電気角wtがπ/4になると、U相の電流は最大値Im
uより小さいプラス電流となり、■相の電流は最小値−
Imvより小さいマイナス電流となる。
When the electrical angle wt becomes π/4, the U-phase current reaches its maximum value Im
The positive current is smaller than u, and the current of the ■ phase is the minimum value -
This becomes a negative current smaller than Imv.

したがって、磁界φUとφVの両者が生じ、その合成磁
界φuvは1口に示すように、磁界φUとφVとをベク
トル合成したものとなる。
Therefore, both the magnetic fields φU and φV are generated, and the resultant magnetic field φuv is a vector combination of the magnetic fields φU and φV, as shown in FIG.

電気角wtがπ/2になると、U相の電流は最大値Im
uとなる一方V相の電流は0となる。
When the electrical angle wt becomes π/2, the U-phase current reaches its maximum value Im
On the other hand, the V-phase current becomes 0.

そうすれば、ハに示すように、磁界はφUのみが生じる
In this case, only φU of the magnetic field is generated, as shown in FIG.

電気角wtが3π/4になると、U相の電流は最大値I
muより小さいプラス電流となる一方、■相の電流も最
大値Imvより小さいプラス電流となる。
When the electrical angle wt becomes 3π/4, the U-phase current reaches the maximum value I
While the positive current is smaller than mu, the current of the ■ phase also becomes a positive current smaller than the maximum value Imv.

そうすれば、ハと同方向の磁界φUと口と反対方向の磁
界φVが生じ、その合成磁界φuvは二に示すようにな
る。
Then, a magnetic field φU in the same direction as C and a magnetic field φV in the opposite direction to the mouth are generated, and the resultant magnetic field φuv becomes as shown in 2.

ホ、へ、ト、チは夫々、電気角wtがπ。The electric angle wt of ho, he, g, and chi is π.

、5π/4,3π/2,7π/4になった場合の合成磁
界を示している。
, 5π/4, 3π/2, and 7π/4.

これらの磁界φV、φuv、φU。φuvは夫々ト2口
、ハ、二の場合における磁界φV、φuv、φU、φu
vと同一大きさでかつ逆方向に作用する。
These magnetic fields φV, φuv, φU. φuv is the magnetic field φV, φuv, φU, φu in cases G, 2, C, and 2, respectively.
It has the same magnitude as v and acts in the opposite direction.

以上の説明から明らかなように、磁界は図中時計回り方
向に回転することになる。
As is clear from the above explanation, the magnetic field rotates in the clockwise direction in the figure.

つまり回転磁界φを生ずることになる(第5図)。In other words, a rotating magnetic field φ is generated (FIG. 5).

このように溶鋼中において磁界が回転すれば、誘導電動
機の原理と同様の原理で、フレミングの右手の方剤およ
び左手の法則に従って溶鋼は磁界回転方向に移動するこ
とになる。
If the magnetic field rotates in molten steel in this way, the molten steel will move in the direction of rotation of the magnetic field according to Fleming's right-hand rule and left-hand rule, based on a principle similar to that of an induction motor.

今第5図についてこの原理を説明すれば次のとおりであ
る。
This principle can now be explained with reference to FIG. 5 as follows.

今、電流の流れ方向が第4図■1イである場合を考える
と、鋳型コーナ部A、D間領域については、回転磁界φ
の回転力向が図示の時計回り方向であるから、つまり、
コーナ部りからAへの方向であるから、溶鋼は回転磁界
φに対して相対的にベクトルrの方向に力が作用し、一
方磁界φVはイにおいては図示の方向であるから、フレ
ミングの右手の法則に従って渦電流iが発生し、すなわ
ち上向きの電流iが発生することになる。
Now, considering the case where the current flow direction is shown in Fig. 4 ■1 A, the rotating magnetic field φ
Since the rotational force direction of is clockwise as shown in the figure, that is,
Since the direction is from the corner to A, a force acts on the molten steel in the direction of vector r relative to the rotating magnetic field φ.On the other hand, since the magnetic field φV is in the direction shown at A, Fleming's right hand An eddy current i is generated according to the law, that is, an upward current i is generated.

そして、この電流iが生ずると、フレミングの左手の方
則に従って、溶鋼を鋳型鋼壁5の短側壁5b/沿いにコ
ーナ部りからA側に移動せしめる電磁力F1が発生する
When this current i is generated, an electromagnetic force F1 is generated that moves the molten steel from the corner toward the A side along the short side wall 5b/ of the mold steel wall 5 according to Fleming's left-hand rule.

このようにして、上記領域の溶鋼は電磁力Fの方向に移
動する。
In this way, the molten steel in the area moves in the direction of the electromagnetic force F.

一方、コーナ部B、D間領域においては、磁界φVの方
向は上記と同じであるが1回転磁界φの回転方向がコー
ナ部BからCへの方向であるから、力F′、電流iの方
向が上記と逆方向になり、したがって、電磁力F、は鋳
型鋼壁5の短側壁6b’沿いにコーナ部BからCの方向
に作用する。
On the other hand, in the region between corner parts B and D, the direction of magnetic field φV is the same as above, but since the rotation direction of one rotation magnetic field φ is from corner part B to C, force F' and current i The direction is opposite to that described above, and therefore the electromagnetic force F acts along the short side wall 6b' of the mold steel wall 5 in the direction from the corner B to C.

これと同様の原理で、電流の流れ方向の変化に応じて、
コーナ部Aにおいては、電磁力F2は。
Based on the same principle, depending on the change in the direction of current flow,
At corner A, the electromagnetic force F2 is.

電磁力Fによってコーナ部Aに向けて移動せしめられた
溶鋼を方向転換せしめ長側壁6a!に沿って移動せしめ
る方向に作用する。
The long side wall 6a changes the direction of the molten steel moved toward the corner A by the electromagnetic force F! It acts in the direction of moving along the

コーナ部AB間においては、電磁力F3は、長側壁6a
沿いにコーナ部Bに向って作用する。
Between the corner parts AB, the electromagnetic force F3 is
It acts along the direction toward the corner B.

コーナ部Bにおいては、電磁力F4は、電磁力F3によ
って移動せしめられた溶鋼を方向転換せしめ短側壁6b
に沿って移動せしめる方向に作用する。
At the corner B, the electromagnetic force F4 changes the direction of the molten steel moved by the electromagnetic force F3, and the short side wall 6b
It acts in the direction of moving along the

コーナ部C,コーナ部C,D問およびコーナ部り夫々に
おける電磁力F6 s F7 p F8は上記電磁力F
2.F3およびF4夫々と同一大きさでかつ逆方向に作
用する。
The electromagnetic force F6 s F7 p F8 at corner C, corner C, D, and each corner is the electromagnetic force F above.
2. They have the same magnitude as F3 and F4 and act in opposite directions.

第6図に電磁力F1〜F8を比較的にベクトル表示して
いる。
In FIG. 6, the electromagnetic forces F1 to F8 are relatively expressed as vectors.

図に示すように、短側壁5 b’、 $b沿いに作用す
る電磁力Fl p F5と長側壁5a。
As shown in the figure, the electromagnetic force Fl p F5 acting along the short side wall 5 b', $b and the long side wall 5 a.

6 b’沿いに作用する電磁力F3.F7とは相対的に
後者が前者より一段と小さくなっている点にこの実施例
の特徴がある。
6 Electromagnetic force acting along b' F3. A feature of this embodiment is that the latter is much smaller than the former compared to F7.

これは、前記したように、U相の電流の大きさをV相の
電流の大きさより小さく設定して短側壁5a、6a’沿
い方向に作用する磁界φUを長側壁6b、6b’沿い方
向に作用する磁界φVより一段と小さくしているからで
ある。
As mentioned above, this is done by setting the magnitude of the U-phase current smaller than the magnitude of the V-phase current, so that the magnetic field φU acting along the short side walls 5a, 6a' is directed along the long side walls 6b, 6b'. This is because it is made much smaller than the acting magnetic field φV.

このように電磁力の大きさを制御することによち、相対
的に大きくなりがちな長側壁沿いの溶鋼流動速度は小さ
く抑えられ、一方短側壁沿いの溶鋼流動速度は大きくな
って、両溶鋼流動速度は平均化され、全体として円滑な
溶鋼流動を得ることができる。
By controlling the magnitude of the electromagnetic force in this way, the molten steel flow velocity along the long side wall, which tends to be relatively large, can be suppressed to a small value, while the molten steel flow velocity along the short side wall increases, and both molten steel The flow velocity is averaged, and smooth molten steel flow can be obtained as a whole.

したがって、各コーナ部A、B、C。Dにおいても乱流
や巻き込みの発生は緩和される。
Therefore, each corner part A, B, C. In case D, the occurrence of turbulence and entrainment is also alleviated.

U相とV相の電流の妥当な大きさは、鋳型鋼壁の大きさ
や長側壁と短側壁の長さ比率によりかわるので、結果的
に鋳型鋼壁内溶鋼が円滑に回転運動を行うように決定す
ればよい。
The appropriate magnitude of the U-phase and V-phase currents varies depending on the size of the mold steel wall and the length ratio of the long side wall and short side wall, so that the molten steel within the mold steel wall can rotate smoothly. All you have to do is decide.

尚、U相およびV相の交流は2Hz〜12H適度の低周
波が好ましい。
Note that the U-phase and V-phase alternating currents preferably have a moderately low frequency of 2 Hz to 12 H.

本発明者等は上記実施例に従って実際に電磁攪拌を行っ
たところ非常に良好な結果を得た。
The present inventors actually carried out electromagnetic stirring according to the above example and obtained very good results.

比較実験例 鋳型諸元が〈長側壁×短側壁; 318m1X218冗
荒〉である鋳型を用いかつ2Hzの電流を使用して。
Comparative Experimental Example A mold with mold dimensions of <long side wall x short side wall; 318 m1 x 218 m2> and a current of 2 Hz were used.

V相最大電流とU相最犬電流を共に160OAとした場
合の従来例と、前者を160OAにまた後者を120O
A、(電流比1:0.75)、とした本発明例との2つ
の場合について、メニスカス下20mmにおける溶鋼移
動速度とコーナ部における溶鋼盛り上がり寸法を測定し
たところ以下の結果を得1本発明例によれば、溶溝流動
が従来例と比較して一段と円滑であることが明らかであ
った。
Conventional example where both the V-phase maximum current and the U-phase maximum current are 160OA, and the former is 160OA and the latter is 120OA.
A, (current ratio 1:0.75), the molten steel moving speed at 20 mm below the meniscus and the molten steel swelling size at the corner were measured for the two cases of the present invention example with (current ratio 1:0.75), and the following results were obtained. According to the example, it was clear that the flow in the groove was much smoother than in the conventional example.

以上説明したように、本発明に係る溶鋼攪拌方法は、U
相とV相の位相を略電気角π/2だけずらすとともに、
その電流値を異ならすだけでの簡単な操作で鋼片的溶鋼
を円滑に流動させることができ所期の目的を達成できる
As explained above, the molten steel stirring method according to the present invention
While shifting the phases of phase and V phase by approximately electrical angle π/2,
By simply changing the current value, the molten steel can be made to flow smoothly and the desired purpose can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は本発明方法を実
施するために用いる電磁攪拌装置の斜視図、第2図は電
磁コイルの断面図、第3図は鋳型鋼壁の外周に固定子を
嵌め込んだ状態を示す平面図、第4図■は電磁コイルに
流す2相の電流の波形図、第4図■イ〜チは第4図Iの
各電気角における磁界を示す説明図、第5図は電磁力の
方向を示す説明図、第6図は電磁力の方向と大きさを示
す説明図である。 1・・・電磁攪拌装置、2a、2a’・・・電磁攪拌装
置の鉄心の長側壁、2b、2b’・・・電磁攪拌装置の
鉄心の短側壁s 3 a、3a’;3b、3b’・−凸
形磁極、4a、4b・・・電磁コイル、5・・・鋳型鋼
壁、6a。 6a′・・・鋳型鋼壁5の長側壁、6b、6b’・・・
鋳型鋼壁の短側壁、A、B、C,D・・・鋳型鋼壁5の
コーナ部。
The drawings show embodiments of the present invention; FIG. 1 is a perspective view of an electromagnetic stirring device used to carry out the method of the present invention, FIG. 2 is a sectional view of an electromagnetic coil, and FIG. A plan view showing the state in which the stator is fitted, Fig. 4 ■ is a waveform diagram of two-phase current flowing through the electromagnetic coil, Fig. 4 ■ I to I are explanations showing the magnetic field at each electrical angle in Fig. 4 I. FIG. 5 is an explanatory diagram showing the direction of electromagnetic force, and FIG. 6 is an explanatory diagram showing the direction and magnitude of electromagnetic force. 1... Electromagnetic stirring device, 2a, 2a'... Long side wall of the iron core of the electromagnetic stirring device, 2b, 2b'... Short side wall of the iron core of the electromagnetic stirring device s 3 a, 3a'; 3b, 3b' - Convex magnetic pole, 4a, 4b... Electromagnetic coil, 5... Cast steel wall, 6a. 6a'...Long side wall of mold steel wall 5, 6b, 6b'...
Short side walls of the mold steel wall, A, B, C, D... Corner parts of the mold steel wall 5.

Claims (1)

【特許請求の範囲】 1 鉄心が水平断面大略長方形状で、各側壁の内面に1
つの凸形磁極を有し、各長側壁の凸形磁極に1つの電磁
コイルがまた各短側壁の凸形磁極に今1つの電磁コイル
が夫々巻回されてなる電磁攪拌装置を水平断面長方形の
鋳型鋼壁の外周に嵌め込み。 略電気角π/2の位相差を有しかつ電流値の異なる2相
の正弦波状の交流u、v(u<v)を、U相の交流を各
長側壁の凸形磁極の電磁コイルにまたV相の交流を各短
側壁の凸形磁極の電磁コイルに夫々流して、長側壁沿い
の電磁力が小さく、短側壁沿いの電磁力が大きくなる回
転磁界を発生せしめて鋳造銅壁内溶鋼を円滑に水平回転
させることを特徴とする連続鋳造設備における溶鋼攪拌
方法。
[Claims] 1. The iron core has a generally rectangular horizontal cross section, and 1 core is provided on the inner surface of each side wall.
An electromagnetic stirrer having two convex magnetic poles, one electromagnetic coil wound around the convex magnetic pole on each long side wall, and one electromagnetic coil wound around the convex magnetic pole on each short side wall, has a rectangular horizontal cross section. Insert into the outer periphery of the molded steel wall. Two-phase sinusoidal alternating currents u and v (u<v) with a phase difference of approximately electrical angle π/2 and different current values are applied to an electromagnetic coil with a convex magnetic pole on each long side wall. In addition, V-phase alternating current is passed through the electromagnetic coils of the convex magnetic poles on each short side wall to generate a rotating magnetic field in which the electromagnetic force along the long side wall is small and the electromagnetic force along the short side wall is large. A method for stirring molten steel in continuous casting equipment, which is characterized by smooth horizontal rotation of the molten steel.
JP4329180A 1980-04-01 1980-04-01 Molten steel stirring method in continuous casting equipment Expired JPS5851779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4329180A JPS5851779B2 (en) 1980-04-01 1980-04-01 Molten steel stirring method in continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4329180A JPS5851779B2 (en) 1980-04-01 1980-04-01 Molten steel stirring method in continuous casting equipment

Publications (2)

Publication Number Publication Date
JPS56139263A JPS56139263A (en) 1981-10-30
JPS5851779B2 true JPS5851779B2 (en) 1983-11-18

Family

ID=12659688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4329180A Expired JPS5851779B2 (en) 1980-04-01 1980-04-01 Molten steel stirring method in continuous casting equipment

Country Status (1)

Country Link
JP (1) JPS5851779B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032982U (en) * 1983-08-13 1985-03-06 株式会社エーアイ Picture drum drive stop device in throttle machine
JPS6034882U (en) * 1983-11-09 1985-03-09 株式会社エーアイ Pattern drum drive device in throttle machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6033807B2 (en) * 2014-03-27 2016-11-30 高橋 謙三 Metal melt stirring device and metal melt transfer device
US11478846B2 (en) * 2018-05-08 2022-10-25 Nippon Steel Corporation Electromagnetic stirring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032982U (en) * 1983-08-13 1985-03-06 株式会社エーアイ Picture drum drive stop device in throttle machine
JPS6034882U (en) * 1983-11-09 1985-03-09 株式会社エーアイ Pattern drum drive device in throttle machine

Also Published As

Publication number Publication date
JPS56139263A (en) 1981-10-30

Similar Documents

Publication Publication Date Title
JPS6048265B2 (en) Electromagnetic stirring induction device for continuous casting
JPS6188950A (en) Molten-metal electromagnetic agitator
JP3725028B2 (en) Electromagnetic braking device for molten metal in continuous casting molds.
JPS5851779B2 (en) Molten steel stirring method in continuous casting equipment
KR910003760B1 (en) Electromagnetic stirring method
US4693299A (en) Continuous metal casting apparatus
JPH10305353A (en) Continuous molding of steel
KR100264946B1 (en) Continuous casting mould having electomagnetic
US20060124272A1 (en) Continuous casting installation for the electromagnetic rotation of molten metal moving inside the nozzle
JP3570601B2 (en) Electromagnetic stirrer
JP5023989B2 (en) Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JPS6255942B2 (en)
AU771606B2 (en) Equipment for supplying molten metal to a continuous casting ingot mould and method for using same
CN201109787Y (en) Two-phase concentric winding ladle furnace bottom electromagnetic stirrer
JPS62207543A (en) Electromagnetic stirring method for continuous casting
JP4669367B2 (en) Molten steel flow control device
JP3452709B2 (en) Moving magnetic field generator
JPS63119962A (en) Rolling device for electromagnetic agitation
JP2005238276A (en) Electromagnetic-stirring casting apparatus
US4562881A (en) Method for stirring in continuous casting
CN110340319A (en) A kind of bar shaped winding M-emss
JP2839637B2 (en) Continuous casting equipment for molten metal
KR100433580B1 (en) Improved mold electromagnetic stirrer for continuous billet casting process
JP3501997B2 (en) Method for producing continuous cast slab and electromagnetic stirrer in continuous cast mold
JPH11123511A (en) Electromagnetic stirring method and electromagnetic strring device