JPS5850774B2 - Manufacturing method of heavy metal ion adsorbent - Google Patents

Manufacturing method of heavy metal ion adsorbent

Info

Publication number
JPS5850774B2
JPS5850774B2 JP51080185A JP8018576A JPS5850774B2 JP S5850774 B2 JPS5850774 B2 JP S5850774B2 JP 51080185 A JP51080185 A JP 51080185A JP 8018576 A JP8018576 A JP 8018576A JP S5850774 B2 JPS5850774 B2 JP S5850774B2
Authority
JP
Japan
Prior art keywords
heavy metal
metal ion
ion adsorbent
producing
titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51080185A
Other languages
Japanese (ja)
Other versions
JPS535091A (en
Inventor
実 小嶋
久司 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP51080185A priority Critical patent/JPS5850774B2/en
Publication of JPS535091A publication Critical patent/JPS535091A/en
Publication of JPS5850774B2 publication Critical patent/JPS5850774B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Water Treatment By Sorption (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は水中に溶存する重金属イオン特にウランに対し
て高級着陸ならびにすぐれた耐久性を有する重金属イオ
ン吸着材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a heavy metal ion adsorbent having high quality landing and excellent durability for heavy metal ions, especially uranium, dissolved in water.

従来廃水中に溶存する重金属イオンの吸着材としてイオ
ン交換樹脂あるいはポリアミン系キレート樹脂等の如き
有機系吸着材が使用されるが、該吸着材は天然水特に海
水中に溶存する膨大なウラン資源を採取する吸着能を全
く有していない。
Conventionally, organic adsorbents such as ion exchange resins or polyamine chelate resins have been used as adsorbents for heavy metal ions dissolved in wastewater. It has no adsorption capacity for collection.

近時、該ウランに対して吸着能を有する無機系吸着材と
してチタン酸が提案されている。
Recently, titanic acid has been proposed as an inorganic adsorbent having the ability to adsorb uranium.

該吸着材は特にウラン吸着能にすぐれているが、粉末状
であるチタン酸は海水との接触、あるいは回収処理時に
流出して、そのままでは実用に供し難い。
Although this adsorbent has a particularly excellent ability to adsorb uranium, titanic acid in powder form leaks out when it comes into contact with seawater or during recovery processing, making it difficult to put it to practical use as it is.

該吸着材の改良方法として、活性炭あるいはガラスクー
ルに、チタン酸あるいはチタン塩を均一に溶解した水溶
液を付着せしめて、そのままあるいはアンモニア水中で
中和処理した後、乾燥を行ないチタン酸を担持せしめる
方法が提案されているがチタン酸と担体との接着力が弱
く、また細粉化して脱落し易く、実用上満足しうるもの
ではない。
As a method for improving the adsorbent, an aqueous solution in which titanic acid or titanium salt is uniformly dissolved is applied to activated carbon or glass coolant, and the solution is dried as it is or after neutralization in aqueous ammonia and dried to support titanic acid. has been proposed, but the adhesion between the titanic acid and the carrier is weak, and it becomes fine and easily falls off, making it unsatisfactory in practice.

本発明者等は、斯様は問題点を解消すべく鋭意研究の結
果本発明を完成したものである。
The present inventors completed the present invention as a result of intensive research to solve these problems.

本発明の目的は、水中に溶存する重金属イオン特に海水
中のウランに対してすぐれた吸着能を有し、且つ海水中
への脱落及び流出が極めて少なく耐久性のすぐれた重金
属イオン吸着材の製造方法を提供するにある。
The object of the present invention is to produce a durable heavy metal ion adsorbent that has excellent adsorption ability for heavy metal ions dissolved in water, especially uranium in seawater, and has extremely low dropout or leakage into seawater. We are here to provide you with a method.

即ち、本発明はチタン酸エステルと該チタン酸エステル
の溶剤からなる溶液を微細空隙を有する多孔物質に含浸
せしめた後乾燥しその途中もしくは後に少なくとも1重
量%の水分を含有する雰囲気と接触せしめて前記チタン
酸エステルを加水分解縮合体となし、これを前記多孔物
質に担持せしめることを特徴とする重金属イオン吸着材
の製造方法である。
That is, the present invention involves impregnating a porous material with fine voids with a solution consisting of a titanate ester and a solvent of the titanate ester, drying the material, and then contacting it with an atmosphere containing at least 1% by weight of water during or after the impregnation. The method for producing a heavy metal ion adsorbent is characterized in that the titanate ester is made into a hydrolyzed condensate, and this is supported on the porous material.

本発明にいうチタン酸エステルはチタン酸の低級アルコ
ールエステル乃至高級アルコールエステルであり、特に
チタン酸メチルエステル、チタン酸エチルエステル、チ
タン酸フロビルエステル、チタン酸ブチルエステル等の
炭素数1〜4のアルキルエステルによるものは加水分解
により生成する該アルコールの揮発性が優れており好適
である。
The titanate ester referred to in the present invention is a lower alcohol ester or higher alcohol ester of titanic acid, and in particular, a titanate having 1 to 4 carbon atoms such as methyl titanate, ethyl titanate, flobyl titanate, and butyl titanate. Those using alkyl esters are suitable because the alcohol produced by hydrolysis has excellent volatility.

又炭素数が5以上のアルキルエステルによるものは加水
分解により生成する該アルコールの揮発性が低下し乾燥
除去が困難であり好ましくない。
Furthermore, those based on alkyl esters having 5 or more carbon atoms are not preferred because the volatility of the alcohol produced by hydrolysis is reduced and removal by drying is difficult.

上記チタン酸エステルの溶剤は例えばベンゼン、シクロ
ヘキサン、四塩化炭素、アルコール等であり特にメタノ
ール、エタノール、プロパツール、ブタノール、ヘプタ
ツール等の炭素数1〜4のアルコール類は乾燥除去が容
易であり又チタン酸エステルの加水分解により生成する
縮合体を微細空隙を有する物質の相体に強固に担持せし
められる。
The solvent for the titanate ester is, for example, benzene, cyclohexane, carbon tetrachloride, alcohol, etc. In particular, alcohols having 1 to 4 carbon atoms such as methanol, ethanol, propatool, butanol, and heptatool are easy to remove by drying. A condensate produced by hydrolysis of a titanate ester can be firmly supported by a phase of a substance having microscopic voids.

チタン酸エステルの加水分解縮合体の担体への担持量は
10重量%以上であることが好ましい。
The amount of the hydrolyzed condensate of titanate ester supported on the carrier is preferably 10% by weight or more.

10重量%未満では吸着能力が乏しく好ましくない。If it is less than 10% by weight, the adsorption capacity will be poor and undesirable.

溶液中のチタン酸エステルの濃度が5重量%未満の場合
、前記担体に少なくとも10重量%を担持せしめるため
には、浸漬−乾燥を繰り返す必要があり、又70重量%
を越えた場合、粘度が高くなり前記担体の微細空隙に含
浸せしめることが困難となり好ましくない。
If the concentration of titanate ester in the solution is less than 5% by weight, it is necessary to repeat dipping-drying in order to have at least 10% by weight supported on the carrier, or 70% by weight.
If it exceeds the above range, the viscosity becomes high and it becomes difficult to impregnate the fine pores of the carrier, which is not preferable.

本発明に適する微細空隙を有する物質とは、ポリビニル
アセタール、ポリウレタン、ポリ酢酸ビニル、ポリアミ
ド、ポリエチレン、ポリプロピレン、ポリスチレン等の
如き合成樹脂多孔体あるいは活性炭、粘土類の焼物物、
軽石さらには編織物及び不織物等であり、特に空隙率が
40〜95%を有する該物質がチタン酸エステルの加水
分解縮合体を担持せしめるのに好適である。
Substances with microscopic voids suitable for the present invention include porous synthetic resins such as polyvinyl acetal, polyurethane, polyvinyl acetate, polyamide, polyethylene, polypropylene, polystyrene, etc., activated carbon, ceramics made of clay, etc.
Pumice stone, knitted fabrics, non-woven fabrics, etc., and particularly materials having a porosity of 40 to 95% are suitable for supporting the hydrolyzed condensate of titanate ester.

また該編織物及び不織布は合成繊維、人造繊維、天然繊
維、無機繊維等の繊維から構成されるものであり、いか
なる組成物も適用することができる。
Further, the knitted fabric and nonwoven fabric are composed of fibers such as synthetic fibers, artificial fibers, natural fibers, and inorganic fibers, and any composition can be applied.

該微細空隙を有する物質の中でも合成樹脂多孔体、活性
炭、不織布等はチタン酸エステルの加水分解縮合体を強
固に微細空隙内部まで担持せしめることが可能であり、
特に平均孔径が10〜1000μの連通孔を有するポリ
ビニルアセクールの発泡体はチタン酸エステルの加水分
解縮合体の相持が一層強固であり、重金属イオンの吸着
速度が著しく速く好適なる担体である。
Among the materials having micro-voids, synthetic resin porous bodies, activated carbon, non-woven fabrics, etc. can firmly support the hydrolyzed condensation product of titanate ester into the micro-voids,
In particular, a polyvinyl acecool foam having communicating pores with an average pore diameter of 10 to 1000 microns is a suitable carrier because it has a stronger adhesion of the hydrolyzed condensate of titanate ester and has an extremely fast adsorption rate of heavy metal ions.

該微細空隙を有する前記担体にチタン酸エステルの加水
分解縮合体を担持する方法は前記チタン酸エステルと該
溶剤からなる溶液を前記担体に含浸せしめる。
A method for supporting a hydrolyzed condensate of a titanate ester on the carrier having micropores involves impregnating the carrier with a solution consisting of the titanate ester and the solvent.

含浸方法は浸漬のみでは前記相体の微細空隙内部まで充
分含浸させることが困難であり担体を溶液に浸漬して減
圧することにより微細空隙の脱気を行なって含浸せしめ
る方法が有効である。
As for the impregnation method, it is difficult to sufficiently impregnate the inside of the micropores of the phase by dipping alone, so it is effective to impregnate the carrier by immersing the carrier in a solution and reducing the pressure to deaerate the micropores.

担体のチタン酸エステル溶液の含浸率は圧搾あるいは遠
心脱液等の手段により100〜1000重量%の範囲に
調節することが好ましい。
The impregnation rate of the titanate ester solution in the carrier is preferably adjusted to a range of 100 to 1000% by weight by means such as squeezing or centrifugal dehydration.

次に該チタン酸エステルを含浸した担体は風乾或は10
0℃以下の温度で乾燥を行ない、該乾燥中もしくは乾燥
後に少なくとも1重量%の水分を含有する雰囲気例えば
湿潤空気、蒸気、水等と接触させてチタン酸エステルの
加水分解縮合体を生成せしめ該縮合体を少なくとも10
重量%担持せしめることにより吸着能の優れた吸着材が
得られる。
Next, the carrier impregnated with the titanate ester is air-dried or
Drying is carried out at a temperature of 0° C. or lower, and during or after the drying, contact is made with an atmosphere containing at least 1% by weight of moisture, such as humid air, steam, water, etc., to produce a hydrolyzed condensate of titanate ester. At least 10 condensates
An adsorbent with excellent adsorption ability can be obtained by supporting the adsorbent in a weight percent.

上記チタン酸エステルを加水分解せしめる雰囲気の水分
率が1%未満の場合、チタン酸エステルの加水分解縮合
体の生成が困難となり吸着材が得られない。
If the moisture content of the atmosphere in which the titanate ester is hydrolyzed is less than 1%, it will be difficult to produce a hydrolyzed condensate of the titanate ester, making it impossible to obtain an adsorbent.

本発明の方法による吸着材は重金属イオン特にウランの
吸着能が優れ、海水との接触によるチタン酸の流出ある
いは酸やアルカリ水溶液により該吸着材からウランを回
収する処理工程に於ても、チタン酸エステルの加水分解
縮合体の脱落はなく耐久性の優れた吸着材である。
The adsorbent produced by the method of the present invention has an excellent ability to adsorb heavy metal ions, especially uranium, and titanic acid can be easily absorbed in the process of recovering uranium from the adsorbent by leaking titanic acid through contact with seawater or by using an acid or alkaline aqueous solution. The ester hydrolyzed condensate does not fall off and is a highly durable adsorbent.

また該吸着材は製造、加工性にも優れ、板状、細片状、
円筒状等いかなる形状にも加工することができる。
In addition, the adsorbent has excellent manufacturing and processability, and has plate-like, strip-like,
It can be processed into any shape such as a cylindrical shape.

また該吸着材は工場廃水あるいは排気等に適用して重金
属イオンを除去する等公害防止の面からも、その利用価
値は極めて大きいものである。
Furthermore, the adsorbent has extremely great utility value from the viewpoint of pollution prevention, such as by applying it to factory wastewater or exhaust gas to remove heavy metal ions.

以下本発明の方法をさらに詳細に実施例によって説明す
る。
The method of the present invention will be explained in more detail below with reference to Examples.

実施例 1 チタン酸テトラブチルエステルをメタノールに溶解して
44重量%の溶液を調製した。
Example 1 A 44% by weight solution was prepared by dissolving titanate tetrabutyl ester in methanol.

該溶液中でチタン酸エステルはメチルエステル、ブチル
エステル及び混合エステルとして存在する。
In the solution, titanate esters are present as methyl esters, butyl esters and mixed esters.

次に連通孔を有する空隙率90%、平均孔径50μ、外
径75間内径25mm高さ250mmの円筒状ポリビニ
ルアセタール多孔体を、上記溶液中に浸漬し、減圧処理
(8mmHg )により脱気を行ない空隙内部まで充分
含浸せしめた後、遠心脱液処理を行って含浸量を調整し
、さらに水分率2.5重量%の空気中で乾燥ならびにチ
タン酸エステルの加水分解を行なわしめた後水洗して、
チタン酸エステルの加水分解縮合体を45重量%担持し
た吸着材囚を得た。
Next, a cylindrical polyvinyl acetal porous body with a porosity of 90%, an average pore diameter of 50 μm, an outer diameter of 75 mm, an inner diameter of 25 mm, and a height of 250 mm and having communicating pores was immersed in the above solution and degassed by reduced pressure treatment (8 mmHg). After thoroughly impregnating the inside of the pores, centrifugal dehydration treatment is performed to adjust the amount of impregnation, and the material is further dried in air with a moisture content of 2.5% by weight, and the titanate ester is hydrolyzed, followed by washing with water. ,
An adsorbent matrix carrying 45% by weight of a hydrolyzed condensate of titanate ester was obtained.

又比較対照として、上記未処理のポリビニルアセタール
の円筒多孔体をチタン酸重量に換算して40重量%含有
する四塩化チタンを均一に溶解した塩酸水溶液に浸漬後
、前記と同様の方法で脱気して含浸せしめた後、アンモ
ニア水中に浸漬して中和を行ない、次に遠心脱水して、
さらに前記同様乾燥処理を行なってチタン酸75重量%
担持した吸着材(B)を得た。
As a comparison, the untreated cylindrical porous body of polyvinyl acetal was immersed in an aqueous hydrochloric acid solution containing 40% by weight of titanic acid and uniformly dissolved in titanium tetrachloride, and then degassed in the same manner as above. After soaking and impregnating it, it is immersed in ammonia water to neutralize it, and then centrifugally dehydrated.
Furthermore, the same drying treatment as above was carried out to obtain 75% by weight of titanic acid.
A supported adsorbent (B) was obtained.

該吸着材At(B)に、1501n9のウランを含有す
る様、硝酸ウラニルを添加調製した海水それぞれ500
1を20時間通過循環させることにより接触させた後、
吸着材を炭酸ナトリウム水溶液中に浸漬してウランを回
収した。
500% of each seawater prepared by adding uranyl nitrate to the adsorbent At(B) so as to contain 1501n9 of uranium.
After contacting by circulating 1 for 20 hours,
Uranium was recovered by immersing the adsorbent in an aqueous sodium carbonate solution.

海水との接触による吸着制tA)(B)からのチタン酸
エステルの加水分解縮合体及びチタン酸の脱落率ならび
に吸着材によるウランの回収量を螢光X線分析法により
定量して第1表に示す結果を得た。
The rate of removal of the hydrolyzed condensate of titanate ester and titanic acid from adsorption due to contact with seawater (tA) (B) and the amount of uranium recovered by the adsorbent were quantified by X-ray fluorescence analysis and are shown in Table 1. The results shown are obtained.

上表に示す如く比較例の吸着材(B)はチタン酸の脱落
は著るしく、またウランの回収量も少ないのに対して、
本発明方法による吸着mA)はチタン酸エステルの加水
分解縮合体を強固に担持して脱落は極めて微量であり、
またウランの吸着能も非常にすぐれている。
As shown in the table above, in the comparative example adsorbent (B), titanic acid fell off significantly and the amount of uranium recovered was small.
The adsorption mA) by the method of the present invention firmly supports the hydrolyzed condensate of titanate ester, and only a very small amount of it falls off.
It also has an excellent ability to adsorb uranium.

実施例 2 チタン酸ブチルエステルの60重量%ブタノール溶液に
平均孔径100μの連通孔を有する空隙率92%、巾1
00mm、長さ200mm、厚さ2mmのシート状ポリ
ビニルアセクール多孔体を使用して、実施例1と同様に
含浸処理を行ない60℃の通風乾燥4中で乾燥し次いで
水中に浸漬して加水分解処理を行ないチタン酸エステル
の加水分解縮合体を60重量%担持した吸着材囚を得た
Example 2 A 60% by weight butanol solution of titanate butyl ester with a porosity of 92% and a width of 1 having communicating pores with an average pore diameter of 100μ
Using a sheet-like polyvinyl acecool porous material having a length of 00 mm, a length of 200 mm, and a thickness of 2 mm, impregnation treatment was performed in the same manner as in Example 1, and the material was dried in ventilation drying 4 at 60°C, and then immersed in water for hydrolysis. The treatment was carried out to obtain an adsorbent matrix carrying 60% by weight of a hydrolyzed condensate of titanate ester.

同様にチタン酸ブチルエステルの代りに、チタン酸メチ
ルエステル、チタン酸エチルエステル、チタン酸イング
ロビルエステルを使用して他は同様に処理して吸着材B
)、(q、(Oを得た。
Similarly, in place of butyl titanate, methyl titanate, ethyl titanate, and inglobil titanate were used, and other treatments were carried out in the same manner as for adsorbent B.
), (q, (O) were obtained.

該吸着材を夫々ウラン1.2■を含む海水41中で1日
間攪拌浸漬することによりウランを吸着せしめて実施例
■と同様に定量を行ない、また吸着材から脱落するチタ
ン酸エステルの加水分解縮合体を定量して第2表に示す
結果を得た。
Each of the adsorbents was stirred and immersed in seawater 41 containing 1.2 mm of uranium for 1 day to adsorb uranium, and quantitatively determined in the same manner as in Example 2. Hydrolysis of the titanate esters falling off from the adsorbents was also carried out. The condensate was quantified and the results shown in Table 2 were obtained.

上表より明らかな如くチタン酸エステルの加水分解縮合
体は担体に強固に接着して吸着能の優れた吸着材が得ら
れた。
As is clear from the above table, the hydrolyzed condensate of titanate ester adhered firmly to the carrier, and an adsorbent with excellent adsorption ability was obtained.

実施例 3 チタン酸インプロピルエステルを第3表に示す有機溶剤
に溶解し、実施例2と同様に処理して、シート状ポリビ
ニルアセタール多孔体吸着剤を製造した。
Example 3 Inpropyl titanate was dissolved in the organic solvent shown in Table 3 and treated in the same manner as in Example 2 to produce a sheet-like polyvinyl acetal porous adsorbent.

該吸着材を夫々実施例2に示す方法によりウランを吸着
せしめて定量しまた吸着材から脱落するチタン酸エステ
ルの加水分解縮合体を定量して第3表に示す結果を得た
Uranium was adsorbed and quantitatively determined using the method shown in Example 2, and the hydrolyzed condensate of titanate ester that fell off from the adsorbent was determined, and the results shown in Table 3 were obtained.

上表により明らかな如くチタン酸エステルの加水分解縮
合体を強固に担持せしめた吸着材が得られ吸着力も優れ
ており、上記溶剤の中でも特にアルコール類が好適であ
る。
As is clear from the above table, an adsorbent that firmly supports the hydrolyzed condensate of titanate ester is obtained and has excellent adsorption power, and among the above solvents, alcohols are particularly suitable.

実施例 4 チタン酸インプロピルエステルの70重量%イソグロパ
ノール溶液に実施例2に示したシート状ポリビニルアセ
タール多孔体を含浸し、絞りロールで含浸率を種々変化
せしめ、この操作を1〜2回くり返し、チタン酸エステ
ルの加水分解縮合体の担持量を種々変化せしめた吸着材
を得た。
Example 4 The sheet-like polyvinyl acetal porous material shown in Example 2 was impregnated with a 70% by weight isoglopanol solution of titanate inpropyl ester, the impregnation rate was varied variously with a squeezing roll, and this operation was repeated once or twice, Adsorbents with various supported amounts of hydrolyzed condensates of titanate esters were obtained.

★又比較対照として上記未処理のシート状ポリビニ
ルアセタールを実施例1に示す四塩化チタンの塩酸水溶
液を使用して同様に含浸せしめた後、アンモニア水中に
浸漬して中和を行ない、上記と同様の方法で含浸率を変
化せしめて乾燥を行ないチタン酸の担持量を変化せしめ
た吸着材を得た。
★Also, as a comparison, the untreated sheet-like polyvinyl acetal was impregnated in the same manner as in Example 1 using an aqueous hydrochloric acid solution of titanium tetrachloride, and then neutralized by immersing it in aqueous ammonia. By changing the impregnation rate and drying using the method described above, adsorbents with varying amounts of titanic acid supported were obtained.

該吸着材は、夫々実施例2と同様の方法でウランを吸着
せしめて実施例1と同様に定量を行ない又吸着材から脱
落するチタン酸エステルの加水分解縮合物及びチタン酸
を定量して第4表に示す結果を得た。
The adsorbent was adsorbed with uranium in the same manner as in Example 2, and quantitatively determined in the same manner as in Example 1. The hydrolyzed condensate of titanate and titanic acid falling off from the adsorbent were also determined. The results shown in Table 4 were obtained.

上表より明らかな如く担体からのチタン酸の脱落率は著
しく犬であるが本発明方法によるチタン酸エステルの加
水分解縮合体の脱落率は極めて小さい。
As is clear from the above table, the rate of removal of titanic acid from the carrier is extremely low, but the rate of removal of the hydrolyzed condensate of titanate ester by the method of the present invention is extremely small.

実施例 5 実施例4に示すチタン酸エステルの加水分解縮合体を1
50重量%担持せるシート状ポリビニルアセタール多孔
体吸着材を、塩化第二銅、塩化第二鉄、塩化鉛、塩化第
ニクロムを各々金属イオンとして10ppm含有する3
1の水溶液中に浸漬して24時間攪拌を行なった後、該
吸着材を1N塩酸水溶液中に60℃の温度で30分間浸
漬して吸着した金属イオンを脱着溶出せしめ、水溶液中
の金属イオンの定量を行なって第5表に示す結果を得た
Example 5 The hydrolyzed condensate of the titanate ester shown in Example 4 was
A sheet-like polyvinyl acetal porous adsorbent capable of supporting 50% by weight, containing 10 ppm of each of cupric chloride, ferric chloride, lead chloride, and dichrome chloride as metal ions.
After immersing the adsorbent in the aqueous solution of No. 1 and stirring for 24 hours, the adsorbent was immersed in a 1N hydrochloric acid aqueous solution at a temperature of 60°C for 30 minutes to desorb and elute the adsorbed metal ions. Quantitative determination was performed and the results shown in Table 5 were obtained.

上表に示す如く本発明方法による吸着材は重金*属イオ
ンに対して優れた吸着能を示し廃水処理に好適である。
As shown in the table above, the adsorbent produced by the method of the present invention exhibits excellent adsorption ability for heavy metal* metal ions and is suitable for wastewater treatment.

実施例 6 チタン酸ブ・7−ルエステルの44重量%メタノール溶
液を調製した。
Example 6 A 44% by weight methanol solution of titanate but-7-yl ester was prepared.

次に4〜6メツシユのヤシガラ活性炭及び繊維20デニ
ールのポリエステル繊維よりなる厚さ5mm、目付15
0P/m”を有するポリエステル不織布を上記溶液中に
浸漬し、密閉容器中で減圧(150mmHg )下で脱
気して微細空隙内部まで浸透せしめた後遠心脱液方法に
より過剰の溶液を除去し、風乾の後水中に浸漬してチタ
ン酸エステルの加水分解縮合体を45重量%担持したヤ
シガラ活性炭(A)及び70重量%担持した不織布(B
)よりなる吸着材を得た。
Next, it is made of coconut shell activated carbon of 4 to 6 meshes and polyester fiber of 20 denier, with a thickness of 5 mm and a basis weight of 15.
0P/m'' is immersed in the above solution, degassed in a closed container under reduced pressure (150 mmHg) to penetrate into the microscopic voids, and then remove excess solution by centrifugal dehydration method. Coconut shell activated carbon (A) carrying 45% by weight of hydrolyzed condensate of titanate ester by soaking in water after air drying and nonwoven fabric carrying 70% by weight (B)
) was obtained.

又、比較対照として上記未処理のヤシガラ活性炭及び不
織布を、チタン酸を31重量%を均一に溶解した塩酸水
溶液に各々上記同様の方法で浸漬ならびに脱液処理して
乾燥し、チタン酸を38重量%担持したヤシガラ活性炭
(Q及びチタン酸を97重量%担持した不織布(Dの吸
着材を得た。
In addition, as a comparison, the untreated coconut shell activated carbon and nonwoven fabric were immersed in a hydrochloric acid aqueous solution in which 31% by weight of titanic acid was uniformly dissolved, followed by dehydration treatment and dried in the same manner as above. An adsorbent of coconut shell activated carbon (Q) loaded with 97% of titanic acid and a nonwoven fabric (D) loaded with 97% of titanic acid was obtained.

該吸着材の各51を実施例2に示す方法に従って海水と
接触せしめ吸着材からのチタン酸及びチタン酸エステル
の加水分解縮合体の脱落率及びウランの吸着量を定量し
て第6表に示す結果を得た。
51 pieces of each of the adsorbents were brought into contact with seawater according to the method shown in Example 2, and the dropout rate of hydrolyzed condensates of titanic acid and titanate ester and the amount of uranium adsorbed from the adsorbents were determined and are shown in Table 6. Got the results.

上表に示す如く対照吸着剤(C)(D)に比較して本発
明方法による吸着MAI(B)は、脱落率は少なくかつ
優れたウラン吸着能を示す。
As shown in the table above, compared to the control adsorbents (C) and (D), MAI (B) adsorbed by the method of the present invention has a lower dropout rate and exhibits superior uranium adsorption ability.

実施例 7 実施例4と同様にしてチタン酸エステルの加水分解縮合
体を70重量%担持した平均孔径50μを有するシート
状ポリビニルアセタール多孔体(100關×200關×
2關)(4)及び実施例6と同様にして50重量%を担
持したヤシガラ活性炭8グ(4〜6メツシユ)(B)を
調製した。
Example 7 In the same manner as in Example 4, a sheet-like polyvinyl acetal porous body (100 x 200 x
2) In the same manner as in (4) and Example 6, 8 grams (4 to 6 mesh) of coconut shell activated carbon (B) carrying 50% by weight was prepared.

該吸着材をウラン15■を含有する海水5001中に浸
漬し、実施例2と同様に1日間攪拌してウランを吸着せ
しめた後、実施例1に示す方法に従ってチタン酸エステ
ルの加水分解縮合体の脱落率及びウランの定量を行ない
第7表に示す結果を得た。
The adsorbent was immersed in seawater 5001 containing 15 μm of uranium and stirred for one day in the same manner as in Example 2 to adsorb uranium, and then a hydrolyzed condensate of titanate ester was prepared according to the method shown in Example 1. The dropout rate and uranium content were determined and the results shown in Table 7 were obtained.

上表に示す如く平均50μの比較的ミクロな孔径を有す
るポリビニルアセタール多孔体は、チタン酸エステルの
加水分解縮合体の担持が強固で脱落が少なく、耐久性に
優れており、又ミクロな孔径を有するヤシガラ活性炭吸
着材と比較して希薄なウラン溶液中からのウラン吸着速
度が著しく速い。
As shown in the table above, the polyvinyl acetal porous material, which has a relatively microscopic pore size of 50μ on average, supports the hydrolyzed condensate of titanate ester firmly, has little shedding, and has excellent durability. The adsorption rate of uranium from a dilute uranium solution is significantly faster than that of coconut shell activated carbon adsorbent.

該結果より天然海水中に極めて希薄な濃度で溶存してい
るウランを採取する吸着材として特にポリビニルアセタ
ール多孔体吸着材が優れていることがわかる。
These results show that the polyvinyl acetal porous adsorbent is particularly excellent as an adsorbent for collecting uranium dissolved in extremely dilute concentrations in natural seawater.

Claims (1)

【特許請求の範囲】 1 チタン酸エステルと該チタン酸エステルの溶剤から
なる溶液を微細空隙を有する多孔物質に含浸せしめた後
乾燥しその途中もしくは後に少なくとも1重量%の水分
を含有する雰囲気と接触せしめて前記チタン酸エステル
を加水分解縮合体となし、これを前記多孔物質に担持せ
しめることを特徴とする重金属イオン吸着材の製造方法
。 2 チタン酸エステルの加水分解縮合体を多孔物質に少
なくとも10重量%担持せしめるものである特許請求の
範囲第1項記載の重金属イオン吸着材の製造方法。 3 チタン酸エステルが炭素数1〜4のアルキルエステ
ルである特許請求の範囲第1項記載の重金属イオン吸着
材の製造方法。 4 溶剤が炭素数1〜4のアルコールである特許請求の
範囲第1項記載の重金属イオン吸着材の製造方法。 5 溶液がチタン酸エステルを5〜70重量%含有する
ものである特許請求の範囲第1項記載の重金属イオン吸
着材の製造方法。 6 微細空隙を有する物質が合成樹脂多孔体である特許
請求の範囲第1項記載の重金属イオン吸着材の製造方法
。 7 合成樹脂多孔体がポリビニルアセタール多孔体であ
る特許請求の範囲第1項記載の重金属イオン吸着材の製
造方法。 8 微細空隙を有する物質が活性炭である特許請求の範
囲第1項記載の重金属イオン吸着材の製造方法。 9 微細空隙を有する物質が不織布である特許請求の範
囲第1項記載の重金属イオン吸着材の製造方法。
[Scope of Claims] 1. A porous material having microscopic voids is impregnated with a solution consisting of a titanate ester and a solvent of the titanate ester, and then dried, and during or after the impregnation, contact with an atmosphere containing at least 1% by weight of moisture. A method for producing a heavy metal ion adsorbent, which comprises at least forming the titanate ester into a hydrolyzed condensate and supporting the same on the porous material. 2. The method for producing a heavy metal ion adsorbent according to claim 1, wherein at least 10% by weight of the hydrolyzed condensate of titanate ester is supported on the porous material. 3. The method for producing a heavy metal ion adsorbent according to claim 1, wherein the titanate ester is an alkyl ester having 1 to 4 carbon atoms. 4. The method for producing a heavy metal ion adsorbent according to claim 1, wherein the solvent is an alcohol having 1 to 4 carbon atoms. 5. The method for producing a heavy metal ion adsorbent according to claim 1, wherein the solution contains 5 to 70% by weight of titanate ester. 6. The method for producing a heavy metal ion adsorbent according to claim 1, wherein the substance having micro voids is a porous synthetic resin. 7. The method for producing a heavy metal ion adsorbent according to claim 1, wherein the synthetic resin porous body is a polyvinyl acetal porous body. 8. The method for producing a heavy metal ion adsorbent according to claim 1, wherein the substance having microscopic voids is activated carbon. 9. The method for producing a heavy metal ion adsorbent according to claim 1, wherein the material having micro voids is a nonwoven fabric.
JP51080185A 1976-07-05 1976-07-05 Manufacturing method of heavy metal ion adsorbent Expired JPS5850774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51080185A JPS5850774B2 (en) 1976-07-05 1976-07-05 Manufacturing method of heavy metal ion adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51080185A JPS5850774B2 (en) 1976-07-05 1976-07-05 Manufacturing method of heavy metal ion adsorbent

Publications (2)

Publication Number Publication Date
JPS535091A JPS535091A (en) 1978-01-18
JPS5850774B2 true JPS5850774B2 (en) 1983-11-12

Family

ID=13711297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51080185A Expired JPS5850774B2 (en) 1976-07-05 1976-07-05 Manufacturing method of heavy metal ion adsorbent

Country Status (1)

Country Link
JP (1) JPS5850774B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135192A (en) * 1987-08-20 1989-05-26 Philips Gloeilampenfab:Nv Method and apparatus for processing fixed signal

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551434A (en) * 1978-10-06 1980-04-15 Rikagaku Kenkyusho Uranium adsorbent
CN104857926A (en) * 2015-03-26 2015-08-26 沈阳理工大学 Method for preparing nanometer titanate adsorbent by using sodium hydroxide treatment sheep manure
CN104998603A (en) * 2015-03-26 2015-10-28 沈阳理工大学 Sodium hydroxide assisted method for processing cow dung to prepare nano titanate adsorbent
CN104857919A (en) * 2015-03-26 2015-08-26 沈阳理工大学 Method for preparing nanometer titanate adsorbent by using sodium hydroxide activation chicken manure
CN104857913A (en) * 2015-03-26 2015-08-26 沈阳理工大学 Method for preparing porous titanate adsorbent by using pig manure
CN104857925A (en) * 2015-03-26 2015-08-26 沈阳理工大学 Method for preparing nanometer titanate adsorbent by using sodium hydroxide modification pig manure
CN104857924B (en) * 2015-03-26 2018-04-10 沈阳理工大学 A kind of method that sodium hydroxide aid in treatment sludge prepares Nano titanate adsorbent
CN104785193A (en) * 2015-03-26 2015-07-22 沈阳理工大学 Method for preparing porous titanate adsorbent from cow dung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135192A (en) * 1987-08-20 1989-05-26 Philips Gloeilampenfab:Nv Method and apparatus for processing fixed signal
JPH08325U (en) * 1987-08-20 1996-02-16 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Apparatus for processing identification signals in teletext signals

Also Published As

Publication number Publication date
JPS535091A (en) 1978-01-18

Similar Documents

Publication Publication Date Title
CN105271227A (en) Preparation method for porous carbon material with high specific surface area
JPS5850774B2 (en) Manufacturing method of heavy metal ion adsorbent
JPS6183322A (en) Production of fibrous activated carbon
CN109082880B (en) Functional activated carbon fiber, preparation method and application thereof
CN105126738A (en) Preparation method of porous composite material for removal of fluorine ions from water
CN101069750A (en) Virus-eliminating filtering film and preparing method
KR102397358B1 (en) Method of Preparing KCuHCF Embedded Electrospun Membrane for Cesium Removal
CN113209942A (en) Cellulose-based heavy metal composite adsorption material and preparation method thereof
CN108654394B (en) Nanofiber cation exchange membrane and preparation method and application thereof
CN112569906A (en) Preparation method of non-woven fabric with adsorption function
CN101239304A (en) Method for preparing modified expanded graphite and application in treating to formaldehyde gas
JPS6367566B2 (en)
CN107777687A (en) It is a kind of except the preparation method of ammonia activated carbon
CN115090272A (en) Manganese dioxide loaded fabric and preparation method and application thereof
JPS598175B2 (en) Manufacturing method of heavy metal ion adsorbent
JPH11285633A (en) Adsorption remover for lower aliphatic aldehydes
JPS62262742A (en) Honeycomb type activated carbon impregnated chemical and its production
JPS6244239B2 (en)
CN109317123A (en) A kind of phosphorus high throughput absorption nano fibrous membrane and preparation method thereof
JPH05321139A (en) Oil-absorbing cellulose yarn
JPH0334995B2 (en)
CN113005762B (en) Preparation method of long-acting humidity-controlling material
CN111235867A (en) Preparation method of wall cloth beneficial to purifying indoor air
KR102268244B1 (en) Method for Manufacturing Zirconium Impregnated Activated Carbon and Zirconium Impregnated Activated Carbon
CN109174010A (en) One kind is except modified formaldehyde silica gel material and preparation method thereof