JPS6244239B2 - - Google Patents

Info

Publication number
JPS6244239B2
JPS6244239B2 JP19533981A JP19533981A JPS6244239B2 JP S6244239 B2 JPS6244239 B2 JP S6244239B2 JP 19533981 A JP19533981 A JP 19533981A JP 19533981 A JP19533981 A JP 19533981A JP S6244239 B2 JPS6244239 B2 JP S6244239B2
Authority
JP
Japan
Prior art keywords
activated carbon
volume
pore diameter
pore
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19533981A
Other languages
Japanese (ja)
Other versions
JPS5896299A (en
Inventor
Nobuo Ishizaki
Masuo Kido
Hiroshi Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP19533981A priority Critical patent/JPS5896299A/en
Publication of JPS5896299A publication Critical patent/JPS5896299A/en
Publication of JPS6244239B2 publication Critical patent/JPS6244239B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、原子炉流出ガスからの放射性沃素、
特にヨウ化メチル―131(CH3I131)の吸着剤に関
するものである。 従来、原子炉施設等から放出される排ガス中に
含有されている元素状沃素は、活性炭により除去
されている。しかし、元素状ヨウ素が有機性化合
物、特にヨウ化アルキルに変化した場合、活性炭
そのものでは除去効率は低く、活性炭にヨウ化カ
リ等の放射性ヨウ化メチルと反応する物質を添着
する方法が試みられているが粒状活性炭に、ヨウ
化カリ等のヨウ化メチルと反応する物質を添着す
る方法においては、粒状活性炭の吸着速度が小さ
いことおよび添着剤の量的制度があることから、
除去効率を高めるため、活性炭の粒径を小さくす
ることあるいはフイルターの厚みを増大さすこと
が考えられるが、圧力損失が高くなりすぎたり、
重量が大きくなりすぎフイルターの操作性および
取り扱いが困難になるという問題が生じる。 一方、繊維状活性炭を用いて、放射性ヨウ化ア
ルキルを除去することも考えられるが、従来の繊
維状活性炭は、直径の小さい細孔の多いものであ
つてこのような繊維状活性炭では、添着処理を施
してもヨウ化メチルの除去効率を高めることはで
きないものであつた。 しかして本発明は、繊維状活性炭を用いて放射
性沃素を除去する手段を鋭意研究した結果、特定
の細孔分布を有する繊維状活性炭に、アミンを添
着したものが化学化反と物理的多孔構造との相乗
作用で放射性沃化メチルに対して特異的な除去効
果を示すことを見出し本発明に到達した。 即ち、本発明は細孔直径300Å以下の細孔の全
容積が0.68c.c./g以上であり、細孔直径30〜300
Åの細孔の容積が0.16〜0.95c.c./gで、かつ該細
孔直径が30〜300Åの細孔容積の細孔直径300Å以
下の細孔容積に対して占める比率が18%以上であ
る繊維状活性炭に、アミンを添着したことからな
る放射性沃素除去材に関するものである。 本発明におけるアミン添着繊維状活性炭が特別
にヨウ化メチル・ガス除去に対して、高性能を発
揮する理由は、次のように推測される。即ち、第
1には、添着される担体が特別の細孔分布をもつ
繊維状活性炭であるため、添着されるアミンが、
ヨウ化メチル分子と非常に化学反応しやすい状
態、例えば、分子状になつている割合が多いこ
と、第2には、繊維状であること、および特別の
細孔分布をもつていることから、活性炭表面へ
の、ヨウ化メチル分子の到達速度が、極端に大き
いことが相乗的に働くためと考えられる。 本発明の放射性沃素除去材がきわだつたヨウ化
メチル除去効率を示すことは後記の実施例によつ
て明らかであり、従来の粒状活性炭、繊維状活性
炭を用いて同一圧力損失条件でヨウ化メチルを除
去させる場合に比べて実に100倍以上長い破過時
間を示す。 「本発明において用いる繊維状活性炭は細孔直
径300Å以下の細孔の容積が0.68c.c./g以上であ
り細孔直径30〜300Åの細孔の容積が0.16〜0.95
c.c./gで、かつ該細孔直径30〜300Åの細孔容積
の細孔直径300Å以下の細孔容積に対して占める
割合が18%以上であることが必要である。」直径
300Å以下の細孔の容積が0.68c.c./g未満であつ
たり上記細孔容積分布から外れて細孔直径30Å未
満の細孔が大きな比率を占めると、このようなヨ
ウ化メチルに対する特異な除去力は示さない。 繊維状活性炭の細孔直径および細孔容積は、常
圧下の液体窒素の沸点(−195.8℃)における吸
着側の窒素ガス吸着等温線を用いてクランストン
―インクレー(Cranston―Inkley)の計算法
(慶伊富長「吸着」共立出版)により求めた。但
し、細孔直径300Åに相当する相対圧での窒素ガ
ス吸着量に標準状態における気体窒素の密度と液
体窒素の密度の比(1.584×10-3)を乗じた値を全
細孔容積とみなし、又細孔直径300Åから細孔直
径30Åまでの累積細孔容積を全細孔容積から差し
引いた値を細孔直径30Å以下の細孔容積とした。 なお、多分子吸着層と相対圧との関係は t(Å)=4.3〔5/n(Ps/P)〕〓 なるフレンケルーハルシー(Frenkel―Halsey)
の式(慶伊富長「吸着」共立出版)より計算し
た。 上記繊維状活性炭は、特に下記2点に注意する
ことによつて製造される。 (1) 灰分含有率の低い精製された原料を使用する
こと。 (2) 賦活処理は、水蒸気含有率10容量%以上の活
性ガス雰囲気下で入念に行うこと。 上記(1)の灰分含有率の低い精製された原料を使
用することは、収率よく、高強度の非晶質繊維状
活性炭を得る上にぜひ必要なことであり、具体的
には、再生セルロース繊維、精製された木綿繊
維、木材パルプ繊維等の精製セルロース繊維、硬
化フエノール樹脂繊維、ポリアクリロニトリル繊
維等が例挙される。 該原料は、セルロース繊維の場合には、燐酸塩
のような難燃剤を含浸後、フエノール樹脂繊維の
場合にはそのまま不活性ガス雰囲気下で600〜900
℃に加熱することによつて炭化する。 得られた炭化物を上記(2)の賦活処理に付する
が、該賦活処理は、該炭化物を水蒸気含有率10容
量%以上の活性ガス雰囲気下において850〜950℃
で加熱処理する。処理時間は、処理温度、水蒸気
濃度、被処理物の形態等により変動するため、画
一的には決められないが、3〜20時間、好ましく
は、900℃前後で10〜15時間、賦活収率が25〜15
%になるよう長時間活性化処理する。もちろん、
この賦活処理を2度以上に分割して行つてもよ
い。又、得られた炭化物、賦活物に酢酸マグネシ
ウム、塩化第2鉄、塩化コバルト等の化合物を添
着してから賦活処理を施してもよい。 本発明に用いるアミンは、次の一般式によつて
表わされる。 式中R1、R2及びR3は水素、および置換された
又は置換されないアルキル、アリール、アルカリ
ール、アラルキル、脂環式、複素環式及び式−
NR′R″(R′とR″はR1、R2、R3と同一の群から選
択されるが、R1、R2及びR3の総てを水素及びメ
チルから選ぶことはできず、R1とR2の二つのい
ずれかとR3は窒素と一緒になつて複素環式基を
表わすことが可能で、またはR1、R2とR3の何れ
かの二つと一緒になつて式=CRR〓(Rと
R〓はR1、R2及びR3から選択される)の基から
成る群より選択される。R1、R2及びR3中に含ま
れるのはまた不飽和の、重合体状の置換された又
は置換されない脂肪族の、又は芳香族の基であ
る。具体的には1,4―ジアザ―2,2,2―ビ
シクロオクタン(トリエチレンジアミン)、N,
N′―ビス―(3―アミノプロピル)―ピペラジ
ン、N,N―、ジメチル―アミノエチルメタクリ
レート、N,N―ジメチルアミノプロピルアミ
ン、3―アミノプロピルトリメトキシシラン、
1,5―ジアザビシクロウンデセン、ポリ―3級
―ブチルアミノエチルメタクリレート、ポリエチ
レンイミン、1,5―ジアザビシクロ〔4,3,
0〕ノン―5―エン、1,5―ジアザビシクロ
〔5,4,0〕ウンデ7―5―エン、2―メチル
―1,4―ジアザビシクロ〔2,2,2〕オクタ
ン、フエニルヒドラジン、2―シアノピリジン、
ジイソプロピルアミン、トリメチルアミノエチル
ピペラジン、ヘキサメチレンテトラミン、メチル
ポリエチレンイミン、ポリアルキルポリアミン等
が挙げられる。 アミンの添着量としては0.5〜40重量%好まし
くは、5〜30重量%が好ましい。0.5%未満で
は、除去率が小さく40重量%を超えると添着剤が
細孔を充填してしまい、効果が落ちるので好まし
くない。 アミンの添着法は、アミンの溶液に該繊維状活
性炭を浸漬、乾燥する、あるいはアミン溶液を噴
霧して、溶液を附着させた後乾燥する方法等があ
る。 上記アミン添着繊維状活性炭はフエルト状で、
放射性沃素の排気通路に充填して使用するか、さ
らに低い圧力損失特性を得るためには繊維状活性
炭を紙状に抄きハニカム状に成型してこれを放射
性沃素排ガス通路に設置して使用することもでき
る。 本発明の放射性沃素除去材は、抜群の除去効率
を有するのみでなく、繊維状のために軽量であり
振動等の外力によつて脱落することが少なく、し
かも紙状に抄いてハニカム状に成形して使用すれ
ば、圧力損失が特別に小さいので、排気ダクトに
挿入してもなんら支障なく運転することができる
という特長がある。 次に実施例について本発明を更に詳細に説明す
る。 実施例 1 繊維長38mm、繊維径30デニールの再生セルロー
ス繊維をフエルト化後、10重量%の燐酸ンモニウ
ム水溶液を含浸し、300℃で耐炎化処理後、窒素
ガス気流下において、850℃まで2時間を要して
昇温、炭化した。その後、水蒸気を20容量%含有
する窒素気流中において850℃で4時間活性化処
理を施し、第1表に示すような細孔容積を持つ、
目付200g/cm3、厚み4mmのフエルト状にされた
繊維状活性炭を得た。また比較例として、上記実
施例の製造条件のうち活性化処理を1時間とした
場合(比較例―1)の細孔容積も合せて第1表に
示した。 該フエルト状活性炭にトリエチレンジアミン水
容液を噴霧、乾燥することにより、20重量%のト
リエチレンジアミンを添着させた。 該2種類のフエルト状活性炭8枚を、直径3cm
のガラス管に層厚が20mmになるよう装填し
100ppmのヨウ化メチルを含有する70%RH調湿
空気を空塔速度10cm/secで流し、活性炭層通過
後の空気中のヨウ化メチル濃度が1ppmになるま
での時間を測定した(硫過時間)。ヨウ化メチル
の濃度が1ppm以上になるとリークが始まること
を意味する。又、そのときの圧力損失を測定した
ところ第1表のようになつた。 なお、前記の4時間活性化処理を施して得たフ
エルト状活性炭を用いて(アミン処理せず)上述
の如きヨウ化メチル除去操作を行なつたが、破過
時間は0.5分と低いものであつた(比較例―2)。
The present invention provides radioactive iodine from nuclear reactor outflow gas,
In particular, it relates to adsorbents for methyl iodide-131 (CH 3 I 131 ). Conventionally, elemental iodine contained in exhaust gas emitted from nuclear reactor facilities and the like has been removed using activated carbon. However, when elemental iodine changes into organic compounds, especially alkyl iodides, activated carbon itself has a low removal efficiency, and attempts have been made to impregnate activated carbon with substances that react with radioactive methyl iodide, such as potassium iodide. However, in the method of impregnating granular activated carbon with a substance that reacts with methyl iodide, such as potassium iodide, because the adsorption rate of granular activated carbon is low and there is a certain amount of impregnant,
In order to increase the removal efficiency, it is possible to reduce the particle size of activated carbon or increase the thickness of the filter, but this may result in too high pressure loss or
A problem arises in that the weight becomes too large, making the filter difficult to operate and handle. On the other hand, it is possible to use fibrous activated carbon to remove radioactive alkyl iodide, but conventional fibrous activated carbon has many pores with small diameters, and such fibrous activated carbon requires impregnation treatment. However, it was not possible to improve the removal efficiency of methyl iodide. As a result of extensive research into means for removing radioactive iodine using fibrous activated carbon, the present invention has discovered that fibrous activated carbon with a specific pore distribution has an amine impregnated with it, which has a chemical reaction reaction and a physical pore structure. The present invention has been achieved by discovering that a synergistic effect with radioactive methyl iodide shows a specific removal effect on radioactive methyl iodide. That is, in the present invention, the total volume of pores with a pore diameter of 300 Å or less is 0.68 cc/g or more, and the pore diameter is 30 to 300 Å.
Fibers with a pore volume of 0.16 to 0.95 cc/g, and a ratio of the pore volume of 30 to 300 Å to the pore volume of 300 Å or less pores is 18% or more This invention relates to a radioactive iodine removal material made of activated carbon impregnated with an amine. The reason why the amine-impregnated fibrous activated carbon of the present invention exhibits particularly high performance in removing methyl iodide gas is presumed to be as follows. That is, firstly, since the carrier to be impregnated is fibrous activated carbon with a special pore distribution, the amine to be impregnated is
It is in a state where it is very susceptible to chemical reactions with methyl iodide molecules, for example, it has a high proportion of molecules, and secondly, it is fibrous and has a special pore distribution. This is thought to be due to the fact that the reaching speed of methyl iodide molecules to the activated carbon surface is extremely high, which acts synergistically. It is clear from the examples below that the radioactive iodine removal material of the present invention exhibits outstanding methyl iodide removal efficiency. In fact, the breakthrough time is more than 100 times longer than when it is removed. "The fibrous activated carbon used in the present invention has a pore volume of 0.68 cc/g or more with a pore diameter of 300 Å or less, and a pore volume of 0.16 to 0.95 with a pore diameter of 30 to 300 Å.
cc/g, and the ratio of the volume of pores with a pore diameter of 30 to 300 Å to the volume of pores with a pore diameter of 300 Å or less is required to be 18% or more. "diameter
If the volume of pores of 300 Å or less is less than 0.68 cc/g, or if pores with a pore diameter of less than 30 Å account for a large proportion of the pores that deviate from the above pore volume distribution, the unique removal power for methyl iodide will be reduced. is not shown. The pore diameter and pore volume of fibrous activated carbon are calculated using the Cranston-Inkley calculation method ( Obtained from Tominaga Kei's ``Adsorption'' (Kyoritsu Publishing). However, the total pore volume is considered to be the value obtained by multiplying the amount of nitrogen gas adsorbed at a relative pressure corresponding to a pore diameter of 300 Å by the ratio of the density of gaseous nitrogen to the density of liquid nitrogen in standard conditions (1.584 × 10 -3 ). Also, the value obtained by subtracting the cumulative pore volume from the pore diameter of 300 Å to the pore diameter of 30 Å from the total pore volume was defined as the pore volume with a pore diameter of 30 Å or less. The relationship between the multimolecular adsorption layer and the relative pressure is t (Å) = 4.3 [5/n (Ps/P)] = Frenkel-Halsey.
Calculated from the formula (Kei Tominaga "Adsorption" Kyoritsu Shuppan). The above-mentioned fibrous activated carbon is produced by paying particular attention to the following two points. (1) Use refined raw materials with low ash content. (2) Activation treatment must be carefully performed in an active gas atmosphere with a water vapor content of 10% by volume or more. The use of purified raw materials with low ash content in (1) above is absolutely necessary to obtain high-yield, high-strength amorphous fibrous activated carbon. Examples include cellulose fibers, purified cellulose fibers such as purified cotton fibers and wood pulp fibers, cured phenolic resin fibers, and polyacrylonitrile fibers. In the case of cellulose fibers, the raw material is impregnated with a flame retardant such as phosphate, and in the case of phenolic resin fibers, it is directly heated under an inert gas atmosphere to a temperature of 600 to 900%.
Carbonize by heating to ℃. The obtained carbide is subjected to the activation treatment described in (2) above, and the activation treatment involves heating the carbide at 850 to 950°C in an active gas atmosphere with a water vapor content of 10% by volume or more.
heat-treated. The treatment time varies depending on the treatment temperature, water vapor concentration, form of the material to be treated, etc., so it cannot be determined uniformly, but it is preferably 3 to 20 hours, preferably 10 to 15 hours at around 900°C. Rate is 25-15
% activation treatment for a long time. of course,
This activation process may be divided into two or more times. Alternatively, a compound such as magnesium acetate, ferric chloride, cobalt chloride, etc. may be impregnated onto the obtained carbide or activated material, and then the activation treatment may be performed. The amine used in the present invention is represented by the following general formula. In the formula, R 1 , R 2 and R 3 are hydrogen, substituted or unsubstituted alkyl, aryl, alkaryl, aralkyl, alicyclic, heterocyclic and
NR′R″ (R′ and R″ are selected from the same group as R 1 , R 2 , R 3 , but all of R 1 , R 2 and R 3 cannot be selected from hydrogen and methyl) , R 1 and R 2 and R 3 together with nitrogen can represent a heterocyclic group, or together with any two of R 1 , R 2 and R 3 selected from the group consisting of the group of the formula = CRR (R and R are selected from R 1 , R 2 and R 3 ). Also included in R 1 , R 2 and R 3 are unsaturated Polymeric substituted or unsubstituted aliphatic or aromatic groups such as 1,4-diaza-2,2,2-bicyclooctane (triethylenediamine), N,
N'-bis-(3-aminopropyl)-piperazine, N,N-, dimethyl-aminoethyl methacrylate, N,N-dimethylaminopropylamine, 3-aminopropyltrimethoxysilane,
1,5-diazabicycloundecene, poly-tertiary-butylaminoethyl methacrylate, polyethyleneimine, 1,5-diazabicyclo[4,3,
0] Non-5-ene, 1,5-diazabicyclo[5,4,0]unde-7-5-ene, 2-methyl-1,4-diazabicyclo[2,2,2]octane, phenylhydrazine, 2 -cyanopyridine,
Examples include diisopropylamine, trimethylaminoethylpiperazine, hexamethylenetetramine, methylpolyethyleneimine, and polyalkylpolyamine. The amount of amine impregnated is preferably 0.5 to 40% by weight, preferably 5 to 30% by weight. If it is less than 0.5%, the removal rate will be low, and if it exceeds 40% by weight, the impregnant will fill the pores, reducing the effect, which is not preferable. Methods for impregnating the amine include immersing the fibrous activated carbon in an amine solution and drying it, or spraying the amine solution, adhering the solution, and then drying. The above amine-impregnated fibrous activated carbon is felt-like,
It can be used by filling the radioactive iodine exhaust passage, or to obtain even lower pressure loss characteristics, it can be used by making fibrous activated carbon into paper and forming it into a honeycomb shape and installing it in the radioactive iodine exhaust gas passage. You can also do that. The radioactive iodine removal material of the present invention not only has outstanding removal efficiency, but is lightweight due to its fibrous form and is less likely to fall off due to external forces such as vibrations. Moreover, it is made into paper and formed into a honeycomb shape. If used in this way, the pressure loss is particularly small, so it has the advantage that it can be operated without any problems even if it is inserted into an exhaust duct. Next, the present invention will be explained in more detail with reference to Examples. Example 1 Regenerated cellulose fibers with a fiber length of 38 mm and a fiber diameter of 30 denier were made into felt, impregnated with a 10% by weight ammonium phosphate aqueous solution, flame-resistant treated at 300°C, and heated to 850°C for 2 hours under a nitrogen gas stream. It took a while to raise the temperature and carbonize. After that, activation treatment was performed at 850°C for 4 hours in a nitrogen stream containing 20% by volume of water vapor, and the pore volume was as shown in Table 1.
A felt-like fibrous activated carbon having a basis weight of 200 g/cm 3 and a thickness of 4 mm was obtained. As a comparative example, Table 1 also shows the pore volume when the activation treatment was set to 1 hour (Comparative Example-1) among the manufacturing conditions of the above-mentioned Examples. 20% by weight of triethylenediamine was impregnated by spraying an aqueous solution of triethylenediamine onto the felt-like activated carbon and drying it. 8 pieces of felt activated carbon of these two types, 3 cm in diameter.
Load it into a glass tube so that the layer thickness is 20 mm.
70%RH humidity-controlled air containing 100 ppm of methyl iodide was flowed at a superficial velocity of 10 cm/sec, and the time required for the methyl iodide concentration in the air to reach 1 ppm after passing through the activated carbon layer was measured (sulfurization time). ). This means that leaks begin when the concentration of methyl iodide exceeds 1 ppm. Moreover, when the pressure loss at that time was measured, it was as shown in Table 1. The methyl iodide removal operation described above was carried out using the felt-like activated carbon obtained by the 4-hour activation treatment (without amine treatment), but the breakthrough time was as low as 0.5 minutes. Atsuta (Comparative Example-2).

【表】 比較例 3 10〜14メツシユのやしがら活性炭にトリエチレ
ンジアミン5重量%を添着し、圧力損失が実施例
―1と同一になるよう層厚20mmに充填し、実施例
―1と同様に評価したところ、破過時間は何と0
分であつた。
[Table] Comparative Example 3 5% by weight of triethylenediamine was impregnated on coconut shell activated carbon of 10 to 14 meshes, and filled to a layer thickness of 20 mm so that the pressure loss was the same as in Example-1, and the same as in Example-1. When evaluated, the breakthrough time was 0.
It was hot in minutes.

Claims (1)

【特許請求の範囲】[Claims] 1 細孔直径300Å以下の細孔の全容積が0.68
c.c./g以上であり、細孔直径30〜300Åの細孔の
容積が0.16〜0.95c.c./gで、かつ該細孔直径30〜
300Åの細孔容積の細孔直径300Å以下の細孔容積
に対して占める比率が18%以上である繊維状活性
炭にアミンを添着したことからなる放射性沃素除
去材。
1 The total volume of pores with a pore diameter of 300 Å or less is 0.68
cc/g or more, the volume of pores with a pore diameter of 30 to 300 Å is 0.16 to 0.95 cc/g, and the pore diameter is 30 to 300 Å.
A radioactive iodine removal material made by impregnating fibrous activated carbon with an amine, in which the ratio of pore volume of 300 Å to the volume of pores with pore diameter of 300 Å or less is 18% or more.
JP19533981A 1981-12-03 1981-12-03 Radioactive iodine removing material Granted JPS5896299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19533981A JPS5896299A (en) 1981-12-03 1981-12-03 Radioactive iodine removing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19533981A JPS5896299A (en) 1981-12-03 1981-12-03 Radioactive iodine removing material

Publications (2)

Publication Number Publication Date
JPS5896299A JPS5896299A (en) 1983-06-08
JPS6244239B2 true JPS6244239B2 (en) 1987-09-18

Family

ID=16339522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19533981A Granted JPS5896299A (en) 1981-12-03 1981-12-03 Radioactive iodine removing material

Country Status (1)

Country Link
JP (1) JPS5896299A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962907B2 (en) 2012-01-18 2015-02-24 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Method for removing radioactive cesium, hydrophilic resin composition for removing radioactive cesium, method for removing radioactive iodine and radioactive cesium, and hydrophilic resin composition for removing radioactive iodine and radioactive cesium
US9412479B2 (en) 2013-02-19 2016-08-09 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Method and composition for removing radioactive cesium
US9536630B2 (en) 2011-12-28 2017-01-03 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Method for removing radioactive cesium, hydrophilic resin composition for removal of radioactive cesium, method for removing radioactive iodine and radioactive cesium, and hydrophilic resin composition for removal of radioactive iodine and radioactive cesium
US10008300B2 (en) 2011-10-26 2018-06-26 Dainichiseika Color & Chemicals Mfg. Co. Ltd. Method for eliminating radioactive iodine and hydrophilic resin for eliminating radioactive iodine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012240910A (en) * 2011-05-18 2012-12-10 Tycoon Llc Method for cleaning soil and water polluted by radioactive iodine, using adsorption of charcoal
JP7111447B2 (en) * 2016-06-21 2022-08-02 フタムラ化学株式会社 Method for producing radioactive iodine adsorbent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10008300B2 (en) 2011-10-26 2018-06-26 Dainichiseika Color & Chemicals Mfg. Co. Ltd. Method for eliminating radioactive iodine and hydrophilic resin for eliminating radioactive iodine
US9536630B2 (en) 2011-12-28 2017-01-03 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Method for removing radioactive cesium, hydrophilic resin composition for removal of radioactive cesium, method for removing radioactive iodine and radioactive cesium, and hydrophilic resin composition for removal of radioactive iodine and radioactive cesium
US8962907B2 (en) 2012-01-18 2015-02-24 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Method for removing radioactive cesium, hydrophilic resin composition for removing radioactive cesium, method for removing radioactive iodine and radioactive cesium, and hydrophilic resin composition for removing radioactive iodine and radioactive cesium
US9412479B2 (en) 2013-02-19 2016-08-09 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Method and composition for removing radioactive cesium

Also Published As

Publication number Publication date
JPS5896299A (en) 1983-06-08

Similar Documents

Publication Publication Date Title
US4366085A (en) Fibrous activated carbon with metal chelate compound supported thereon, process for producing the same
RU2494811C1 (en) Catalysat of hydrogen burning, method of its obtaining and method of hydrogen burning
JPS5824340A (en) Filter
JP2002500549A (en) Coated fiber substrate
WO2021106364A1 (en) Molecular polar substance-adsorbing charcoal
JPH0722698B2 (en) Deodorizing activated carbon and method for producing the same
CN113694886A (en) Magnetic adsorption material with Fenton oxidation catalysis function and preparation method and application thereof
JPS6244239B2 (en)
JPS6331253B2 (en)
Ibrahim et al. Effectiveness of biochar from hydrothermal carbonization of wetland biomass for sorption of ammonia
JPH0268140A (en) Adsorbent for removal of iodine in gas
JPH01236941A (en) Gaseous ammonia adsorbent
JPS6044012B2 (en) Adsorbent for removing sulfur-containing harmful gases
JP2000511099A (en) Nonmetal and semimetal hydride removal method
KR102413214B1 (en) Adsorbent for removal of hazardous gas, manufacturing method of the same and air purification filter including the same
JPH0348831B2 (en)
KR102140913B1 (en) Adsorbents for removing radioactive iodine compounds
JPS642915B2 (en)
KR102671784B1 (en) Method of reusing chemical filter
JP4724937B2 (en) Adsorbent and method for producing the same
KR102643454B1 (en) Adsorbent for removal of hazardous gas and methode of manufacturing the same
JPH02263199A (en) Radioactive iodine removing material
JP3486767B2 (en) Apparatus and method for removing harmful substances in exhaust gas and activated carbon for removing harmful substances
KR900003443B1 (en) A deodorant for air and preparation method thereof
JPS62193633A (en) Reducing agent for nitrogen oxide