JPS584732B2 - Method for producing borosiloxane polymer with excellent hydrolysis resistance and heat resistance - Google Patents

Method for producing borosiloxane polymer with excellent hydrolysis resistance and heat resistance

Info

Publication number
JPS584732B2
JPS584732B2 JP11648776A JP11648776A JPS584732B2 JP S584732 B2 JPS584732 B2 JP S584732B2 JP 11648776 A JP11648776 A JP 11648776A JP 11648776 A JP11648776 A JP 11648776A JP S584732 B2 JPS584732 B2 JP S584732B2
Authority
JP
Japan
Prior art keywords
polymer
borosiloxane
producing
present
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11648776A
Other languages
Japanese (ja)
Other versions
JPS5342300A (en
Inventor
岡村清人
宍戸統悦
矢島聖使
林丈三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSHU MUKI ZAIRYO KENKYUSHO
Original Assignee
TOKUSHU MUKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSHU MUKI ZAIRYO KENKYUSHO filed Critical TOKUSHU MUKI ZAIRYO KENKYUSHO
Priority to JP11648776A priority Critical patent/JPS584732B2/en
Priority to US05/835,373 priority patent/US4152509A/en
Priority to GB39688/77A priority patent/GB1593511A/en
Priority to DE19772743843 priority patent/DE2743843A1/en
Publication of JPS5342300A publication Critical patent/JPS5342300A/en
Publication of JPS584732B2 publication Critical patent/JPS584732B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Silicon Polymers (AREA)

Description

【発明の詳細な説明】 本発明は耐加水分解性、耐熱性に優れ、かつ3次元網目
構造を有するボロシロキサンポリマーに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a borosiloxane polymer that has excellent hydrolysis resistance and heat resistance and has a three-dimensional network structure.

特に本発明は、Si,O,Bを骨格としSiの側鎖にフ
エニル基を有しかつ高架橋された有機ポリマーと無機ポ
リマーの中間に位置する前記特性ならびに構造を有する
フエニルボロシロキサンポリマーに関する。
In particular, the present invention relates to a phenylborosiloxane polymer having Si, O, and B as a skeleton, having a phenyl group in the Si side chain, and having the above-mentioned characteristics and structure that are located between highly crosslinked organic polymers and inorganic polymers.

従来耐熱性有機ポリマーとしてはメラミン樹脂、エポキ
シ樹脂、ベークライト等が知られている。
Melamine resin, epoxy resin, Bakelite, etc. are conventionally known as heat-resistant organic polymers.

一方、耐熱性無機ポリマーとしては塩化ホスフオニトリ
ル等が知られている。
On the other hand, chlorinated phosphoonitrile and the like are known as heat-resistant inorganic polymers.

一般に、無機ポリマーは有機ポリマーに比較してその主
鎖の結合エネルギーが高く熱力学的に安定である長所を
有している。
In general, inorganic polymers have the advantage that their main chains have high binding energy and are thermodynamically stable compared to organic polymers.

しかしながら無機ポリマーにあっては高温下や触媒存在
下で同族列間の平衡が起り易く多くの系で環状オリゴマ
ーの生成が容易であるため、鎖状ポリマーの生成が阻止
される。
However, in the case of inorganic polymers, equilibrium between homologous series tends to occur at high temperatures or in the presence of a catalyst, and in many systems, cyclic oligomers are easily produced, so the production of chain polymers is prevented.

またへテロ鎖無機ポリマーにおいては骨格結合がかなり
強いイオン性を帯びているので極性試剤(水分等)には
弱いことが知られている。
Furthermore, it is known that hetero-chain inorganic polymers are sensitive to polar agents (water, etc.) because their skeletal bonds have a fairly strong ionic character.

さらに従来有機と無機とのポリマーの中間に位置するセ
ミ無機ポリマー、例えば シロキサンポリマーであり、ヂメチルヂアセトキシシラ
ンとホウ酸メチルエステルとをヂ注チルエーテル溶媒中
で加熱縮重合して合成される。
Further, it is a semi-inorganic polymer, such as a siloxane polymer, which is located between conventional organic and inorganic polymers, and is synthesized by heat condensation polymerization of dimethyl diacetoxysilane and boric acid methyl ester in a dimethyl ether solvent.

このポリマーは数平均分子量200程度の極めて低分子
量のものでいわばオリゴマーでありかつ側鎖にメチル基
を有するために耐加水分解性が弱くまた熱的に不安定で
あり、かつ特別に用途も知られていなかった。
This polymer has an extremely low molecular weight of about 200, so to speak, as an oligomer and has a methyl group in the side chain, so it has poor hydrolysis resistance and is thermally unstable, and its uses are unknown. It wasn't.

一般に無機あるいはセミ無機ポリマーを加熱した場合前
述の如く同族列間の平衡が比較的容易に生起し、このた
めややもすると解重合して分子量がむしろ低下する傾向
があるため、前記メチル基を有するポロシロキサンポリ
マーをさらに加熱して架橋度を高める試みは従来なされ
たことはなかった。
In general, when inorganic or semi-inorganic polymers are heated, equilibrium between homologous groups occurs relatively easily as described above, and as a result, they tend to depolymerize and the molecular weight rather decreases. Previous attempts have not been made to increase the degree of crosslinking by further heating polysiloxane polymers.

本発明は、前記従来知られているメチル基を有するボロ
シロキサンの前記耐加水分解性が弱く、かつ熱的に不安
定である欠点を有しないセミ無機ポリマーに属する新規
なボロシロキサンポリマーとその製造方法を提供するこ
とを目的とするものである。
The present invention provides a novel borosiloxane polymer belonging to semi-inorganic polymers that does not have the drawbacks of the conventionally known methyl group-containing borosiloxanes such as low hydrolysis resistance and thermal instability, and the production thereof. The purpose is to provide a method.

すなわち本発明は、アルキル基以外のフエニル基を有す
るボロシロキサンポリマーとその製造方法に関する。
That is, the present invention relates to a borosiloxane polymer having a phenyl group other than an alkyl group and a method for producing the same.

次に本発明のポリマーを詳細に説明する。Next, the polymer of the present invention will be explained in detail.

本発明はホウ酸、ホウ酸塩またはその誘導体より選ばれ
たボロン化合物とハロゲン化フエニルシランとを混合し
、50〜500℃の温度範囲で非酸化性雰囲気中で加熱
し、反応終了後副生成物、未反応原料を除去し、液状の
ポリマー中間生成物を得、これをさらに100〜800
℃の温度範囲で真空中、不活性ガス、COガス、CO2
ガスのうちから選ばれる何れか少くとも1種の非酸化性
雰囲気中で加熱縮重合することにより、 の(A),(B),(C)の構造単位の組合せから成る
B,Si,0の骨格成分を有し、骨格成分中SiとBと
は0により連結され、骨格成分S1の側鎖に少くとも1
個のフエニル基を有し、構成単位(3)に対する(A)
の比はA/B=9:1〜1:9であるボロシロキサンポ
リマーを得ることを特徴とする耐加水分解性、耐熱性に
優れたボロシロキサンポリマーの製造方法に係る。
The present invention involves mixing a boron compound selected from boric acid, borates, or derivatives thereof with halogenated phenylsilane, heating the mixture in a non-oxidizing atmosphere in a temperature range of 50 to 500°C, and producing by-products after the reaction. , unreacted raw materials were removed to obtain a liquid polymer intermediate product, which was further heated to 100 to 800
In vacuum, inert gas, CO gas, CO2 in the temperature range of °C
B, Si, 0, which consists of a combination of structural units (A), (B), and (C), is produced by thermal condensation polymerization in at least one non-oxidizing atmosphere selected from gases. Si and B in the skeleton component are connected by 0, and at least 1 is attached to the side chain of the skeleton component S1.
phenyl group, and (A) for the structural unit (3)
The present invention relates to a method for producing a borosiloxane polymer having excellent hydrolysis resistance and heat resistance, characterized by obtaining a borosiloxane polymer having a ratio of A/B = 9:1 to 1:9.

本発明の方法により得られるボロシロキサンポリマーは
繰り返し単位として の何れかの示性式で示される構造より成り、使用される
フエニルシランの選択により(イ)〜(ホ)の各種の構
造のボロシロキサンポリマーが得られるのである。
The borosiloxane polymer obtained by the method of the present invention consists of a structure represented by any of the formulas as a repeating unit, and depending on the selection of the phenylsilane used, the borosiloxane polymer has various structures (a) to (e). is obtained.

本発明のポリマーの赤外吸収スペクトル測定を行なった
ところ、1600cL−1にベンゼン核、1400〜1
300cr−1にB−0、1150〜1000crL’
にSi−0に基づく特性吸収が認められ、本発明のポリ
マーはB,Si,0を骨格とし、Si側鎖にフエニル基
を有する構造であることが判った。
When the infrared absorption spectrum of the polymer of the present invention was measured, it was found that benzene nuclei were present at 1600 cL-1;
B-0 to 300cr-1, 1150-1000crL'
A characteristic absorption based on Si-0 was observed, and it was found that the polymer of the present invention has a structure having B, Si, 0 as a skeleton and a phenyl group in the Si side chain.

本発明のボロシロキサンポリマーは数平均分子量が50
0〜10000、固有粘度が0,01〜3.00、紫外
吸収曲線で350nm以上に吸収がみられない透明体で
ある屈折率1.20〜1.70、密度1.00〜2.0
0g/cm3,軟化点100〜400℃以上である。
The borosiloxane polymer of the present invention has a number average molecular weight of 50
0 to 10,000, intrinsic viscosity of 0.01 to 3.00, transparent body with no absorption seen above 350 nm in the ultraviolet absorption curve, refractive index of 1.20 to 1.70, density of 1.00 to 2.0
0 g/cm3, and a softening point of 100 to 400°C or higher.

本発明のポリマーは、前記従来知られたメチル基を有す
る平均分子量の小さいボロシロキサンポリマーに較べ、
下記第1表に示す如く耐加水分解性ならびに熱的安定性
に優れている。
The polymer of the present invention has a lower average molecular weight than the conventionally known borosiloxane polymer having a methyl group,
As shown in Table 1 below, it has excellent hydrolysis resistance and thermal stability.

本発明のポリマーが前記の如く耐加水分解性および熱的
安定性に優れる理由は、本発明のポリマーはフエニル基
をSiの側鎖に有し、メチル基を有するポリマーと異な
り、フエニル基が比較的大きな基であり、この基が高分
子内の空間を効率的に占有し、かつSi一〇−B結合に
おける電子密度の局在化を緩和し、主鎖の分極を抑制す
るため、分子構造的、電子論的に水のような極性試剤の
攻撃あるいは加熱に対して抵抗性を有するためであると
思われる。
The reason why the polymer of the present invention has excellent hydrolysis resistance and thermal stability as described above is that the polymer of the present invention has a phenyl group in the side chain of Si, and unlike a polymer having a methyl group, the phenyl group is This group efficiently occupies the space within the polymer, relaxes the localization of electron density in the Si-10-B bond, and suppresses polarization of the main chain, so the molecular structure This is thought to be due to its physical and electronic resistance to attack by polar agents such as water or to heating.

本発明のポリマーにあって、架橋度の太きいものほど前
記耐加水分解性、熱安定性に優れる。
Among the polymers of the present invention, the higher the degree of crosslinking, the better the hydrolysis resistance and thermal stability.

次に本発明のポリマーの製造法について述べる,原料と
してホウ酸またはその誘導体と各種のフエニルシランを
用いる。
Next, a method for producing the polymer of the present invention will be described, using boric acid or its derivatives and various phenylsilanes as raw materials.

まずホウ酸としては以下の構造式のものを基本としこの
他にオルト,2,メタ,4−,5−, −8ホウ酸およびその塩、特にホウ砂等のホウ酸塩を含
むものを使用することができる。
First, as the boric acid, those with the following structural formula are used as standard, and in addition to these, ortho, 2, meta, 4-, 5-, -8 boric acids and their salts, especially those containing borates such as borax, are used. can do.

次に各種フエニルシランとしては以下の様なものを使用
することができる。
Next, as various phenylsilanes, the following can be used.

本発明によれば、前記(2),(3)のいずれか、もし
くは両者の混合物を好適に用い、可塑性を期待する場合
には更に(1)を添加し、逆にポリマーの硬度などの機
械強度を期待する場合には(4)を添加する,(5)は
共重合を目的とする場合に使用する。
According to the present invention, it is preferable to use either (2), (3) or a mixture of both, and when plasticity is expected, (1) is further added, and conversely, mechanical properties such as hardness of the polymer can be improved. (4) is added when strength is expected, and (5) is used when copolymerization is desired.

原料のホウ酸またはその誘導体と各種フエニルシランの
モル比は9:1〜1:9の範囲内で任意に選択すること
ができる。
The molar ratio of the raw material boric acid or its derivative and various phenylsilanes can be arbitrarily selected within the range of 9:1 to 1:9.

好適には3:2〜2:3のモル比でポリマーの合成を行
ない、このモル比内でボロシロキサンポリマーの特性が
最も効果的に現れる。
Preferably, the polymer is synthesized in a molar ratio of 3:2 to 2:3, within which the properties of the borosiloxane polymer are most effectively exhibited.

本発明によれば前記ホウ酸またはその誘導体と各種フエ
ニルシランに縮重合反応させる。
According to the present invention, the boric acid or its derivatives are subjected to a polycondensation reaction with various phenylsilanes.

これら原料の混合物を、あるいは必要に応じ、ベンゼン
、トルエン、キシレン、ジエチルエーテル、ジオキサン
、n−プチルエーテル クロロホルム等の溶剤を加えた
混合物を50〜500℃の温度範囲で非酸化性雰囲気中
で加熱する。
A mixture of these raw materials, or a mixture to which a solvent such as benzene, toluene, xylene, diethyl ether, dioxane, n-butyl ether, chloroform, etc. is added as necessary, is heated in a non-oxidizing atmosphere at a temperature range of 50 to 500°C. do.

この際必要に応じてピリジン、トリエチルアミンのよう
な酸受容体を存在させることができこの場合には通常反
応後に過剰の酸受容体及び生成したハロゲン化物の塩類
を完全に除去する。
At this time, an acid acceptor such as pyridine or triethylamine may be present if necessary, and in this case, the excess acid acceptor and the formed halide salts are usually completely removed after the reaction.

ここで用いられる溶剤は前記諸原料と反応しないことが
必要であり、反応生成物の多くは粘稠な液体若しくは固
体状であり、溶剤を使用することは反応を促進させ反応
時間を短縮させることができるので好ましい。
The solvent used here needs to not react with the above-mentioned raw materials, and most of the reaction products are viscous liquids or solids, so using a solvent accelerates the reaction and shortens the reaction time. This is preferable because it allows

反応終了後副生成物、溶剤未反応の原料を除去し、固体
状、あるいは液状の本発明のポリマーの中間生成物を得
る。
After the reaction is completed, by-products and solvent-unreacted raw materials are removed to obtain a solid or liquid intermediate product of the polymer of the present invention.

前記ポリマーをさらに100〜800℃の温度範囲でそ
のままあるいは必要に応じて触媒の存在下、真空中、不
活性ガス、COガス、CO2ガスのうちから選ばれる何
れか少なくとも1種以上の雰囲気中で加熱縮重合するこ
とにより、高度に架橋された本発明のセミ無機ポリマー
たるフエニル基を有するボロシロキサンポリマーを得る
ことができる。
The polymer is further heated in a temperature range of 100 to 800°C as it is or in the presence of a catalyst if necessary in vacuum or in an atmosphere of at least one selected from inert gas, CO gas, and CO2 gas. By carrying out thermal condensation polymerization, a highly crosslinked borosiloxane polymer having phenyl groups, which is the semi-inorganic polymer of the present invention, can be obtained.

前記本発明のポリマーは充分架橋されたものであるがこ
れをCo60のγ線源を用いて放射線照射しラジカル重
合を行なわせると更に高架橋された本発明のポリマーを
得ることができる。
Although the polymer of the present invention is sufficiently crosslinked, it is possible to obtain a highly crosslinked polymer of the present invention by irradiating it with radiation using a Co60 gamma ray source to carry out radical polymerization.

本発明のポリマーは耐加水分解性、熱的安定性ならびに
透明性があり、これらの性質を必要とする例えば耐熱性
窓、熱媒体、高温パッキング材、壁材、不燃化塗剤、高
温用接着剤として用いることができ、この他に本発明の
ポリマーを各種セラミックス粉末もしくは、サーメット
原料粉末と混合加圧焼成し成型体を得るための結合剤と
する用途を有し、上記の何れの場合においても画期的効
果を発揮する。
The polymer of the present invention has hydrolysis resistance, thermal stability, and transparency, and is used for applications that require these properties, such as heat-resistant windows, heat transfer media, high-temperature packing materials, wall materials, nonflammable coatings, and high-temperature adhesives. In addition, the polymer of the present invention can be used as a binder to obtain a molded body by mixing and pressurizing the polymer with various ceramic powders or cermet raw material powders, and in any of the above cases. also has a revolutionary effect.

本発明においてはホウ酸またはその誘導体とフエニルシ
ランの相互間に縮重合を行なわせB,Si,0を骨格と
しSiの側鎖にフエニル基を有するポリマーを製造しこ
れを更に加熱、放射線照射することにより高架橋された
3次元網目構造のボロシロキサンポリマーを得る。
In the present invention, a polymer is produced by carrying out condensation polymerization between boric acid or a derivative thereof and phenylsilane to produce a polymer having a skeleton of B, Si, and 0 and a phenyl group in the side chain of Si, which is further heated and irradiated with radiation. A highly crosslinked three-dimensional network structure borosiloxane polymer is obtained.

本発明により得られるポリマーが耐加水分解性、耐熱性
に優れているのは主としてフエニル基の導入および加熱
、放射線照射による高架橋処理に寄因する。
The excellent hydrolysis resistance and heat resistance of the polymer obtained by the present invention is mainly due to the introduction of phenyl groups and the high crosslinking treatment by heating and radiation irradiation.

すなわちフエニル基は比較的大きな基でありこれが高分
子内の空間を効率的に占有し、かつSi−0−B結合に
おける電子密度の局在化を緩和し主鎖の分極を抑制する
That is, the phenyl group is a relatively large group that efficiently occupies the space within the polymer, and also alleviates the localization of electron density in the Si-0-B bond and suppresses the polarization of the main chain.

このようにフエニル基の存在は分子構造的にも電子論的
にも水のような極性試剤の攻撃あるいは加熱に対して抵
抗する方向に作用し耐加水分解性を向上させている。
In this manner, the presence of phenyl groups acts in a direction that resists attack by polar reagents such as water or heating, both in terms of molecular structure and electronics, thereby improving hydrolysis resistance.

加熱、放射線重合の効果もまた非常に顕著である。The effects of heating and radiation polymerization are also very significant.

すなわちこのような処理を施すことにより隣接高分子鎖
間に高度の架橋を実現することができる。
That is, by performing such a treatment, a high degree of crosslinking can be achieved between adjacent polymer chains.

本ポリマーにおいては一般のポリマーにおいて見られる
ことの多い加熱による解重合が生起せず加熱縮重合を効
率的に行なうことができる。
In this polymer, depolymerization due to heating, which is often observed in general polymers, does not occur, and heating condensation polymerization can be carried out efficiently.

通常、側鎖に大きな基を有する線状ポリマーにあっては
熱振動による環状化が起りにくい。
Normally, linear polymers having large groups in their side chains are unlikely to undergo cyclization due to thermal vibration.

この現象は加熱により環状オリゴマーの生成、ひいては
解重合が生起しにくいこ吉を意味する。
This phenomenon means that generation of cyclic oligomers and, ultimately, depolymerization are difficult to occur due to heating.

本ポリマーの場合側鎖に比較的大きなフエニル基を有し
ているので加熱により解重合なしに縮重合を達成するこ
とができる。
Since this polymer has a relatively large phenyl group in its side chain, condensation polymerization can be achieved by heating without depolymerization.

以上述べてきた如く本発明のポリマーはB,Si,0を
骨格としSiの側鎖にフエニル基を有するものであり数
平均分子量が500〜ioooo、固有粘度が0.01
〜3.00、屈折率1.20〜1.70、密度1.00
〜2.0l/cyy、赤外吸収スペクトル測定で160
0cr−1にベンゼン核、1400〜1300cr−1
にB−0−、1150〜1000cr−1にSi−0−
に基づく特性吸収が認められることを特徴とし透明で失
透せず耐加水分解性、耐熱性にすぐれたポリマーである
As described above, the polymer of the present invention has a skeleton of B, Si, 0 and a phenyl group in the Si side chain, has a number average molecular weight of 500 to ioooo, and an intrinsic viscosity of 0.01.
~3.00, refractive index 1.20-1.70, density 1.00
~2.0l/cyy, 160 by infrared absorption spectrum measurement
Benzene nucleus at 0cr-1, 1400-1300cr-1
B-0-, Si-0- from 1150 to 1000 cr-1
It is a transparent polymer that does not devitrify and has excellent hydrolysis resistance and heat resistance.

すなわち本発明は前記従来知られているメチル基を有す
るボロシロキサンポリマーが有する耐加水分解性の弱さ
熱的不安定性等の欠点を除去することにより得られる耐
加水分解性が強くかつ熱的安定性の高い新規なボロシロ
キサンポリマーである。
That is, the present invention provides a polymer with strong hydrolysis resistance and thermal stability obtained by eliminating the drawbacks such as weak hydrolysis resistance and thermal instability of the conventionally known methyl group-containing borosiloxane polymer. This is a novel borosiloxane polymer with high properties.

本発明により得られるポリマーはその耐加水分解性、耐
熱性を利用する直接的用途の他にこれを各種セラミック
ス粉末もしくはサーメット原料粉末と混合加圧焼成し成
型体を得るための結合剤とする用途を有し、その何れの
場合においても画期的効果を発揮する。
The polymer obtained by the present invention is not only used directly to utilize its hydrolysis resistance and heat resistance, but also used as a binder to obtain a molded body by mixing it with various ceramic powders or cermet raw material powders and firing under pressure. It has a revolutionary effect in both cases.

次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

実施例 1 ジフエニルジク口ロシラン3モルとホウ酸2モルを秤取
しこれにベンゼンを加え窒素ガス下で90℃で24時間
還流反応を行なった。
Example 1 3 moles of diphenyl dichlorosilane and 2 moles of boric acid were weighed out, benzene was added thereto, and a reflux reaction was carried out at 90° C. for 24 hours under nitrogen gas.

この後重炭酸ソーダ溶液で残存するHClの中和洗浄作
業を行なった後分液33斗内に全体を移して分液し水溶
液を廃棄しベンゼン溶液側のみを得た。
Thereafter, residual HCl was neutralized and washed with a sodium bicarbonate solution, and then the whole was transferred into a liquid separation vessel 33 to separate the liquids, the aqueous solution was discarded, and only the benzene solution side was obtained.

この後ベンゼンを蒸発除去することにより白色粉末が得
られた。
Thereafter, benzene was removed by evaporation to obtain a white powder.

この白色粉末を400℃で1時間アルゴン気流中で加熱
処理した後冷却したところ無色透明のポリマーを得た。
This white powder was heat-treated at 400° C. for 1 hour in an argon stream and then cooled to obtain a colorless and transparent polymer.

この物質は空気中で加水分解を受けにくくじかも熱的に
安定であり難燃性てあった。
This material was not susceptible to hydrolysis in air, but was also thermally stable and flame retardant.

この物質のIRスペクトルを測定したところ第1図のa
の如<3600と3500〜3100cIILにそれぞ
れわずかにSl−OHとB−OHの吸収、1600cI
−1にベンゼン核、1400〜1300cr−1にB−
0−、1150〜1000cr−1にSi−0−に基づ
く特性吸収が認められたので本発明のポリマーはホウ素
を含むシロキサン結合を有するポリマーであることがわ
かった。
When we measured the IR spectrum of this substance, we found that a in Figure 1.
Slight absorption of Sl-OH and B-OH at <3600 and 3500-3100 cIIL, respectively, and 1600 cI
-1 has a benzene nucleus, 1400~1300cr-1 has a B-
Since a characteristic absorption based on Si-0- was observed at 0- and 1150 to 1000 cr-1, the polymer of the present invention was found to be a polymer having a siloxane bond containing boron.

比較のためにジフエニルジク口ロシランを加水分解して
合成したジフエニルポリシロキサンには1400〜13
00−1における吸収が無い。
For comparison, diphenyl polysiloxane synthesized by hydrolyzing diphenyl dichlorosilane has a concentration of 1400 to 13
There is no absorption in 00-1.

ジフエニルポリシロキサンのIRスペクトルを第1図b
にかかげる。
The IR spectrum of diphenylpolysiloxane is shown in Figure 1b.
I'll put it on.

このことから新しく得られたポリマーはその分子内にB
−0結合を有するポリボロシロキサンであることがわか
った。
From this, the newly obtained polymer has B in its molecule.
It turned out to be a polyborosiloxane having a -0 bond.

なお本発明の新規なポリマーを有機微量分析その他の手
段で元素分析した結果Sil1.6重量%、B4.4重
量%、C59.9重量%、H4.2重量%、Orest
という値を得た。
Elemental analysis of the novel polymer of the present invention by organic microanalysis or other means revealed Sil: 1.6% by weight, B: 4.4% by weight, C: 59.9% by weight, H: 4.2% by weight, Orest.
The value was obtained.

次いでこの物質を粉砕してベンゼンに溶解した後数平均
分子量1100という値を得た。
This material was then ground and dissolved in benzene to obtain a number average molecular weight of 1100.

またこの新規ポリマーのUVスペクトルを測定したとこ
ろ第2図の結果を得た。
When the UV spectrum of this new polymer was measured, the results shown in Figure 2 were obtained.

同図からわかる通り210〜28Onm付近まで吸収の
大きななだらかなピークがあり303nmに肩吸収、3
20nmおよび333nmの吸収ピークがみられた。
As can be seen from the figure, there is a large gentle peak of absorption from around 210 to 28 Onm, and a shoulder absorption at 303 nm.
Absorption peaks at 20 nm and 333 nm were observed.

350nm以上には吸収がみられないので透明な物質で
あることが良く理解出来た。
Since no absorption was observed above 350 nm, it was easy to understand that it was a transparent substance.

本ポリマーを水中に10時間浸漬して外観を観察した結
果吸水による失透はみられなかった。
When this polymer was immersed in water for 10 hours and its appearance was observed, no devitrification due to water absorption was observed.

また水中浸漬の前後における重量変化もなかった。Moreover, there was no change in weight before and after immersion in water.

このことから本発明のポリマーは耐水性にすぐれたポリ
マーであることがわかった。
This indicates that the polymer of the present invention has excellent water resistance.

本発明のポリマーは170℃で軟化するが600℃以上
の高温にしないと着火は起らす難燃性であることがわか
った。
It has been found that the polymer of the present invention is flame retardant, softening at 170°C, but igniting only at a high temperature of 600°C or higher.

上記本発明のポリマーが耐加水分解性、耐熱性に優れて
いるのは前述のようにアルゴン中で400℃1時間加熱
処理を行なったがために隣接高分子鎖間に高度の架橋が
なされたためとフエニル基の存在の両方によるものであ
る。
The reason why the above-mentioned polymer of the present invention has excellent hydrolysis resistance and heat resistance is that, as mentioned above, heat treatment at 400°C for 1 hour in argon resulted in a high degree of crosslinking between adjacent polymer chains. and the presence of phenyl groups.

本発明のポリマーには例えば第3図および第4図に示す
如き3次元網目構造を有するものがある。
Some of the polymers of the present invention have a three-dimensional network structure as shown in FIGS. 3 and 4, for example.

本発明のポリマーはその透光性、耐加水分解性、耐熱性
、難燃性を利用して直接各種の光学部品その他に用いる
ことができる。
The polymer of the present invention can be used directly for various optical components and other parts by utilizing its light transmittance, hydrolysis resistance, heat resistance, and flame retardancy.

次に本発明のポリマーをSiC粉末(325mesh以
下)に10重量%添加して2ton/Cm2で冷間プレ
スし、これを1300℃まで窒素中加熱してSiC成型
体を得た。
Next, 10% by weight of the polymer of the present invention was added to SiC powder (325 mesh or less), cold pressed at 2 tons/Cm2, and heated to 1300° C. in nitrogen to obtain a SiC molded body.

この成型体は抗折強度10.4kg/mm2を示し、1
500℃まで空気中加熱しても機械強度が低下せず、通
常の酸、塩基に対しても強い耐蝕性を示した。
This molded product showed a bending strength of 10.4 kg/mm2, and
Mechanical strength did not decrease even when heated to 500°C in air, and it showed strong corrosion resistance against ordinary acids and bases.

SiCは自己焼結性に乏し<2000℃付近でホットプ
レスしなければ成型体を得ることができないが、本発明
の本ポリマーを用いると1300℃という比較的低温で
SiC成型体を得ることができ、前記のようにして造っ
たSiC成型体は高強度、耐熱性、耐蝕性を有していた
SiC has poor self-sintering properties and cannot be formed into a molded body unless it is hot pressed at temperatures around <2000°C, but by using the polymer of the present invention, a SiC molded body can be obtained at a relatively low temperature of 1300°C. The SiC molded body produced as described above had high strength, heat resistance, and corrosion resistance.

このことは画期的な本発明の効果である。This is an epoch-making effect of the present invention.

なお先に本発明者らは有機ケイ素高分子化合物を結合剤
としてSiC粉末に混和成型加熱してSiC成型体を製
造する方法を発明し特願昭50−77567号により特
許出願した。
The present inventors have previously invented a method of manufacturing a SiC molded body by mixing and heating SiC powder with an organosilicon polymer compound as a binder, and filed a patent application in Japanese Patent Application No. 77567/1983.

前記方法による成型体と本発明による成型体とを比較す
ると第2表の如くになり、本発明によれば前記本発明者
らの先の発明より更に優れた特性を有する成型体を得る
ことができることがわかった。
A comparison of the molded product obtained by the above method and the molded product according to the present invention is shown in Table 2, which shows that according to the present invention, it is possible to obtain a molded product having even better characteristics than the previous invention of the present inventors. I found out that it can be done.

実施例 2 実施例1で得られたポリマーを更に75℃でCo60の
γ線源を用いて250000γ/hrで放射線照射し、
ラジカル重合を行なわせた結果非常に硬い透明ポリマー
を得た。
Example 2 The polymer obtained in Example 1 was further irradiated at 75° C. with a Co60 γ-ray source at 250,000 γ/hr.
As a result of radical polymerization, a very hard transparent polymer was obtained.

この物質は溶媒不溶であり、溶媒を使用する分子量の測
定が不可能な程高分子量のものであった。
This substance was insoluble in solvents and had such a high molecular weight that it was impossible to measure its molecular weight using a solvent.

この物質の耐加水分解性、耐熱性は実施例1で得られた
ものより更に良く、その表面硬度はマイクロビツガス値
(荷重300g、30sec)で60であった。
The hydrolysis resistance and heat resistance of this material were even better than those obtained in Example 1, and its surface hardness was 60 in microbit gas value (load 300 g, 30 sec).

本発明のポリマーの優れた耐加水分解性、耐熱性、硬度
は放射線照射におけるラジカル重合の結果によるもので
ある。
The excellent hydrolysis resistance, heat resistance, and hardness of the polymer of the present invention are due to radical polymerization upon radiation irradiation.

実施例 3 窒素ガス雰囲気下ジフエニルジク口ロシラン36g、ホ
ウ酸6.1gとフエニルトリクロロシラン2gを入れ2
00℃で24時間反応させた後、キシレン100mlに
溶解し戸過した後、減圧下3液よりキシレン及び未反応
のジフエニルジク口ロシラン、フエニルトリクロロシラ
ンを除去しボロシロキサンポリマーの白色粉末を25.
5g得た。
Example 3 In a nitrogen gas atmosphere, 36 g of diphenyldichlorosilane, 6.1 g of boric acid and 2 g of phenyltrichlorosilane were added.
After reacting at 00°C for 24 hours, it was dissolved in 100ml of xylene and filtered, and then xylene and unreacted diphenyldichlorosilane and phenyltrichlorosilane were removed from the three liquids under reduced pressure to obtain a white powder of borosiloxane polymer.
I got 5g.

このものをさらに450℃にアルゴン気流下2時間加熱
した。
This was further heated to 450° C. for 2 hours under an argon stream.

このものは透明な樹脂状であり平均分子量3,500で
あった。
This product was in the form of a transparent resin and had an average molecular weight of 3,500.

本発明のポリマーの平均分子量が比較的高いのは微量添
加したフエニルトリクロロシランが3官能性であるため
に架橋度が向上したものと思われる。
The reason why the average molecular weight of the polymer of the present invention is relatively high is considered to be that the degree of crosslinking is improved because the phenyltrichlorosilane added in a small amount is trifunctional.

実施例 4 ジフエニルトリク口ロシラン36g、ホウ酸6.1g、
トリフエニルクロロシラン1.5gを用いて実施例3の
反応条件下で還流反応させた後、ボロシロキサンポリマ
ー白色粉末を得、これを400℃でアルゴン気流下2時
間加熱した。
Example 4 36 g of diphenyltricrosilane, 6.1 g of boric acid,
After carrying out a reflux reaction using 1.5 g of triphenylchlorosilane under the reaction conditions of Example 3, a white borosiloxane polymer powder was obtained, which was heated at 400° C. for 2 hours under an argon stream.

このものは透明で靭件のある樹脂状であり平均分子量9
00であった。
This material is transparent and resin-like with toughness and has an average molecular weight of 9.
It was 00.

本実施例の場合1官能性のトリフエニルク口ロシランを
微量添加したために平均分子量が低く押えられ、かつ可
塑性が生じたものと思われる。
In the case of this example, the addition of a small amount of monofunctional triphenylsilane seems to have kept the average molecular weight low and caused plasticity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明のフエニルボロシロキサンポリマーの
赤外吸収スペクトル図、第1図bはジメチルボロシロキ
サンポリマーの赤外吸収スペクトル図、第2図は本発明
ポリマーの紫外吸収スペクトル図、第3図および第4図
は本発明のポリマーの構造の一例を示す図である。
Figure 1a is an infrared absorption spectrum diagram of the phenylborosiloxane polymer of the present invention, Figure 1b is an infrared absorption spectrum diagram of a dimethylborosiloxane polymer, and Figure 2 is an ultraviolet absorption spectrum diagram of the polymer of the present invention. 3 and 4 are diagrams showing an example of the structure of the polymer of the present invention.

Claims (1)

【特許請求の範囲】 1 ホウ酸、ホウ酸塩またはその誘導体より選ばれた硼
素化合物と下記(イ),(0),(ハ),(ニ),(ホ
)の式(但しn<1000,R=OH,Cl) に示されるハロゲン化フエニルシランとを混合し50〜
500℃の温度範囲で非酸化性雰囲気中で加熱し、反応
終了後副生成物、未反応原料を除去し、得られた液状の
ポリマー中間生成物をさらに100〜800℃の温度範
囲で真空中、不活性ガス、COガス、CO2ガスのうち
から選ばれる何れか少くとも1種の非酸化性雰囲気中で
加熱縮重合することにより、 の(A),(B),(C)の構造単位の組合せから成る
B,Si,0の骨格成分を有し、骨格成分中SiとBと
はOにより連結され、骨格成分Siの側鎖に少くとも1
個のフエニル基を有し、構成単位(B)に対する(A)
m比はA/B=9:1〜1:9であるボロシロキサンポ
リマーを得ることを特徴とする耐加水分解性、耐熱性に
優れたボロシロキサンポリマーの製造方法。 2 得られたボロシロキサンポリマーは数平均分子量が
500〜10000、固有粘度が0.01〜3.00、
紫外線吸収曲線で350nm以上に吸収がなく、屈折率
1.20〜1.70の透明な、密度1.00〜2.00
g/cm31軟化点100〜400℃である特許請求の
範囲第1項記載のポロシロキサンポリマーの製造方法。 3 得られたボロシロキサンポリマーは繰り返し単位と
して の何れかの示性式で示される構造より成る特許請求の範
囲第1項記載のボロシロキサンポリマーの製造方法。 4 ボロシロキサンの加熱縮重合は触媒の存在下で行う
特許請求の範囲第1項記載のポロシロキサンポリマーの
製造方法。 5 ボロシロキサンの加熱縮重合は放射照射してラジカ
ル重合を行わせ高度に架橋させる特許請求の範囲第1項
記載のボロシロキサンポリマーの製造方法。
[Scope of Claims] 1 A boron compound selected from boric acid, boric acid salts, or derivatives thereof and the following formulas (a), (0), (c), (d), and (e) (where n<1000 , R=OH, Cl) and a halogenated phenylsilane shown in
Heating is carried out in a non-oxidizing atmosphere at a temperature range of 500°C, and after the reaction is completed, by-products and unreacted raw materials are removed, and the obtained liquid polymer intermediate product is further heated in a vacuum at a temperature range of 100 to 800°C. The structural units of (A), (B), and (C) are obtained by thermal condensation polymerization in at least one non-oxidizing atmosphere selected from , inert gas, CO gas, and CO2 gas. It has a skeleton component of B, Si, and 0 consisting of a combination of the following, Si and B in the skeleton component are connected by O, and at least 1 is attached to the side chain of the skeleton component Si.
phenyl group, and (A) for the structural unit (B)
A method for producing a borosiloxane polymer having excellent hydrolysis resistance and heat resistance, the method comprising obtaining a borosiloxane polymer having an m ratio of A/B=9:1 to 1:9. 2 The obtained borosiloxane polymer has a number average molecular weight of 500 to 10,000, an intrinsic viscosity of 0.01 to 3.00,
Transparent with no absorption beyond 350 nm in the ultraviolet absorption curve, refractive index of 1.20 to 1.70, and density of 1.00 to 2.00.
The method for producing a polysiloxane polymer according to claim 1, which has a softening point of g/cm31 of 100 to 400°C. 3. The method for producing a borosiloxane polymer according to claim 1, wherein the obtained borosiloxane polymer has a structure represented by any of the formulas as a repeating unit. 4. The method for producing a polysiloxane polymer according to claim 1, wherein the thermal condensation polymerization of the borosiloxane is carried out in the presence of a catalyst. 5. The method for producing a borosiloxane polymer according to claim 1, wherein the thermal condensation polymerization of borosiloxane is carried out by radiation irradiation to perform radical polymerization and highly crosslinking.
JP11648776A 1976-09-30 1976-09-30 Method for producing borosiloxane polymer with excellent hydrolysis resistance and heat resistance Expired JPS584732B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11648776A JPS584732B2 (en) 1976-09-30 1976-09-30 Method for producing borosiloxane polymer with excellent hydrolysis resistance and heat resistance
US05/835,373 US4152509A (en) 1976-09-30 1977-09-21 Borosiloxane polymers and a method for producing the same
GB39688/77A GB1593511A (en) 1976-09-30 1977-09-23 Borosiloxane polymers and a method for producing same
DE19772743843 DE2743843A1 (en) 1976-09-30 1977-09-29 BORSILOXANE POLYMERS AND A PROCESS FOR THE PREPARATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11648776A JPS584732B2 (en) 1976-09-30 1976-09-30 Method for producing borosiloxane polymer with excellent hydrolysis resistance and heat resistance

Publications (2)

Publication Number Publication Date
JPS5342300A JPS5342300A (en) 1978-04-17
JPS584732B2 true JPS584732B2 (en) 1983-01-27

Family

ID=14688322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11648776A Expired JPS584732B2 (en) 1976-09-30 1976-09-30 Method for producing borosiloxane polymer with excellent hydrolysis resistance and heat resistance

Country Status (1)

Country Link
JP (1) JPS584732B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584209A (en) * 1981-06-30 1983-01-11 昭和電線電纜株式会社 Heat resistant insulated wire
JPS58210976A (en) * 1982-06-02 1983-12-08 Showa Electric Wire & Cable Co Ltd Bonding resin composition
US6132856A (en) 1997-07-22 2000-10-17 Ube Industries, Ltd. Sintered SIC fibers bonded material
JP4947513B2 (en) * 2006-04-21 2012-06-06 良二 羽鳥 Floor staples for flooring, nails for floor nails and shapes of nails
US7951736B2 (en) 2006-09-20 2011-05-31 Ube Industries, Ltd SiC fiber-bonded ceramic and process for production of the same
JP5594558B2 (en) * 2006-10-13 2014-09-24 日東紡績株式会社 Polymer composition containing metal alkoxide condensate, organosilane compound, and boron compound
JP5434922B2 (en) 2008-09-24 2014-03-05 宇部興産株式会社 Method for producing SiC fiber bonded ceramics
US20130089705A1 (en) 2010-03-31 2013-04-11 Ube Industries, Ltd. SiC FIBER-BONDED CERAMIC COATED WITH SiC
JP2012122002A (en) * 2010-12-09 2012-06-28 Daicel Corp Addition-curable metallosiloxane compound

Also Published As

Publication number Publication date
JPS5342300A (en) 1978-04-17

Similar Documents

Publication Publication Date Title
US4152509A (en) Borosiloxane polymers and a method for producing the same
EP0389084B1 (en) Process for producing a polyborosilazane
US4720532A (en) Organopolysilazane precursors to silicon nitride-rich mixed SiC/Si3 N4
US5292830A (en) Thermosetting copolymers, silicon carbide-based fiber and processes for producing same
JP2760555B2 (en) Polyborosilazane and method for producing the same
Devapal et al. Synthesis, characterization and ceramic conversion studies of borosiloxane oligomers from phenyltrialkoxysilanes
JPS60226890A (en) Preseramic organosilazane polymer
Pankratov et al. The synthesis of polycyanates by the polycyclotrimerisation of aromatic and organoelement cyanate esters
US4835238A (en) Polysilacyclobutasilazanes
JPS584732B2 (en) Method for producing borosiloxane polymer with excellent hydrolysis resistance and heat resistance
JP3442123B2 (en) A method for crosslinking polysilazane polymers.
Huang et al. Synthesis and properties of liquid polycarbosilanes with hyperbranched structures
Li et al. Synthesis of hyperbranched polymethylvinylborosiloxanes and modification of addition‐curable silicone with improved thermal stability
US4806612A (en) Preceramic acetylenic polysilanes
EP0266918A2 (en) A method for the preparation of preceramic polymers derived from cyclic silazanes and halosilanes
US5629249A (en) Silicon carboxide fibers from gel spinning cyclosiloxane polymer precursors
JP3080104B2 (en) Thermosetting copolymer and method for producing the same
EP0596680A2 (en) Borazine derivatized hydridopolysilazane polymers
JP3290463B2 (en) Thermosetting silicon boron-containing copolymer and method for producing the same
Liu et al. Synthesis and characterization of a novel reactive ladderlike 4, 4′‐phenylene ether‐bridged polyvinylsiloxane
Li et al. Self‐assembling directed synthesis of a novel terephthalamide‐bridged ladderlike polysiloxane
JP3625912B2 (en) Silicon-containing copolymer and method for producing the same
Tian et al. Caterpillar-shaped polysilsesquioxanes
US3341494A (en) Silicon-containing polymers and their production
Green et al. Thermal stability of carborane-containing polymers