JPS5847236A - Photographic film density measuring apparatus - Google Patents

Photographic film density measuring apparatus

Info

Publication number
JPS5847236A
JPS5847236A JP14692681A JP14692681A JPS5847236A JP S5847236 A JPS5847236 A JP S5847236A JP 14692681 A JP14692681 A JP 14692681A JP 14692681 A JP14692681 A JP 14692681A JP S5847236 A JPS5847236 A JP S5847236A
Authority
JP
Japan
Prior art keywords
reflector
optical path
light
photographic film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14692681A
Other languages
Japanese (ja)
Inventor
Takeshi Okano
岡野 武
Kuniomi Abe
阿部 国臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konan Camera Research Institue Inc
Original Assignee
Konan Camera Research Institue Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konan Camera Research Institue Inc filed Critical Konan Camera Research Institue Inc
Priority to JP14692681A priority Critical patent/JPS5847236A/en
Publication of JPS5847236A publication Critical patent/JPS5847236A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity

Abstract

PURPOSE:To invariably enable an accurate measurement of a photographic density eliminating measuring errors due to a polarization by dislodging polarizing optical parts located between a film to be measured and a measuring light source from the optical path during the measuring time. CONSTITUTION:A semitransparent reflector 23 is so arranged as indicated by the arrow 28 to dislodge from the measuring optical path. The reflection 23 interlocks the reflector 9 properly; the reflector 23 dislodges from the optical path as indicated by the arrow 27 when a reflector 9 is on the optical path as illustrated while it stays within the optical path when the reflector 9 is moved in the direction of the arrow 26. This eliminates variations in the quantity of light due to a polarization of a film 7 even when the reflector 23 is located within the optical path to observe the perimeter of a spot 8 lighting by a light source 24.

Description

【発明の詳細な説明】 この発明は、写真フィルムの濃度を、印画条件を決定す
る目的や、多色印刷における色補正の条件を決定する目
的などで、測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the density of photographic film for the purpose of determining printing conditions, color correction conditions in multicolor printing, and the like.

簡単に説明すれば、写真フィルムの濃度ハ、写真フィル
ムを透過した光を受光素子で受け、その電気信号を濃度
計測回路で処理した後で計器に指示させれば知ることが
できる。その場合に、写真フィルムが透明に近い状態で
あると、計器が負値の濃度を指示する現象が時たま現わ
れることを発明者は発見した。このことは、光源と受光
素子との間に透明フィルムを挿入すると、却って受光素
子へ入射する光量が増すことを意味する。
Simply put, the density of a photographic film can be determined by receiving light transmitted through the photographic film with a light receiving element, processing the electrical signal in a density measuring circuit, and then instructing a meter. In this case, the inventor has discovered that when the photographic film is in a nearly transparent state, a phenomenon in which the meter sometimes indicates a negative density value appears. This means that inserting a transparent film between the light source and the light receiving element actually increases the amount of light that enters the light receiving element.

写真フィルムの素材としては、一般には酢酸繊維素系の
フィルムが用いられているが、大型判の写真フィルムに
は、熱や湿気による伸縮を少なくするためにポリエステ
ルフィルムを用いたものがある。上述の現象は、このよ
うなポリエステルを素材とする写真フィルムに現われる
ことが判った。
Cellulose acetate-based films are generally used as materials for photographic films, but some large-format photographic films use polyester films to reduce expansion and contraction due to heat and moisture. It has been found that the above-mentioned phenomenon appears in photographic films made of such polyester.

一方、フィルムの濃度測定装置は、光源と受光素子との
間に、例えば干渉式半透明鏡のような偏光作用を持つ光
学部品が、諸種の利用目的や装置の設計上の必要性など
によって介在している。そして、そのような偏光性光学
部品同士の偏光面が交差していると、充光素子へ入射す
る光量は減少する。このような場合に、2個の偏光性光
学部品の間に偏光面を旋回させる作用を持つ物体、或い
は偏光を通常光へ散乱させる作用を持つ物体を挿入する
と、減少していた受光素子の入射光量は、回復、即わち
増大することになる。
On the other hand, in film density measuring devices, an optical component with a polarizing effect, such as an interference type semi-transparent mirror, is inserted between the light source and the light receiving element depending on the purpose of use or the necessity of designing the device. are doing. If the polarization planes of such polarizing optical components intersect with each other, the amount of light incident on the light filling element decreases. In such cases, inserting an object that rotates the plane of polarization between two polarizing optical components, or an object that scatters polarized light into normal light, will reduce the amount of light incident on the photodetector. The amount of light will recover, ie increase.

前述のポリエステルフィルムは、十分解明できていない
が、上述の偏光に関連する性質を有するものと推測され
る。ポリエステルフィルムは、どちらかと言えば、偏光
を通常光へ散乱させているようであるが、それだけでは
十分説明がつかないので、偏光面を旋回する作用も幾分
持っているようである。
Although the above-mentioned polyester film has not been fully elucidated, it is assumed that it has the properties related to the above-mentioned polarization. If anything, the polyester film seems to scatter polarized light into normal light, but since this alone is not a sufficient explanation, it also seems to have some effect of rotating the plane of polarization.

この発明は、」−述のような一部の写真フィルムGこお
ける偏光に関連する性質に基く濃度測定誤差を除くこと
を目的とし、以下、これを図示の実施例Gこよって説明
する。
The purpose of the present invention is to eliminate density measurement errors based on polarization-related properties of some photographic films as described above, and this will be explained below with reference to Example G shown in the drawings.

測定用光源1の光は、集光レンズ2及び反射鏡3を経て
ピンホール4に集束され、更に1束レンズ5及び反射鏡
6を経て写真フィルム7上に微細な照明スポット8を生
ずる。スポット8で写真フィルムラを透過した光は、反
射鏡9、レンズ10゜反射鏡11、レンズ12、反射鏡
13、絞り14、レンズ15を通過して、多色受光器1
6へ入射する。多色受光器16内には、光軸2上に半透
明反射器1’7a 、1’7b、1’7c、1’7dが
配列され、各半透明反射器でそれぞれ反射された光は、
色フィルタlea、18b、IBC118dを透過して
受光素子19a 、  19b 、 19c 、 19
dGこそれぞれ入射する。
The light from the measurement light source 1 passes through a condensing lens 2 and a reflecting mirror 3, is focused onto a pinhole 4, and further passes through a bundle lens 5 and a reflecting mirror 6, producing a fine illumination spot 8 on a photographic film 7. The light that has passed through the photographic film at spot 8 passes through a reflector 9, a lens 10, a reflector 11, a lens 12, a reflector 13, an aperture 14, and a lens 15, and then reaches a multicolor receiver 1.
6. Inside the multicolor light receiver 16, semitransparent reflectors 1'7a, 1'7b, 1'7c, and 1'7d are arranged on the optical axis 2, and the light reflected by each semitransparent reflector is as follows.
The light passes through the color filters lea, 18b and IBC 118d, and the light receiving elements 19a, 19b, 19c, 19
dG is incident on each.

各受光素子19a、19b、19c、196の電気的出
力は、それぞれ濃度計測回路20a、2ob・ 20C
・20dで処理されて、指示別器21a 、 21b、
  2IC。
The electrical output of each light receiving element 19a, 19b, 19c, 196 is connected to concentration measuring circuit 20a, 2ob, 20C, respectively.
・Processed by 20d, indicating separate units 21a, 21b,
2IC.

21dに与えられると共(こ、メモリ22に導入されて
記憶される。
21d, and is also introduced into and stored in the memory 22.

上述の装置において、写真フィルムラを光軸Zに直交す
るX方向(紙面に垂直な方向)に高速で反復して移動さ
せると共に、Z及びXに直交するY方向(紙面における
」=下方向)に低速で移動させると、写真フィルムラは
スポットB&こより高速でX方向走査を受けると共に低
速でY方向走査を受ける。従って計器21a〜21dは
、スポット8における色フィルタ18a −lsaで分
解した各色濃度をそれぞれ指示し、かつメモリ22は写
真フィルム8の各部における各色濃度を記憶する。メモ
リ22の記憶を解析することにより、印画や多色印刷原
版の条件を見出すことができる。
In the above-described apparatus, the photographic film is repeatedly moved at high speed in the X direction (direction perpendicular to the plane of the paper) perpendicular to the optical axis Z, and in the Y direction (downward in the plane of the paper) orthogonal to Z and X. When moved at a low speed, the photographic film layer is scanned in the X direction at a higher speed than spots B&, and scanned in the Y direction at a lower speed. Therefore, the meters 21a to 21d each indicate the density of each color separated by the color filters 18a to lsa at the spot 8, and the memory 22 stores the density of each color at each part of the photographic film 8. By analyzing the storage in the memory 22, conditions for printing and multicolor printing original plates can be found.

上述の濃度測定装置は、XY方向の走査を停めて、フィ
ルム画像の特定点にスポット8を当て、そこの濃度を測
定するの(こも用いられる。その際は、−1−述の特定
点だけでなく、その周囲の画像を観察しながら特定点に
照準を合わせる。そのために、測定用光源lからフィル
ムラへ向う光路中に半透明反射器23を挿入し、これへ
向けて観察用光源24の光を集光レンズ25を経て導入
すると共に、反射鏡9を可動的に支持してこれを矢印2
6方向に退避できるようにし、反射鏡27を介して写真
フィルムラを観察できるようにする。この場合は、測定
用光源1によって写真フィルム7上にスポットが形成さ
れると共に、その周囲が観察用光源24によって照明さ
れるので、スポット8が写真画像中のどのような部分に
位置しているかを、観察によって知ることができる。
The above-mentioned density measuring device stops scanning in the X and Y directions, places a spot 8 on a specific point on the film image, and measures the density there. Instead, aim at a specific point while observing the surrounding image.To do this, a semi-transparent reflector 23 is inserted into the optical path from the measurement light source 1 to the film layer, and the observation light source 24 is directed toward it. At the same time, the light of
The photographic film can be retracted in six directions, and the photographic film can be observed through a reflecting mirror 27. In this case, a spot is formed on the photographic film 7 by the measurement light source 1, and its surroundings are illuminated by the observation light source 24, so it is difficult to determine where the spot 8 is located in the photographic image. can be known through observation.

前述した写真フィルムの偏光による障害は、半透明反射
器1’7a −1’7d及び23が偏光性であること、
及びこれらをすべて常時測定用の光路中に介在させてお
くことによって起る。これらの半透明反射器として金属
蒸着式のものを用いれば、偏光性は僅かであるが、透過
光は1枚につき30係も減少する。そのために、各受光
素子19a〜19dに入射する光量に大きな差を生ずる
し、最終段の受光素子19(lに入射する光量は120
分の1程度にまで減少する。よって受光素子19a −
194としては薄膜干渉式のものを使用し、かつ膜厚に
より特定色のみを反射させる方式を採用するのが望まし
い。この場合、反射光は反射器の面に平行に偏光し、透
過光は反射器の面に垂直に偏光する。
The aforementioned disturbance due to polarization of the photographic film is due to the fact that the translucent reflectors 1'7a to 1'7d and 23 are polarizing;
This is caused by keeping all of these intervening in the optical path for measurement at all times. If metal vapor-deposited reflectors are used as these translucent reflectors, the polarization is slight, but the amount of transmitted light is reduced by a factor of 30 per reflector. Therefore, a large difference occurs in the amount of light incident on each of the light receiving elements 19a to 19d, and the amount of light incident on the final stage light receiving element 19 (l is 120
It decreases to about 1/2. Therefore, the light receiving element 19a -
It is preferable to use a thin film interference type as 194, and to adopt a method of reflecting only a specific color depending on the film thickness. In this case, the reflected light is polarized parallel to the plane of the reflector and the transmitted light is polarized perpendicular to the plane of the reflector.

図では、これらは平面的に画かれているので方向が不明
であるが、実際の装置では各光学部品を立体的に配置し
なければならない。設計上、半透明反射器1”a〜M(
lと23とを、光軸Zに対する両者の方向が平行になる
ように配置すれば、受光素子19aに入射する光量は減
少しないが、受光素子19b〜19dに入射する光量は
減少する。また、半透明反射器1”a〜1′7dと23
とを、光軸2に対する両者の方向が直交するように配置
すれば、受光素子191)〜19dに入射する光量が減
少しなくなる代りに、受光素子19aに入射する光量が
減少する。
In the figure, these are drawn two-dimensionally, so the directions are unclear, but in an actual device, each optical component must be arranged three-dimensionally. Due to the design, semi-transparent reflector 1”a~M(
If 1 and 23 are arranged so that their directions are parallel to the optical axis Z, the amount of light incident on the light receiving element 19a will not decrease, but the amount of light incident on the light receiving elements 19b to 19d will decrease. In addition, translucent reflectors 1"a to 1'7d and 23
If they are arranged so that their directions with respect to the optical axis 2 are perpendicular to each other, the amount of light incident on the light receiving elements 191) to 19d will not decrease, but the amount of light incident on the light receiving element 19a will decrease.

濃度計測回路20a〜20t1は、写真フィルムラを取
去って受光素子19a −19dへの入射光量が最大に
なったとき、濃度値0に対応して出力が0になるように
設定される。従って、前述のような偏光に関連する特殊
な性質を持つ写真フィルムを挿入した場合は、その透明
部分では、受光素子19a〜19dへの入射光量が何も
挿入していない場合よりも増大する結果、濃度計測回路
20a〜20dの出力はOよりも更に少ない負値になる
The density measurement circuits 20a to 20t1 are set so that when the photographic film layer is removed and the amount of light incident on the light receiving elements 19a to 19d reaches a maximum, the output becomes 0 corresponding to a density value of 0. Therefore, when a photographic film with special properties related to polarization as described above is inserted, the amount of light incident on the light receiving elements 19a to 19d increases in the transparent part compared to when nothing is inserted. , the outputs of the concentration measurement circuits 20a to 20d become negative values that are even smaller than O.

この発明においてGこ、半透明反射器23は矢印2Bで
示すように、測定用の光路から離脱させうるように設置
する。そして、出来れば反射鏡9が図示のように測定用
の光路を構成させる位置にあるときは、半透明反射器2
3は矢印28で示すように光路外へ離脱し、反射鏡9を
矢印26方向へ移動させてフィルム7の観察を行う際に
は、半透明反射器23が図示のように光路内へ進入する
ように、両者の操作を連動させることが望ましい。
In this invention, the translucent reflector 23 is installed so that it can be removed from the measurement optical path, as shown by arrow 2B. If possible, when the reflector 9 is in a position where it forms an optical path for measurement as shown in the figure, the translucent reflector 2
3 leaves the optical path as shown by the arrow 28, and when the reflecting mirror 9 is moved in the direction of the arrow 26 to observe the film 7, the translucent reflector 23 enters the optical path as shown. It is desirable to link the operations of both.

その結果、光源24によりスポット8の周辺を照明して
観察を行う際Gこは、半透明反射器23は図示のように
光路内に置かれるが、この場合には前述のフィルムラの
偏光に関連する性質による光量変化は全く問題にならな
い。そして、フィルムラの濃度を測定する場合には、半
透明反射器23が光路内に存在しないので、フィルムラ
の偏光に関連する性質による測光の誤差を回避すること
ができる。
As a result, when performing observation by illuminating the periphery of the spot 8 with the light source 24, the translucent reflector 23 is placed in the optical path as shown in the figure, but in this case, the polarized light of the film Changes in light amount due to related properties are not a problem at all. When measuring the density of film rays, since the translucent reflector 23 is not present in the optical path, it is possible to avoid photometric errors due to polarization-related properties of film rays.

ヨッて、この発明によるときは、フィルム素材が偏向に
関連する性質を有すると否とに拘らず、常に正確な写真
濃度を求めることができるので、より適切な印画や写真
製版による印刷を実現することができる。
According to this invention, accurate photographic density can always be obtained regardless of whether or not the film material has polarization-related properties, thereby realizing more appropriate printing and photomechanical printing. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の実施例における光路及び電気回路図であ
る。 1・・・測定用光源、ツ・・・写真フィルム、16・・
・・多色受光器、l’7a〜l’i’d・・・半透明反
射器(偏光性光学部品)、19a〜19d・・・受光素
子、20a〜20(1・・・濃度計測回路、23・・・
半透明反射器(偏光性光学部品)、24・・・観察用光
源。 特許出願人  株式会社甲南カメラ研究所代理人 清水
 哲はが2名
The figure is an optical path and electric circuit diagram in an embodiment of the present invention. 1... light source for measurement, 2... photographic film, 16...
...Multicolor light receiver, l'7a to l'i'd...Semi-transparent reflector (polarizing optical component), 19a to 19d...Light receiving element, 20a to 20 (1...Concentration measurement circuit , 23...
Semi-transparent reflector (polarizing optical component), 24... light source for observation. Patent applicant: Konan Camera Institute Co., Ltd. Representative Tetsuha Shimizu (2 persons)

Claims (1)

【特許請求の範囲】[Claims] (1)測定用光源と受光素子との間に、写真フィルム及
びその前後にそれぞれ位置する偏光性光学部品を含む光
路を有する濃度測定装置において、上記写真フィルムよ
りも上記測定用光源の側に位置する上記偏光性光学部品
を、測定時に上記光路から離脱させる手段を設けてなる
写真フィルム濃度測定装置。
(1) In a density measuring device having an optical path between a measurement light source and a light receiving element that includes a photographic film and polarizing optical components located before and after the photographic film, the device is located closer to the measurement light source than the photographic film. A photographic film density measuring device comprising means for removing the polarizing optical component from the optical path during measurement.
JP14692681A 1981-09-16 1981-09-16 Photographic film density measuring apparatus Pending JPS5847236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14692681A JPS5847236A (en) 1981-09-16 1981-09-16 Photographic film density measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14692681A JPS5847236A (en) 1981-09-16 1981-09-16 Photographic film density measuring apparatus

Publications (1)

Publication Number Publication Date
JPS5847236A true JPS5847236A (en) 1983-03-18

Family

ID=15418692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14692681A Pending JPS5847236A (en) 1981-09-16 1981-09-16 Photographic film density measuring apparatus

Country Status (1)

Country Link
JP (1) JPS5847236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225084U (en) * 1988-08-03 1990-02-19
JP2008509400A (en) * 2004-08-06 2008-03-27 コンピュサイト コーポレイション Color display type monochromatic light absorption determination method for light absorption in stained samples

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225084U (en) * 1988-08-03 1990-02-19
JP2008509400A (en) * 2004-08-06 2008-03-27 コンピュサイト コーポレイション Color display type monochromatic light absorption determination method for light absorption in stained samples

Similar Documents

Publication Publication Date Title
CN100549618C (en) The inspection method of flaw detection apparatus, defect detecting method and hole pattern
US5805278A (en) Particle detection method and apparatus
JP3692685B2 (en) Defect inspection equipment
JPWO2007069457A1 (en) Surface inspection apparatus and surface inspection method
CN101622525A (en) Observation device, inspection device and inspection method
JPS58219441A (en) Apparatus for detecting defect on surface of convex object
KR101237583B1 (en) Inspection method based on captured image and inspection device
JPH0875661A (en) Defect detecting equipment
KR101006983B1 (en) detecting apparatus for panel
JPS5847236A (en) Photographic film density measuring apparatus
CA1126854A (en) Inspection apparatus for defects on patterns
JPS5847237A (en) Photographic film density measuring apparatus
CA1168467A (en) Apparatus for automatically detecting and evaluating the characteristics of prints
JPS58120106A (en) Detecting device for focal point
JPS6153511A (en) Apparatus for inspecting flaw
JP2000097867A (en) Defect detecting device and method for translucent substrate
JP2001141653A (en) Method and apparatus for inspection of sheet glass by schlieren method
KR0154559B1 (en) Method of and apparatus for inspecting recticle for defects
JPS5839916A (en) Measuring method for density of photographic film
KR100487261B1 (en) Object defect inspection method and inspection device
JPH11118668A (en) Method and apparatus for inspecting defect of object
JP2000295639A (en) Lighting device for inspecting solid-state image pickup element and adjustment tool used for the same
JPS6029057B2 (en) Reflection inspection device for three-sided mirror reflector
JP2000180373A (en) Method and apparatus for inspection of defect
JPH0210444Y2 (en)