JPS5845625A - Manufacture for magnetic recording medium - Google Patents

Manufacture for magnetic recording medium

Info

Publication number
JPS5845625A
JPS5845625A JP14269881A JP14269881A JPS5845625A JP S5845625 A JPS5845625 A JP S5845625A JP 14269881 A JP14269881 A JP 14269881A JP 14269881 A JP14269881 A JP 14269881A JP S5845625 A JPS5845625 A JP S5845625A
Authority
JP
Japan
Prior art keywords
mask
vapor
recording medium
magnetic recording
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14269881A
Other languages
Japanese (ja)
Other versions
JPS645375B2 (en
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14269881A priority Critical patent/JPS5845625A/en
Priority to US06/409,608 priority patent/US4450186A/en
Priority to DE8282107650T priority patent/DE3278257D1/en
Priority to DE198282107650T priority patent/DE73041T1/en
Priority to EP82107650A priority patent/EP0073041B1/en
Publication of JPS5845625A publication Critical patent/JPS5845625A/en
Publication of JPS645375B2 publication Critical patent/JPS645375B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a vapor-deposited metal magnetic thin film type magnetic recording medium with homogeneous quality and excellent corrosion resistance, by jetting a gas containing oxygen from a mask for incident angle restriction facing vapor flow, at the vapor deposition of ferromagnetic substance. CONSTITUTION:A substrate 1 made of a high-polymer molding is carried along a rotary can 4 from a delivery shaft 10 to a winding shaft 11 in a vacuum tank 5, and a volatile and magnetic substance 2 from an evaporation vessel 3 is vapor-deposited by limiting an incident angle with a mask 8. During the vapor deposition, a gas containing oxygen is jetted from a nozzle with a small hole provided at a side 20 of the mask 8 facing the vapor flow. Thus, a magnetic recording medium with uniform performance in the broadwise and lengthwise directions can be obtained.

Description

【発明の詳細な説明】 本発明は、強磁性層が春着薄膜である磁気記録媒体の製
造方法に関し、抗磁力の制御を幅方向に均一化するとと
もに長手方向にも均一化する技術の提供を目的とするも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a magnetic recording medium in which the ferromagnetic layer is a spring-coated thin film, and provides a technique for uniformizing the control of coercive force in the width direction as well as in the longitudinal direction. The purpose is to

更に具体的には、真空雰囲気の制御により高抗磁力を達
成する技術の改良であって、外部より。
More specifically, it is an improvement in the technology of achieving high coercive force by controlling the vacuum atmosphere, from the outside.

強制的にガスを導入する方法の改良に関するものである
This invention relates to an improvement in the method of forcibly introducing gas.

更に本発明は強磁性層を構成する元素の酸化物により保
護効果全改善した媒体を得るに適した方法の提供を目指
すものでもある。
Furthermore, the present invention aims to provide a method suitable for obtaining a medium in which the protective effect is completely improved by using the oxide of the element constituting the ferromagnetic layer.

磁気記録に於て、短波長記録に5強磁性金属薄膜を磁気
記録層として用いることの有用性は196゜年代の後半
より実験的に確認され、良く知られるところである。
In magnetic recording, the usefulness of using a ferromagnetic metal thin film as a magnetic recording layer for short wavelength recording has been experimentally confirmed since the latter half of the 1960s and is well known.

しかしかかる媒体を実用レベルで利用する時の問題は、
抗磁力を中心とした磁気特性の生産性を配慮した領域で
の制御と、得られる媒体の腐食、摩耗に対する耐性の改
良があげられる。
However, the problems when using such media on a practical level are:
These include controlling magnetic properties centered on coercive force in the area of productivity, and improving the resistance of the resulting media to corrosion and abrasion.

従来この種の問題は、湿式めっき法、蒸着法のいずれの
方法で得た強磁性膜についても共通の課題であり1抗磁
力の制御には、湿式めっき法では主としてめっき浴の化
学組成の安定化、蒸着法ではいわゆる斜方蒸着(特公昭
41−19389号公報)が主としてとられていた。
Conventionally, this type of problem has been common to ferromagnetic films obtained by either wet plating or vapor deposition methods. Among the chemical and vapor deposition methods, so-called oblique vapor deposition (Japanese Patent Publication No. 19389/1989) was mainly used.

しかし両者に共通していえる欠点は、生産性が極めて低
い点にある。例えば蒸着でCo100%のの磁性層で抗
磁力800〔○ e)を実現するには入射角の制限を7
6°〜800にする必要があり、電子ビームを集束して
突沸寸前の電力密度を投入して、蒸発速度を高めても、
0.15 mの磁性層を得るには2〜3 m / m 
i nの基板移動速度にしかならないことから伺い知れ
る。
However, the common drawback of both is that productivity is extremely low. For example, to achieve a coercive force of 800 [○ e) with a 100% Co magnetic layer by vapor deposition, the incident angle must be limited to 7
6° to 800°, and even if the electron beam is focused and a power density on the verge of bumping is applied to increase the evaporation rate,
2-3 m/m to obtain a magnetic layer of 0.15 m
This can be seen from the fact that the substrate movement speed is only equal to in.

又一方、耐蝕性、耐摩耗性の問題の解決のために従来と
られた方法の多くは強磁性層の上に更に別の保護層を設
けるものであった。
On the other hand, most of the conventional methods for solving the problems of corrosion resistance and abrasion resistance involve providing another protective layer on the ferromagnetic layer.

N1−W合金(特開昭51−43,110号公報)。N1-W alloy (JP-A-51-43,110).

N1・B合金(特開昭52−2,405号公報)、Ni
合金層を熱処理により硬度をあげたもの(特開昭51−
102,606号幻9.Ni−Cr韻(特開昭53−7
3,108号公報)等の合金薄膜を保護層とするもの%
酸化物、炭化物(特開昭60−104,602号公報)
、酸化物磁性体上にg−Fe203系薄膜を保護層とし
て配したもの(特開昭51−59.606号公報)、5
i−8t酸化物(特開昭62−127.203号公報)
、磁性層との間にCrを介しての5i−3i酸化物(特
開昭62−127,204号公報)、窒化ケイ素化合物
(特開昭55−73.931えは飽和脂肪酸の単分子層
(特開昭50−7,500号公報)、滑性液体層中に酸
化防止剤を含有させたもの(特開昭51−20,805
号公報)等が提案されている。
N1・B alloy (JP-A-52-2,405), Ni
The hardness of the alloy layer is increased by heat treatment (JP-A-51-
No. 102,606 Phantom 9. Ni-Cr rhyme (JP-A-53-7
3,108 Publication) etc. with alloy thin film as a protective layer%
Oxides, carbides (Japanese Unexamined Patent Publication No. 104,602/1982)
, a g-Fe203 thin film disposed as a protective layer on an oxide magnetic material (Japanese Unexamined Patent Publication No. 51-59.606), 5
i-8t oxide (JP-A-62-127.203)
, 5i-3i oxide (JP-A-62-127-204), silicon nitride compound (JP-A-55-73-931, monomolecular layer of saturated fatty acid) with Cr interposed between the magnetic layer. (Japanese Unexamined Patent Publication No. 50-7,500), a lubricating liquid layer containing an antioxidant (Japanese Unexamined Patent Publication No. 51-20,805)
Publication No.) etc. have been proposed.

これらの技術も記録波長が数μmの間は有効なものの、
171m以下の記録波長になると、スペーシングロスの
制約から、これらの保趙層は極めて薄く仕上げることが
要求されることから保護効果が急激に失われてくる。
Although these techniques are effective for recording wavelengths of several μm,
At a recording wavelength of 171 m or less, these protection layers are required to be made extremely thin due to spacing loss constraints, and therefore their protective effect is rapidly lost.

即ち5o八へ100八程度の前記層の厚みでは耐蝕性と
耐摩耗性の両者に優れた改善を与えにくく、このことは
、相対速度3 m / Sec −5m/ s ecと
いう高速で回転するヘッドとの摺動に於て、より深酷化
しているのである。
In other words, it is difficult to provide excellent improvement in both corrosion resistance and wear resistance with a layer thickness of about 508 to 1008, and this means that a head rotating at a high relative speed of 3 m/sec -5 m/sec The situation is becoming more and more severe.

これらは強磁性層と保護層とが異なる材質である点と1
強磁性層の形成と独立の工程により保軸膜の形成を行っ
ていることに改善すべき問題点を有している。
These include the fact that the ferromagnetic layer and the protective layer are made of different materials.
The fact that the axis-holding film is formed in a process independent of the formation of the ferromagnetic layer has a problem that should be improved.

の受けるダメージは、目視かん察上何の変化もみられな
くても、前記したように、高速回転するヘッドに当接し
た時、保護層のはくりを引き起すことが多く、この事実
は異なる物質量の界面の破壊を示しており改善が望まれ
るのである。
As mentioned above, even if no change is seen visually, the protective layer often peels off when it comes into contact with a high-speed rotating head, and this fact indicates that different materials This indicates the destruction of the interface, and improvement is desired.

本発明は、前記した2点に主として考察を加え改良実験
を重ねた結果なされたもので2強磁性層そのものの酸化
物層を表面に形成する方法によるものである。
The present invention was achieved by mainly considering the above two points and conducting repeated improvement experiments, and is based on a method of forming an oxide layer of the two ferromagnetic layers themselves on the surface.

この方法は、付加的な物質を使用しないことから安定性
、信頼性の面で後述する利点を有している0 なお本発明でいう蒸着には、真空蒸着、イオンブレーテ
ィング等を含むものである。
This method has advantages in terms of stability and reliability, which will be described later, since no additional substances are used. Note that the term evaporation as used in the present invention includes vacuum evaporation, ion blating, and the like.

磁気テープの通常の製造工程は、50cm以上の広幅の
基材上に連続して磁性層を形成してから所定の幅寸法に
スリットするのであるから、本発明の別の目的は5幅方
向、長手方向に酸化層の厚み質の制御を均一たらしめる
方法の提供にあることも前述の通りである。
The normal manufacturing process for magnetic tape is to continuously form a magnetic layer on a wide base material of 50 cm or more and then slit it into a predetermined width dimension. Therefore, another object of the present invention is to form a magnetic layer in the 5 width directions, As mentioned above, the object of the present invention is to provide a method for uniformly controlling the thickness of an oxide layer in the longitudinal direction.

第1図は本発明を実施するための蒸着装置の一例を示す
FIG. 1 shows an example of a vapor deposition apparatus for carrying out the present invention.

なお図においては上家6.下室7の二室分離形の捲き取
り式蒸着機と類似の構成例を示しであるが、これによら
ずとも後述の要件を満たす別の装置によっても実施でき
るのは勿論である。
In addition, in the figure, upper house 6. Although an example of a configuration similar to that of a scroll-type vapor deposition machine with two separate lower chambers 7 is shown, it is needless to say that the present invention can be implemented with another apparatus that satisfies the requirements described later.

図に示すように、高分子成形物からなる基板1は真空容
器5内において送り送し軸1oより、捲き取り軸11へ
移動する途中で、冷却用支持体に沿った状態で蒸着され
る。図では回転キャン4が支持と冷却の作用を行ってい
る。これに代るもので、エンドレスの例えば5US30
4のo、etを電子ビーム溶接して得られるような回転
ベルトに沿わせることも可能であL本発明に含まれる。
As shown in the figure, a substrate 1 made of a polymer molded product is vapor-deposited along a cooling support while being moved from a feeding shaft 1o to a winding shaft 11 in a vacuum container 5. In the figure, the rotary can 4 performs support and cooling functions. An alternative to this is Endless, for example 5US30
It is also possible to run the parts 4 and 4 along a rotating belt such as that obtained by electron beam welding, and this is included in the present invention.

蒸発源は蒸発源容器3と蒸発材*42で模式的に示した
が、加熱は、誘導加熱、レーザビーム加熱。
The evaporation source is schematically shown as an evaporation source container 3 and an evaporation material *42, and the heating is induction heating or laser beam heating.

抵抗加熱等があるが、電子ビーム加熱が最も適している
。蒸発材料は電子ビーム衝撃により加熱気化し、基板1
へ差し向けられる。基板1は矢印A々に入射角が小さく
なり、磁性体の種類により必要な抗磁力、角形比の選択
を行い決定される入射角で蒸着が終るよう仕組まれる。
There are resistance heating methods, but electron beam heating is the most suitable. The evaporation material is heated and vaporized by electron beam impact, and the substrate 1
be sent to. The substrate 1 is designed so that the incident angle decreases in the direction of the arrows A, and the deposition ends at the incident angle determined by selecting the necessary coercive force and squareness ratio depending on the type of magnetic material.

8はそのためのマスクである。9は仕切板である上室6
.下室7は夫々独立した排気系12と13で排気される
8 is a mask for that purpose. 9 is the upper chamber 6 which is a partition plate
.. The lower chamber 7 is exhausted by independent exhaust systems 12 and 13, respectively.

上室6には必要に応じてグロー処理を施すためのグロー
処理装置を配することもできるが2図では略しである。
A glow treatment device for performing glow treatment may be provided in the upper chamber 6 if necessary, but it is omitted in FIG.

さて本発明のポイントは、下室7へのガス導入にある。Now, the point of the present invention lies in the introduction of gas into the lower chamber 7.

それはマスク8の側面に設けられたノズル20により達
成される。即ち1基板10幅方向に対して、均一に特性
が得られるように工夫すべきであるのは勿論である。
This is achieved by a nozzle 20 provided on the side of the mask 8. That is, it goes without saying that measures should be taken to obtain uniform characteristics in the width direction of one substrate 10.

第2図にマスクを示すように、マスクは背面14と前面
16とg41j面17と図示せぬ2つの側面とBIII
 1lflより構成されるジャケット構造となし、背面
14には例えば銅パイプ19をろう接して冷却水Wを流
し、過熱を防止する。ガス導入パイグ18よりガスGが
導入され、B側面!℃にあけられた小孔群15より噴射
する。
As shown in FIG. 2, the mask has a back surface 14, a front surface 16, a g41j surface 17, two side surfaces (not shown), and a BIII
It has a jacket structure composed of 1lfl, and a copper pipe 19, for example, is soldered to the back surface 14 to flow cooling water W to prevent overheating. Gas G is introduced from gas introduction pipe 18, B side! It is injected from a group of small holes 15 drilled at ℃.

ジャケット内部はガスが小孔群15より均一に噴射され
るよう適宜仕切板を入れるなり、ジャケット形状を流体
力学的に最適化することで1本発明の効果はさらに発揮
される。
The effects of the present invention can be further exhibited by inserting appropriate partition plates inside the jacket so that the gas is uniformly injected through the small hole group 15, and by optimizing the jacket shape from a hydrodynamic perspective.

ガス導入に関して行われる制御について、公知技術によ
り充分幅方向、長手方向の性能の均一化(実施例1〜3
の共通条件) 回転キャン直径1 m 、幅65cm。
With regard to the control performed regarding gas introduction, performance was sufficiently uniformized in the width direction and longitudinal direction using known techniques (Examples 1 to 3).
Common conditions) Rotating can diameter 1 m, width 65 cm.

基板フィルム幅50cm0 離をρ とするとβ。−28Cm 、ρ1=45cm0
8面の小孔群16は1′Bの孔を4 C1n間隔に幅方
向に17個配設した。
If ρ is the substrate film width of 50 cm0, then β. -28Cm, ρ1=45cm0
In the small hole group 16 on eight sides, 17 1'B holes were arranged in the width direction at intervals of 4 C1n.

(実施例4〜5の共通条件) 実施例1〜3と異なりρ。= 31 cm 、君、 =
35cmとし、11φの孔を2Cm間隔に幅方向に33
ケ配役した。他の条件は実施例1〜3と同じである。
(Common conditions for Examples 4 and 5) Unlike Examples 1 and 3, ρ. = 31 cm, you, =
35cm, with 11φ holes spaced 2cm apart in the width direction.
He was cast. Other conditions are the same as in Examples 1-3.

〔実施例1〕 ポリエチレンテレフタレート10.5μm f 25 
m/mjnの速度で捲き取りなからCo100係を電子
ビーム加熱により蒸発させ、酸素を圧力1.tsKg/
cnf ″′cO−03611/m1n導入し、0.1
5μm厚の磁性層を形成した。回転キャンの温度は循環
冷媒を−30に保持して制御したつ 得られた磁性層を幅方向12点、長さ方向10点サンプ
リングして、磁気特性、酸化層厚み、酸化層の質、耐蝕
性、耐摩耗性を調べたところ、抗磁力、角形化は±6チ
以内、酸化層厚みは、±8係で、酸化層の質は同じであ
った。その結果耐蝕性は例えば60095%RH環境下
で8週間以上例の変化もなかった。
[Example 1] Polyethylene terephthalate 10.5 μm f 25
After winding up at a speed of m/mjn, Co100 is evaporated by electron beam heating, and oxygen is heated to a pressure of 1.0 m/mjn. tsKg/
cnf ″′cO-03611/m1n was introduced, 0.1
A magnetic layer with a thickness of 5 μm was formed. The temperature of the rotating can was controlled by keeping the circulating coolant at -30°C, and the resulting magnetic layer was sampled at 12 points in the width direction and 10 points in the length direction, and magnetic properties, oxide layer thickness, oxide layer quality, and corrosion resistance were measured. When the properties and abrasion resistance were examined, the coercive force and squareness were within ±6 inches, the oxide layer thickness was within ±8 degrees, and the quality of the oxide layer was the same. As a result, there was no change in corrosion resistance for more than 8 weeks under a 60095% RH environment, for example.

〔実施例2〕 ポリエチレンテレフタレート12.5μmf 30m/
mjnで捲きとりながらC085%Ni15%を電子ビ
ーム加熱により蒸発させ、酸素を圧力2に7/Crlで
0 、0312 /mi n 導入し、0.13μm厚
の磁性0 層を形成した回転キャンの循環冷媒幅度は○Cとした。
[Example 2] Polyethylene terephthalate 12.5μmf 30m/
C085%Ni15% was evaporated by electron beam heating while being rolled up by mjn, and oxygen was introduced at a pressure of 2 and 7/Crl at a rate of 0,0312/min to form a magnetic 0 layer with a thickness of 0.13 μm.The circulation of a rotating can. The refrigerant width was set to ○C.

実施例1と同じサンプリングをして調べた結果、磁性層
の抗磁力、角形比は±5%以内、酸化層厚みは±7係で
、酸化層の質は同一で、耐蝕性は6゜C95%RHで9
週間以−4二例の変化もなかった。
As a result of the investigation using the same sampling as in Example 1, the coercive force and squareness ratio of the magnetic layer were within ±5%, the oxide layer thickness was within ±7%, the quality of the oxide layer was the same, and the corrosion resistance was 6°C95. 9 at %RH
There were no changes in the -42 cases since the week.

〔実施例3〕 ポリイミドフィルム25μm上に30m / m i 
nで酸素f 0 、142 /min (圧力1 Kg
 / ci )導入しながら0.2μmの厚さに形成し
た0075%N125係からなる磁性層の抗磁カフj′
Pk角形比の安定性は±6%、酸化層厚みは±6係で酸
化層の質は同じであった。
[Example 3] 30 m/mi on 25 μm polyimide film
n and oxygen f 0 , 142/min (pressure 1 Kg
/ci) Antimagnetic cuff j' of a magnetic layer made of 0075% N125 formed to a thickness of 0.2 μm while introducing
The stability of the Pk squareness ratio was ±6%, the thickness of the oxide layer was ±6%, and the quality of the oxide layer was the same.

その結果耐蝕性は60C95%RHで9週間以上例の変
化もなかった。
As a result, the corrosion resistance was 60C, 95% RH, and showed no change for over 9 weeks.

実施例1〜3において磁性層が形成された記録媒体ff
:3/’′/  幅のテープとし1あらかじめλ−0,
811の記録を行い、100”ずつリールに巻き込んで
、夫々前記環境下に放置したのち、6週間、12週間径
過の時点で再生を行ったが、目づまり、ドロノプアウト
の増加はなく、耐摩耗性も極めて安定していた。
Recording medium ff in which a magnetic layer was formed in Examples 1 to 3
:3/''/ Assuming the width of the tape is 1 in advance, λ-0,
811 was recorded, wound onto a reel in 100" increments, and left in the above environment, and then played back after 6 and 12 weeks. There was no increase in clogging or dropouts, and the wear resistance was excellent. Sexuality was also extremely stable.

この系でポリエチレンテレフタレートフィルム1271
m厚」二に、Co80%Ni2O%、Co70%Ni 
30% 、Co50%Fe50% 、Co95%Rh5
%、Co95%v6%の夫々について酸素導入量を0.
02〜0.15B、/min の範囲で変化させて、夫
々厚さ0.06μmの範囲の磁性層を形成した。
In this system, polyethylene terephthalate film 1271
m thickness"2, Co80%Ni2O%, Co70%Ni
30%, Co50%Fe50%, Co95%Rh5
%, Co95%v6%, the amount of oxygen introduced was 0.
The magnetic layer thickness was varied within the range of 0.02 to 0.15 B,/min to form a magnetic layer having a thickness of 0.06 μm.

夫々の磁性層の性能は実施例1〜3の場合とほぼ同一で
あった。
The performance of each magnetic layer was almost the same as in Examples 1-3.

又5本発明は、回転キャンの代りに、5US304の0
.6tのエンドレスベルト(幅60 Cm。
In addition, the present invention uses the 0 of 5 US304 instead of the rotary can.
.. 6t endless belt (width 60cm).

筒長2”)k冷却用支持体として、それに沿わせて高分
子成形物基板を移動させて、磁性層を形成しても効果は
同じであった。
The effect was the same even if the polymer molded substrate was moved along the cooling support to form the magnetic layer.

又、イオンブレーティングとして、高周波コイル2ター
ン、直径eocr、、をキャンと蒸発源とのほぼ中間位
置に配設し、フィルム幅50CmでCO,80係Ni2
O係、 Co 95%W6%、00100%について夫
々導入酸素条件0.015ρ/min (入射角15°
以上)で0.171m厚の磁性層を形成した。
In addition, as ion brating, a high-frequency coil with 2 turns and a diameter of eocr was placed approximately midway between the can and the evaporation source, and a film width of 50 cm was used to produce CO, 80% Ni2
For O, Co 95%W6%, 00100%, the introduced oxygen condition was 0.015ρ/min (incidence angle 15°
(above), a magnetic layer with a thickness of 0.171 m was formed.

その時のフィルム速度は15m/min、高周波電力は
13.66MH2で450Wであった。
The film speed at that time was 15 m/min, and the high frequency power was 13.66 MH2 and 450 W.

得られた膜は全く同様の性能を有することを確かめるこ
とができた。
It could be confirmed that the obtained membranes had exactly the same performance.

〔実施例4〕 ポリエチレテレフタレートフィルム9.511m135
 m / mi nで捲き取りながらCo90%Ni1
0%を電子ビーム加熱により蒸発させ、酸素全圧力I 
Kg / a7で0.41/min導入し、厚さ0.1
6μmのa付層を形成した。得られた磁性層の磁気特性
の均一性は±4%以内、酸化層厚みは±6%で、酸化層
の質は同一で耐蝕性は60C95%RH環境下で10週
間以上何の変化もみられず安定した信頼性を示した。
[Example 4] Polyethylene terephthalate film 9.511 m135
Co90%Ni1 while rolling with m/min
0% is evaporated by electron beam heating, and the total oxygen pressure I
Kg / a7, introduced at 0.41/min, thickness 0.1
A layer with a thickness of 6 μm was formed. The uniformity of the magnetic properties of the obtained magnetic layer was within ±4%, the thickness of the oxide layer was ±6%, the quality of the oxide layer was the same, and the corrosion resistance showed no change for more than 10 weeks in a 60C 95% RH environment. It showed stable reliability.

〔実施例5〕 ポリアミドフィルム8μmを25 m / mi nで
捲き取りながら0083%N117係を電子ビームで加
熱蒸発さぜ酸素f 0 、1 j! /mi n (圧
力2 、1 Kg/面を0.1Torrの酸素グローに
2.6秒間露呈した(グロー条件:600V□、77A
 )結果、磁気特性の均一性は±6.6%、そして酸化
層厚みについてのばらつきは±6.6%、酸化層の質は
同一で耐蝕性は60′C96%RHで17週間にわたり
変化なしで、極めて信頼性が高い膜を得られることがわ
かる。
[Example 5] While rolling up a polyamide film of 8 μm at a speed of 25 m/min, 0083% N117 was heated and evaporated with an electron beam, and oxygen f 0 , 1 j! /min (pressure 2, 1 Kg/surface was exposed to 0.1 Torr oxygen glow for 2.6 seconds (glow conditions: 600V□, 77A
) As a result, the uniformity of magnetic properties was ±6.6%, and the variation in oxide layer thickness was ±6.6%, the quality of the oxide layer was the same, and the corrosion resistance remained unchanged for 17 weeks at 60'C and 96%RH. It can be seen that an extremely reliable film can be obtained.

以上の各実施例において、蒸着長さが1000m以上に
なると更に有用性が明確であり、2000mについては
λ−0,8μの記録再生により、出力の安定性±0.2
dBを、3000mについては±0.23dB 、40
00mについては±0.2dBを達成できることが確認
された。
In each of the above examples, the usefulness is clearer when the deposition length is 1000 m or more, and for 2000 m, the output stability is ±0.2 by recording and reproducing at λ-0.8μ.
dB, ±0.23dB for 3000m, 40
It was confirmed that ±0.2 dB could be achieved for 00 m.

以上のように、本発明は磁性層の品質が均一で耐蝕性に
すぐれる磁気記録媒体を生産性良く得るものであり、そ
の工業的価値は極めて大である0
As described above, the present invention provides a magnetic recording medium with uniform magnetic layer quality and excellent corrosion resistance with high productivity, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するだめの蒸着装置の一例な示す
図、第2図は前記装置の要部をなすマス4 りの斜視図である。 1・・・・・基板、2・・・・・・蒸発材判、4・・・
・・回転キャン、6・・・・・・真空容器、8・・・・
・マスク、16・・・・・小孔群、18・・・・・・ガ
ス導入パイプ。
FIG. 1 is a diagram showing an example of a vapor deposition apparatus for carrying out the present invention, and FIG. 2 is a perspective view of a mass 4 constituting the main part of the apparatus. 1...Substrate, 2...Evaporation material size, 4...
...Rotating can, 6...Vacuum container, 8...
・Mask, 16... Small hole group, 18... Gas introduction pipe.

Claims (1)

【特許請求の範囲】[Claims] 冷却用支持体に沿って移動する高分子成形物基板に入射
角制限用のマスクにより入射角を制限した強磁性材料の
蒸気流を向かわせ前記基板上に強磁性層を形成するに際
し、前記マスクの前記蒸気流に面する側から少なくとも
酸素を含むガスを噴出せしめることを特徴とする磁気記
録媒体の製造方法。
When forming a ferromagnetic layer on the substrate by directing a vapor flow of a ferromagnetic material with an incident angle limited by a mask for limiting the incident angle onto a polymer molded substrate moving along a cooling support, the mask A method for manufacturing a magnetic recording medium, comprising ejecting a gas containing at least oxygen from the side facing the vapor flow.
JP14269881A 1981-08-20 1981-09-09 Manufacture for magnetic recording medium Granted JPS5845625A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14269881A JPS5845625A (en) 1981-09-09 1981-09-09 Manufacture for magnetic recording medium
US06/409,608 US4450186A (en) 1981-08-20 1982-08-19 Method and device for manufacturing magnetic recording medium
DE8282107650T DE3278257D1 (en) 1981-08-20 1982-08-20 Method and device for manufacturing magnetic recording medium
DE198282107650T DE73041T1 (en) 1981-08-20 1982-08-20 METHOD AND DEVICE FOR PRODUCING MAGNETIC RECORDING CARRIERS.
EP82107650A EP0073041B1 (en) 1981-08-20 1982-08-20 Method and device for manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14269881A JPS5845625A (en) 1981-09-09 1981-09-09 Manufacture for magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5845625A true JPS5845625A (en) 1983-03-16
JPS645375B2 JPS645375B2 (en) 1989-01-30

Family

ID=15321462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14269881A Granted JPS5845625A (en) 1981-08-20 1981-09-09 Manufacture for magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5845625A (en)

Also Published As

Publication number Publication date
JPS645375B2 (en) 1989-01-30

Similar Documents

Publication Publication Date Title
EP0073041B1 (en) Method and device for manufacturing magnetic recording medium
US5447748A (en) Method and apparatus for producing magnetic recording medium
JPS5845625A (en) Manufacture for magnetic recording medium
KR960013372B1 (en) Method for making a magnetic recording medium
JPH0330213B2 (en)
JPH0334616B2 (en)
JPS62185246A (en) Production of magnetic recording medium
JPH0319621B2 (en)
JPS59150083A (en) Vacuum deposition device
JPH0154776B2 (en)
JPH0798868A (en) Production of magnetic recording medium
JPS59141351A (en) Production of soft magnetic thin sheet
JPH05128514A (en) Manufacture of vapor-deposited magnetic recording medium
JPS59165244A (en) Manufacturing device for magnetic recording medium
JPH0334130B2 (en)
JPS60145531A (en) Manufacture of magnetic recording medium
JPS6074609A (en) Continuous film forming equipment
JPH0479011A (en) Magnetic recording medium and production thereof
JPH0335422A (en) Production of magnetic recording medium
JPS60117420A (en) Method for forming continuous thin film
JPS59190356A (en) Vapor depositing apparatus and method
JPH05135351A (en) Magnetic recording medium and manufacture thereof and sliding member
JPS59141209A (en) Vacuum deposition device
JPS63255823A (en) Production of magnetic recording medium
JPS6126941A (en) Production of magnetic recording medium