JPS584399B2 - How to remotely measure strain, etc. - Google Patents

How to remotely measure strain, etc.

Info

Publication number
JPS584399B2
JPS584399B2 JP51010820A JP1082076A JPS584399B2 JP S584399 B2 JPS584399 B2 JP S584399B2 JP 51010820 A JP51010820 A JP 51010820A JP 1082076 A JP1082076 A JP 1082076A JP S584399 B2 JPS584399 B2 JP S584399B2
Authority
JP
Japan
Prior art keywords
resistance value
value
strain
constant current
cable core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51010820A
Other languages
Japanese (ja)
Other versions
JPS5295250A (en
Inventor
藤山陽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOBOKU SOTSUKI SENTAA KK
Original Assignee
DOBOKU SOTSUKI SENTAA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOBOKU SOTSUKI SENTAA KK filed Critical DOBOKU SOTSUKI SENTAA KK
Priority to JP51010820A priority Critical patent/JPS584399B2/en
Publication of JPS5295250A publication Critical patent/JPS5295250A/en
Publication of JPS584399B2 publication Critical patent/JPS584399B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

【発明の詳細な説明】 本発明は所謂3導線式ひずみゲージを使用するときケー
ブル心線の直流抵抗によりひずみ等の測定感度が低下す
ることを防止し精密測定を行なう方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for performing precise measurements by preventing the measurement sensitivity of strain, etc. from decreasing due to the direct current resistance of the cable core when using a so-called three-conductor type strain gauge.

従来ひずみゲージを使用してひずみ・温度を計測すると
き3心ケーブルにより遠隔測定することが行なわれてい
た。
Conventionally, when strain and temperature were measured using a strain gauge, remote measurement was carried out using a three-core cable.

この種ゲージを3導線式ひずみゲージと称しているが、
ケーブル心線の直流抵抗は、ひずみゲージの直流抵抗と
直列接続されて測定されるから、ケーブルを長く必要と
する場合等ケーブル心線の直流抵抗が大きくなって、ひ
ずみゲージのみの直流抵抗値を精度良く求めることが困
難であった。
This type of gauge is called a 3-conductor strain gauge, but
The DC resistance of the cable core is measured by connecting it in series with the DC resistance of the strain gauge, so if the cable is required to be long, the DC resistance of the cable core becomes large, and the DC resistance value of the strain gauge alone is measured. It was difficult to obtain it accurately.

しかも心線の直流抵抗値は標準規格品の常温における値
を温度条件によって補正しながら計算によって求めるが
、ケーブルはその全長にわたって同一温度とは限らず、
したがって多数の個所における測定は計算に時間がかか
り、その割に正確な測定は困難であった。
Moreover, the DC resistance value of the core wire is calculated by correcting the value of the standard product at room temperature according to the temperature conditions, but the temperature of the cable is not always the same over its entire length.
Therefore, it takes time to calculate measurements at a large number of locations, and it is difficult to make accurate measurements.

本発明は前述の欠点を改善し、温度変化に関係なくケー
ブル心線の直流抵抗値を計測し、ひずみゲージによって
ひずみ等を計測する方法を得ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks, and to provide a method for measuring DC resistance of a cable core regardless of temperature changes, and for measuring strain, etc., using a strain gauge.

以下図面により本発明の実施例を説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明を実施するとき使用する装置と、その接
続をブロックにより示したものである。
FIG. 1 is a block diagram showing the devices used to carry out the present invention and their connections.

1,2はひずみゲージでその直流抵抗値を各R1,R2
としたときR2/R1の値がひずみ量に比例し、R1+
R2の値は温度に比例することが知られている,ひずみ
ゲージ1,2を直列接続し、中間接続点と各両端の3端
子を3心ケーブル3の各心線4,56と接続する。
1 and 2 are strain gauges whose DC resistance values are R1 and R2, respectively.
Then, the value of R2/R1 is proportional to the amount of strain, and R1+
It is known that the value of R2 is proportional to temperature. Strain gauges 1 and 2 are connected in series, and the intermediate connection point and three terminals at each end are connected to each core wire 4, 56 of three-core cable 3.

3心ゲーブルを介してひずみゲージ1,2の直流抵抗値
を遠隔測定すればひずみゲージの受けたひずみ及び温度
等を計測できることとなる。
By remotely measuring the direct current resistance values of the strain gauges 1 and 2 via the three-core cable, it is possible to measure the strain, temperature, etc. that the strain gauges are subjected to.

3心ケーブル3の各心線の直流抵抗値をR4,R5,R
6とする。
The DC resistance value of each core wire of 3-core cable 3 is R4, R5, R
Set it to 6.

7は高入力インピーダンスの電圧計、8は定電流源、9
は電圧計7の接続切換開閉器で切換接点を9a,9b,
9c,9dとする。
7 is a high input impedance voltmeter, 8 is a constant current source, 9
is the connection switching switch of voltmeter 7, and the switching contacts 9a, 9b,
9c and 9d.

また10は定電流源8の切換開閉器で切換接点を10a
,10bとする。
In addition, 10 is a switching switch for constant current source 8, and the switching contact is 10a.
, 10b.

11は切換開閉器9,10の切換接点を切換えるための
制御装置、12は全体の制御装置、13は記憶装置、1
4は演算装置を示す。
11 is a control device for switching the switching contacts of the switching switches 9 and 10; 12 is an overall control device; 13 is a storage device;
4 indicates an arithmetic unit.

今第2図の線図で示すように制御装置12の指令により
切換制御装置11が動作し開閉器9を9a,9c側に、
開閉器10を10a側に接続すると、定電流源8からの
電流は矢印■1のとおり流れゲーブル心線4,5間に電
圧V1を生ずる。
Now, as shown in the diagram in FIG. 2, the switching control device 11 operates according to the command from the control device 12, and the switch 9 is moved to the 9a, 9c side.
When the switch 10 is connected to the 10a side, the current from the constant current source 8 flows as indicated by the arrow 1, and a voltage V1 is generated between the cable core wires 4 and 5.

電圧■1を電圧計7によって例えばデジタル量で測定し
記憶装置13に記憶する。
Voltage (1) is measured by a voltmeter 7, for example, as a digital quantity and stored in the storage device 13.

制御装置12の次の指令により開閉器10は第3図に示
すように10b側に接続され、電流は■2のとおり流れ
る(電圧計8の入力インピーダンスが高いためV−プル
の心線5を経る電流は小さく無視できる。
According to the next command from the control device 12, the switch 10 is connected to the 10b side as shown in Fig. 3, and the current flows as shown in The current passing through it is small and can be ignored.

)この場合の心線4,5間の電圧v2を第2図の場合と
同様に測定し記憶装置13に記憶する。
) The voltage v2 between the core wires 4 and 5 in this case is measured in the same way as in the case of FIG. 2 and stored in the storage device 13.

制御装置12の次の指令で開閉器9は9b,9d側に接
続される。
The next command from the control device 12 connects the switch 9 to the 9b and 9d sides.

この時第4図に示すように電流は■3のとおり流れ、ケ
ーブル心線5,6間の電圧v3が測定記憶される。
At this time, as shown in FIG. 4, the current flows as shown in (3), and the voltage v3 between the cable core wires 5 and 6 is measured and stored.

次に制御装置の指令は演算装置14に対し演算指令を発
するから、前記v1とV2の値を記憶装置13より得て
V1−V2を演算させると、ケーブル心線5の直流抵抗
値R,による電圧降下が求められ、記憶装置13に記憶
させる。
Next, the command from the control device issues a calculation command to the calculation device 14, so when the values of v1 and V2 are obtained from the storage device 13 and V1-V2 is calculated, the DC resistance value R of the cable core 5 is calculated. The voltage drop is determined and stored in the storage device 13.

以上の場合電流■1,■2,■3は定電流源8からの電
流で互いに等しいから、前記■1一V2の値に対し電流
■1で割算する演算指令により演算すれば、心線5の直
流抵抗値R5が得られ、これも記憶装置13に記憶され
る。
In the above case, the currents ■1, ■2, and ■3 are the currents from the constant current source 8 and are equal to each other, so if the value of ■1 - V2 is calculated using the calculation command to divide the value of the current ■1, the core wire A DC resistance value R5 of 5 is obtained, which is also stored in the storage device 13.

そしてケーブル心線4,5,6の各直流抵抗値R4,R
5,R6は通常のケーブルにおいては偏差なく互いに等
しいと考えられること、及びv2/■1、V3/■1と
いう演算を行なった値は各図面から明らかなようにひず
みゲージの直流抵抗値とケーブル心線の直流抵抗値との
合成抵抗値であることから、下式が成立する。
And each DC resistance value R4, R of cable core wires 4, 5, 6
5. R6 is considered to be equal to each other without any deviation in a normal cable, and the calculated values of v2/■1 and V3/■1 are the direct current resistance value of the strain gauge and the cable, as is clear from each drawing. Since it is a composite resistance value with the DC resistance value of the core wire, the following formula holds true.

R1+R5=v2/■1 R2+R5=V3/I1 という演算を演算装置14において行なわせると、ひず
みゲージの直流抵抗値R1,R2を得ることができる。
When the arithmetic unit 14 performs the calculations R1+R5=v2/■1 R2+R5=V3/I1, the DC resistance values R1 and R2 of the strain gauges can be obtained.

次に得られたR1,R2の値よりR2/R1を求め所定
の係数を掛ければひずみ量が、またR1+R2の値に所
定の係数を掛ければ温度が測定できることとなる。
Next, by calculating R2/R1 from the obtained values of R1 and R2 and multiplying by a predetermined coefficient, the amount of strain can be measured, and by multiplying the value of R1+R2 by a predetermined coefficient, the temperature can be measured.

このようにして本発明によれば定電流源を使用し、電圧
を測定しケーブル心線の直流抵抗値を簡単に求めること
ができ、それによりひずみゲージの直流抵抗値のみを精
度良く知ることができる。
In this way, according to the present invention, it is possible to easily determine the DC resistance value of the cable core by measuring the voltage using a constant current source, thereby making it possible to accurately know only the DC resistance value of the strain gauge. can.

そのときケーブルの長さや周囲温度による影響はすべて
計測時に取入れて測定していること、前記測定は温度変
化の影響を受けない短時間に完了することのため、たと
え心線の直流抵抗が大きな値となった場合でも測定感度
の低下することがない。
At that time, all effects of cable length and ambient temperature are taken into account during measurement, and the measurement is completed in a short time without being affected by temperature changes, so even if the DC resistance of the core wire is large, Even in this case, the measurement sensitivity does not decrease.

なお測定する時は単純な演算でよいから装置としてマイ
クロプロセッサ等が容易に利用できデジタル処理も可能
となり、ひずみゲージを多数の個所に置いて測定する場
合も迅速に且つ低コストで測定することができる。
Furthermore, since measurements require simple calculations, microprocessors and the like can be easily used as devices, and digital processing is also possible, making it possible to measure quickly and at low cost even when strain gauges are placed at many locations. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するとき使用する装置とその接続
を示し、第2図、第3図、第4図は第1図により測定す
る方法を説明する図である。 1,2・・・・・・ひずみゲージ、3・・・・・・3心
,ケーブル、4,5,6・・・・・・ケーブル心線、8
・・・・・・定電流源。
FIG. 1 shows a device used to carry out the present invention and its connections, and FIGS. 2, 3, and 4 are diagrams for explaining a method of measuring according to FIG. 1. 1, 2...Strain gauge, 3...3 core, cable, 4, 5, 6...Cable core, 8
・・・・・・Constant current source.

Claims (1)

【特許請求の範囲】[Claims] 1 直列接続された2個のひずみゲージの直流抵抗値R
1,R2を3心ケーブルにより遠隔測定しひずみ等を計
測する方法において、前記2個のひずみゲージに直流定
電流源より第1及び第3のゲーブル心線4,6を介して
定電流を流すことにより生ずる、第1のひずみゲージの
直流抵抗値R1と該第1のひずみゲージに接続された第
1のゲーブル心線4の直流抵抗値との第1合成抵抗値及
び第2のひずみゲージの直流抵抗値R2と該第2のひず
みゲージに接続された第3のケーブル心線6の直流抵抗
値との第2合成抵抗値による各電圧降下値と、前記第1
又は第2のひずみゲージに直流定電流源より第1又は第
3のケーブル心線と第2ケーブル心線5とを介して定電
流を流すことにより生ずる、該ひずみゲージの抵抗値R
0又はR2と該ひずみゲージに接続された第1又は第3
のゲーブル心線の直流抵抗値と第2のケーブル心線5の
直流抵抗値との第3合成抵抗値による電圧降下値とを該
第1又は第3のケーブル心線と前記2個のひずみゲージ
の中間接続点に接続された第2のケーブル心線5の前記
直流定電流源側で計測し、前記第1合成抵抗値及び第2
合成抵抗値による各電圧降下値並びに定電流値より前記
第1及び第2のひずみゲージのそれぞれの直流抵抗値R
1,R2と1本のゲーブル心線の直流抵抗値との合成抵
抗値を演算し、前記第3合成抵抗値による電圧降下値と
前記第1又は第2合成抵抗値による電圧降下値との差値
及び定電流値より1本のケーブル心線の直流抵抗値を演
算し、以上の演算の結果より、前記第1及び第2のひず
みゲージのそれぞれの直流抵抗値R1,R2を求めるこ
とを特徴とするひずみ等を遠隔計測する方法。
1 DC resistance value R of two strain gauges connected in series
1. In a method of measuring strain, etc. by remotely measuring R2 using a three-core cable, a constant current is passed through the first and third gable core wires 4 and 6 from a DC constant current source to the two strain gauges. The first combined resistance value of the DC resistance value R1 of the first strain gauge and the DC resistance value of the first cable core wire 4 connected to the first strain gauge, which is caused by this, and that of the second strain gauge. Each voltage drop value due to a second combined resistance value of the DC resistance value R2 and the DC resistance value of the third cable core 6 connected to the second strain gauge, and the first
Or the resistance value R of the strain gauge caused by passing a constant current through the second strain gauge from a DC constant current source through the first or third cable core wire and the second cable core wire 5.
0 or R2 and the first or third connected to the strain gauge.
The voltage drop value due to the third combined resistance value of the DC resistance value of the gable core wire and the DC resistance value of the second cable core wire 5 is calculated between the first or third cable core wire and the two strain gauges. measured on the DC constant current source side of the second cable core 5 connected to the intermediate connection point of
From each voltage drop value and constant current value due to the combined resistance value, the DC resistance value R of each of the first and second strain gauges is determined.
1. Calculate the combined resistance value of R2 and the DC resistance value of one gable core wire, and calculate the difference between the voltage drop value due to the third combined resistance value and the voltage drop value due to the first or second combined resistance value. The DC resistance value of one cable core is calculated from the value and the constant current value, and the DC resistance values R1 and R2 of the first and second strain gauges are determined from the results of the above calculations. A method for remotely measuring strain, etc.
JP51010820A 1976-02-05 1976-02-05 How to remotely measure strain, etc. Expired JPS584399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51010820A JPS584399B2 (en) 1976-02-05 1976-02-05 How to remotely measure strain, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51010820A JPS584399B2 (en) 1976-02-05 1976-02-05 How to remotely measure strain, etc.

Publications (2)

Publication Number Publication Date
JPS5295250A JPS5295250A (en) 1977-08-10
JPS584399B2 true JPS584399B2 (en) 1983-01-26

Family

ID=11760982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51010820A Expired JPS584399B2 (en) 1976-02-05 1976-02-05 How to remotely measure strain, etc.

Country Status (1)

Country Link
JP (1) JPS584399B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220099526A (en) * 2017-04-28 2022-07-13 삼성디스플레이 주식회사 Polarizing layer, display device with the same, and fabricating method for the display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147760A (en) * 1974-05-17 1975-11-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147760A (en) * 1974-05-17 1975-11-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220099526A (en) * 2017-04-28 2022-07-13 삼성디스플레이 주식회사 Polarizing layer, display device with the same, and fabricating method for the display device

Also Published As

Publication number Publication date
JPS5295250A (en) 1977-08-10

Similar Documents

Publication Publication Date Title
GB1419779A (en) Monitoring of capacitance
US3234459A (en) Method and apparatus for locating faults in electrical cable lines by comparing the impedance of the entire faulted line to the impedance of a section of the line
US3319155A (en) Electrical calibration device for strain gage bridges
US2120391A (en) Measuring device
JPS584399B2 (en) How to remotely measure strain, etc.
GB1383062A (en) Corrosion ratemeter
US3408564A (en) Electrical apparatus including a pair of replica impedances for measuring distances along a loaded electrical line
US3290586A (en) Apparatus for measuring the distance to an open circuit in a cable pair including means for storing a charge commensurate with such distance
US1997164A (en) Electrical characteristics of conductors
US2588564A (en) Thermoelectrically balanced meter network
US2688727A (en) Measuring circuit for condition responsive impedance
JPS6314784B2 (en)
RU2724450C1 (en) Automatic calibrator of channels for measuring resistance increments of strain gauges of multichannel measuring system
JPH0641174Y2 (en) Voltage-current measuring device
JPS601680B2 (en) Remote measurement device for strain, etc.
GB1466846A (en) Sensitive deep-well-drilling hook load measuring system
Wenner et al. Measurement of low resistance by means of the Wheatstone bridge
JPH0233965B2 (en)
US3249866A (en) Direct reading bridge circuit
US3244976A (en) Apparatus for measuring admittance of electrical networks using a double wheatstone bridge connected in parallel
JPS5870170A (en) Measuring device for resistance of breaker or the like
US2335024A (en) Method and apparatus for making corrosion studies
JPS6241261Y2 (en)
SU531106A1 (en) Method for determining the location of damage to insulation of stranded cables
SU1033850A1 (en) Method of measuring conductor cross-section deviation and device using the same (its versions)