JPS5843476B2 - Aluminum anodizing treatment method and equipment - Google Patents

Aluminum anodizing treatment method and equipment

Info

Publication number
JPS5843476B2
JPS5843476B2 JP15316578A JP15316578A JPS5843476B2 JP S5843476 B2 JPS5843476 B2 JP S5843476B2 JP 15316578 A JP15316578 A JP 15316578A JP 15316578 A JP15316578 A JP 15316578A JP S5843476 B2 JPS5843476 B2 JP S5843476B2
Authority
JP
Japan
Prior art keywords
injection
electrolyte
aluminum material
aluminum
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15316578A
Other languages
Japanese (ja)
Other versions
JPS5579895A (en
Inventor
実 梶木
雄史 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshida Kogyo KK filed Critical Yoshida Kogyo KK
Priority to JP15316578A priority Critical patent/JPS5843476B2/en
Publication of JPS5579895A publication Critical patent/JPS5579895A/en
Publication of JPS5843476B2 publication Critical patent/JPS5843476B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)

Description

【発明の詳細な説明】 本発明は均一な陽極酸化皮膜を生成するためのアルミニ
ウムの液中噴射式陽極酸化処理方法並びに装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a submerged injection type anodizing treatment method and apparatus for aluminum for producing a uniform anodic oxide film.

アル□ニウム材に陽極酸化皮膜を生成させるためには、
硫酸、しゆう酸、クロム酸などを加えた電解浴中に、ア
ルミニウム材を陽極として置き、両側に陰極を対設して
、両者間に通電して陽極酸化処理を行なうのであるが、
その際ジュール熱または酸化皮膜の生成熱によりアルミ
ニウム材の表面温度が上昇する傾向にある。
In order to generate an anodic oxide film on aluminum material,
An aluminum material is placed as an anode in an electrolytic bath containing sulfuric acid, oxalic acid, chromic acid, etc., and cathodes are placed on both sides, and electricity is passed between them to perform anodizing.
At this time, the surface temperature of the aluminum material tends to rise due to Joule heat or heat of formation of an oxide film.

その際アル□ニウム材の表面温度にバラツキがあると、
酸化皮膜の厚さにバラツキが生じることが判明した。
At that time, if there are variations in the surface temperature of the aluminum material,
It was found that there were variations in the thickness of the oxide film.

すなわちアルミニウム材表面の温度が不均一となれば、
温度が高いところに電流が多く流れ、温度が低いところ
には電流が少く流れるので生成する陽極酸化皮膜の膜厚
分布にバラツキが生ずることとなる。
In other words, if the temperature of the aluminum material surface becomes uneven,
A large amount of current flows in areas where the temperature is high, and a small amount of current flows in areas where the temperature is low, resulting in variations in the film thickness distribution of the anodic oxide film formed.

とりわけ、縦吊り方式の場合でみると、同一の陽極酸化
槽で処理するアルミニウム材の寸法、形状は多岐に亘り
、特に長さは一定でないのでアルミニウム材の長さによ
って、槽底からアルミニウム材下端筐での距離が変動す
る。
In particular, in the case of the vertical hanging method, the dimensions and shapes of the aluminum materials processed in the same anodizing tank vary widely, and the length is not constant, so depending on the length of the aluminum material, the length of the aluminum material from the bottom of the tank to the lower end of the aluminum material varies. The distance in the housing varies.

したがって、アルミニウム材が短い場合、槽底からアル
ミニウム材下端1での距離間に余剰陰極が生じ、当該余
剰陰極に起因する電流がアルミニウムの下部に集中し、
その部分の陽極酸化皮膜が厚くなり、全体の膜厚を不均
一にする。
Therefore, when the aluminum material is short, a surplus cathode is generated between the bottom of the tank and the lower end 1 of the aluminum material, and the current caused by the surplus cathode is concentrated at the bottom of the aluminum.
The anodic oxide film in that area becomes thicker, making the overall film thickness uneven.

本発明は以上の難点に鑑み創案されたもので製品となる
べきアルミニウムの長さが異なっても、すなわち余剰陰
極の有無にかかわらず、常に均一な陽極酸化皮膜をアル
ミニウム材表面に生成させることを目的とする。
The present invention has been devised in view of the above-mentioned difficulties, and it is possible to always generate a uniform anodic oxide film on the surface of aluminum material even if the length of the aluminum product is different, that is, regardless of the presence or absence of a surplus cathode. purpose.

すなわち、本発明は電解浴中の適当なところに配設した
電解液噴射増強用噴射孔からアルミニウム材の陽極酸化
皮膜が多く生成され易い部分に向けて電解液を噴射する
ことを特徴とするものである。
That is, the present invention is characterized in that the electrolytic solution is injected from an injection hole for enhancing electrolyte injection disposed at an appropriate location in the electrolytic bath toward a portion of the aluminum material where a large amount of anodic oxide film is likely to be formed. It is.

このとき電解液噴射増強用噴射孔からの電解液の噴射速
度は他の電解液噴射孔からの電解液の噴射速度よりも大
とする。
At this time, the injection speed of the electrolytic solution from the electrolytic solution injection enhancement injection hole is set higher than the injection speed of the electrolytic solution from the other electrolytic solution injection holes.

このようにすることによってアルミニウム材の陽極酸化
皮膜が多く生成され易い部分の反応熱の除去が速やかに
行なわれしたがって余剰陰極の電流がアル□ニウム材の
表面温度の高い方へ拡散するために均一な皮膜が得られ
るのである。
By doing this, the reaction heat from the parts of the aluminum material where a large amount of anodic oxide film is likely to be formed is quickly removed, and the current from the excess cathode is uniformly diffused to the side where the surface temperature of the aluminum material is higher. This results in a coating with excellent properties.

本発明は渣た、上記方法を実施するに適した装置に関す
るものである。
The invention also relates to a device suitable for carrying out the above method.

すなわち、装置内に電解噴射体を複数個設置し、各噴射
体に電解液噴射速度を調節するための調節手段を設けて
なることを特徴とするもので、かかる装置によれば、通
常の電解液噴射孔と、電解液噴射増強用噴射孔とを特に
分けて設ける必要がなく、簡単な設備をもって、上記本
発明方法を実施することができる。
That is, the apparatus is characterized in that a plurality of electrolytic spray bodies are installed in the apparatus, and each spray body is provided with an adjusting means for adjusting the electrolyte injection speed. There is no need to separately provide a liquid injection hole and an injection hole for enhancing electrolyte injection, and the method of the present invention can be carried out using simple equipment.

つぎに本発明を図面に基づいてさらに詳細に説明する。Next, the present invention will be explained in more detail based on the drawings.

第1図は陽極酸化処理槽の一実施例の縦断面図を示し、
1は槽本体、2は陰極、3は陽極のアルミニウム材であ
る。
FIG. 1 shows a longitudinal cross-sectional view of an embodiment of an anodizing treatment tank,
1 is the tank body, 2 is the cathode, and 3 is the anode aluminum material.

陰極2は通常棒状のものを多数並置してあり、図では槽
本体1内の両側に設けた例を示し、その間にアル□ニウ
ム材3を多数本吊下する形式のものである。
The cathodes 2 are usually made of a large number of rod-shaped cathodes arranged side by side, and the figure shows an example in which they are provided on both sides of the tank body 1, and a large number of aluminum materials 3 are suspended between them.

勿論これは説明のためのちので、実際には、同一槽本体
内に複数の対向陰極をセットしてもよい。
Of course, this is for the sake of explanation, and in reality, a plurality of opposing cathodes may be set in the same tank body.

陰極2内に設けられた噴射用パイプ5からアルミニウム
材3に向けて電解液を噴射するのであるが、その機構を
詳細に説明するために第1図におけるA部の陰極2部を
拡大して示したものが第2図である。
The electrolyte is injected from the injection pipe 5 provided in the cathode 2 toward the aluminum material 3. In order to explain the mechanism in detail, the cathode 2 section in section A in Fig. 1 is enlarged. What is shown is FIG.

第3図は第2図の要部をさらに断面で示したものであり
、第4図は第2図のB−B断面図を示す。
FIG. 3 shows a further sectional view of the main part of FIG. 2, and FIG. 4 shows a sectional view taken along line BB in FIG.

すなわち陰極2は噴射開口4,4を有し、噴射用パイプ
5を内蔵しておシ、この噴射用パイプ5には噴射孔6が
あって、噴射孔6と噴射開口4とは位置が一致している
That is, the cathode 2 has injection openings 4, 4, and has an injection pipe 5 built therein.The injection pipe 5 has an injection hole 6, and the injection hole 6 and the injection opening 4 are in the same position. We are doing so.

そして噴射開口4の大きさは、噴射孔6よりの電解液の
噴出角よりも大きくしてむくと噴射開口4が噴射電解液
で消耗されることが少ない。
When the size of the injection opening 4 is made larger than the injection angle of the electrolyte from the injection hole 6, the injection opening 4 is less likely to be consumed by the injection electrolyte.

陰極2には水平方向に噴射増強用パイプ7が取付けられ
ている。
A jet reinforcement pipe 7 is attached to the cathode 2 in the horizontal direction.

噴射増強用のパイプ7の噴射孔8は陰極20間に位置し
ている。
The injection hole 8 of the pipe 7 for injection reinforcement is located between the cathodes 20.

噴射増強用パイプ7は陰極2の下部に複数本取付けられ
、随時所望の位置の噴射増強用パイプ7から電解液を噴
射するようになっている。
A plurality of injection reinforcement pipes 7 are attached to the lower part of the cathode 2, and the electrolytic solution is injected from the injection reinforcement pipes 7 at desired positions at any time.

第5図に口はその作用の説明図で、噴射増強用パイプ7
は、a、b、Cの三つの群が別系統に操作されるように
なってお・す、イはアルミニウム材3が短かい場合で、
a群から他の噴射孔よりも噴射速度の速い電解液を、ア
ルミニウム材3の下部に向けて噴射する。
Figure 5 is an explanatory diagram of its function, and the injection reinforcement pipe 7
The three groups a, b, and C are operated in different systems, and the case a is when the aluminum material 3 is short.
Electrolytic solution having a faster injection speed than the other injection holes is injected from group a toward the lower part of the aluminum material 3.

口はアルミニウム材3がイの場合よシもやや長い場合で
、b群の噴射増強用パイプから電解液を噴射する。
The mouth is slightly longer than the aluminum material 3 in case A, and the electrolyte is injected from the injection reinforcement pipe of group B.

このようにして、常にアルミニウム材3の下端部に電解
液を強く噴射し該部の反応熱の除去を速やかに行なうの
である。
In this way, the electrolytic solution is always strongly injected to the lower end of the aluminum material 3, and the heat of reaction at that part is quickly removed.

上記した噴射される電解液は倒れも熱交換器を通り常温
に冷却されたものである。
The above-mentioned injected electrolytic solution passes through a heat exchanger and is cooled to room temperature.

第6図は他の実施例を示すもので、陰極2と噴射用パイ
プ5とを分けて設けたものである。
FIG. 6 shows another embodiment in which the cathode 2 and the injection pipe 5 are provided separately.

第7図はさらに他の実施例で、横型タイプの陰極を用い
、この陰極と噴射用パイプと噴射増強用パイプとを兼ね
る噴射体9を用いた例である。
FIG. 7 shows still another embodiment, in which a horizontal type cathode is used, and an injection body 9 that serves as the cathode, an injection pipe, and an injection reinforcement pipe is used.

この例では噴射体9を水平に並列して設け、各噴射体9
は陰極に連結して、それぞれに遠隔操作可能の流量調節
バルブMを設けである。
In this example, the injectors 9 are arranged horizontally in parallel, and each injector 9
are connected to the cathode, and each is provided with a remotely controllable flow rate control valve M.

前記槽本体1の電解液はオーバーフロ一槽1′oに集め
られ、ついでオフタンク11に集められ、ポンプPによ
り熱交換器12に送られて、ここで15〜16°Cの定
温に冷される。
The electrolyte in the tank body 1 is collected in an overflow tank 1'o, then collected in an off tank 11, and sent to a heat exchanger 12 by a pump P, where it is cooled to a constant temperature of 15 to 16°C. Ru.

定温に冷却された電解液は流量調節バルブMを経て噴射
体9から、アル□ニウム材3に向けて噴射される。
The electrolytic solution cooled to a constant temperature is injected from the injector 9 toward the aluminum material 3 via the flow control valve M.

その際、アルミニウム材3の下部に相当する位置にある
噴射体9(図では下より2段目)の流量調節バルブMの
開度は他のところよシも犬とし、電解液の噴射速度を犬
とする。
At this time, the opening degree of the flow rate control valve M of the injection body 9 (the second stage from the bottom in the figure) located at a position corresponding to the lower part of the aluminum material 3 is set to the same level as other parts, and the injection speed of the electrolyte is controlled. Let it be a dog.

つぎに、上記実施例装置を用いてアルミニウムの陽極酸
化処理を行なった場合の結果について述べる。
Next, the results of anodic oxidation treatment of aluminum using the apparatus of the above embodiment will be described.

被処理アルミニウム材として長さ1950m1で吊面積
89.1mのものを用い、浴比0.36、電流密度1.
05A/dイ液温20±1°C15時間40分をもって
処理した。
The aluminum material to be treated had a length of 1950 m1 and a hanging area of 89.1 m, with a bath ratio of 0.36 and a current density of 1.
05A/d The treatment was carried out at a liquid temperature of 20±1° C. for 15 hours and 40 minutes.

このとき通常の電解液噴射孔からの循環電解液の噴射速
度は165cfrL/ See (3タ一ン/時に相当
)とした。
At this time, the injection rate of the circulating electrolyte from the normal electrolyte injection hole was 165 cfrL/See (equivalent to 3 tons/hour).

このようにアルミニウム材の吊面積が大きく浴比の小さ
いときには、アル□ニウム材3の上端から1700mm
付近から下部先端に向けて膜厚の増加が起る。
In this way, when the hanging area of the aluminum material is large and the bath ratio is small, it is necessary to
The film thickness increases from the vicinity to the lower tip.

そこで、との膜厚増加部分に対応する位置にある噴射増
強用パイプから噴射速度330 crfL/see
をもって電解液を噴射した。
Therefore, the injection speed was increased to 330 crfL/see from the injection reinforcement pipe located at the position corresponding to the increased film thickness.
The electrolyte was injected with a

すなわち当該個所の電解液の噴射量は他の個所の2倍量
とした。
That is, the amount of electrolyte injected at this location was twice that at other locations.

このときの電解液の循環量は4.2タ一ン/時に相当す
る。
The circulation amount of the electrolyte at this time corresponds to 4.2 ton/hour.

このようにすることによって、アルミニウム材は全長に
わたって、厚さ10μの均一な陽極酸化皮膜層が形成さ
れ、しかも良好な皮膜性能が得られた。
By doing so, a uniform anodic oxide film layer with a thickness of 10 μm was formed over the entire length of the aluminum material, and good film performance was obtained.

なお、上記の説明は所謂縦吊り方式の場合を例にとって
行なっているが横吊り方式の場合も同様の現象が起り得
るので、当然本発明を適用し得る。
Although the above explanation has been made using the so-called vertical suspension system as an example, the same phenomenon may occur in the horizontal suspension system, and therefore, the present invention is naturally applicable to the horizontal suspension system.

以上のように、本発明によれば噴射増強用パイプの噴射
孔からアル□ニウム材の陽極酸化皮膜が多く生成されや
すい部分に対して噴射する電解液噴射速度が噴射用パイ
プからの電解液噴射速度より犬であるため、陽極酸化皮
膜が多く生成されやすい部分の反応熱の除去が速やかに
行なわれ、アル□ニウム材の表面温度が全長に亘りほぼ
均一となりしたがって、余剰陰極に起因する電流が一部
分に集中しないため、均一な皮膜が得られる。
As described above, according to the present invention, the injection speed of the electrolytic solution injected from the injection hole of the injection reinforcement pipe to the part where a large amount of anodic oxide film is likely to be generated on the aluminum material is higher than that of the electrolyte injection from the injection pipe. Because it is faster than speed, the reaction heat in areas where a large amount of anodic oxide film is likely to be formed is quickly removed, and the surface temperature of the aluminum material becomes almost uniform over the entire length, so that the current caused by the excess cathode is reduced. Since it is not concentrated in one area, a uniform film can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は陽極酸化処理槽の一実施例の縦断面図、第2図
は第1図A部の拡大図、第3図は第2図の要部の断面図
、第4図は第2図のB−B断面図、第5図く口は本発明
の詳細な説明図、第6図は他の実施例の説明図、第7図
は横型陰極を用いた場合の他の実施例の説明図をそれぞ
れ示す。 1・・・・・・槽本体、2・・・・・・陰極、3・・・
・・・アルミニウム材、4・・・・・・噴射開口、5・
・・・・・噴射用パイプ、6・・・・・・噴射孔、7・
・・・・・噴射増強用パイプ、8・・・・・・噴射孔、
9・・・・・・噴射体、10・・・・・・オーバーフロ
一槽、11・・・・・・オフタンク、12・・・・・・
熱交換器、P・・・・・・ポンプ、M・・・・・・流量
調節バルブ。
Figure 1 is a longitudinal sectional view of one embodiment of the anodizing treatment tank, Figure 2 is an enlarged view of section A in Figure 1, Figure 3 is a sectional view of the main part of Figure 2, and Figure 4 is the BB sectional view in the figure, Figure 5 is a detailed explanatory diagram of the present invention, Figure 6 is an explanatory diagram of another embodiment, and Figure 7 is an illustration of another embodiment using a horizontal cathode. Explanatory diagrams are shown respectively. 1... Tank body, 2... Cathode, 3...
...Aluminum material, 4...Injection opening, 5.
...Injection pipe, 6...Injection hole, 7.
...Injection reinforcement pipe, 8...Injection hole,
9...Injector, 10...One overflow tank, 11...Off tank, 12...
Heat exchanger, P...Pump, M...Flow rate adjustment valve.

Claims (1)

【特許請求の範囲】 1 アルミニウム材と陰極とを電解浴中に対置し、循環
電解液をアルミニウム材に対して噴射しながら通電する
ことによってアルミニウム材表面に陽極酸化皮膜を生成
せしめる方法において、電解浴中の適当なところに配設
した電解液噴射増強用噴射孔から、アルミニウム材の陽
極酸化皮膜が多く生成され易い部分に向けて電解液を噴
射することを特徴とするアルミニウムの陽極酸化処理方
法。 2 電解液噴射増強用の噴射孔からの電解液の噴射速度
は、他の噴射孔からの電解液の噴射速度より犬とする特
許請求の範囲第1項記載のアルミニウムの陽極酸化処理
方法。 3 アルミニウム材と陰極とを電解浴中に対置し、循環
電解液をアルミニウム材に対して噴射しながら通電する
ことによってアルミニウム材表面に陽極酸化皮膜を生成
せしめる装置にかいて、電解液噴射体を複数個設置し、
各噴射体に電解液噴射速度を調節するための調節手段を
設けてなることを特徴とするアルミニウムの陽極酸化処
理装置。
[Scope of Claims] 1. A method for forming an anodic oxide film on the surface of an aluminum material by placing an aluminum material and a cathode in an electrolytic bath and applying electricity while spraying a circulating electrolyte to the aluminum material. A method for anodizing aluminum, which comprises injecting an electrolyte from an injection hole for enhancing electrolyte injection arranged at an appropriate location in a bath toward a portion of the aluminum material where a large amount of anodized film is likely to be formed. . 2. The method for anodizing aluminum according to claim 1, wherein the injection speed of the electrolyte from the injection hole for enhancing electrolyte injection is higher than the injection speed of the electrolyte from other injection holes. 3. The aluminum material and the cathode are placed opposite each other in an electrolytic bath, and the electrolyte sprayer is applied to a device that generates an anodic oxide film on the surface of the aluminum material by applying electricity while spraying a circulating electrolyte onto the aluminum material. Install multiple pieces,
An apparatus for anodizing aluminum, characterized in that each jetting body is provided with an adjusting means for adjusting the electrolyte jetting speed.
JP15316578A 1978-12-13 1978-12-13 Aluminum anodizing treatment method and equipment Expired JPS5843476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15316578A JPS5843476B2 (en) 1978-12-13 1978-12-13 Aluminum anodizing treatment method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15316578A JPS5843476B2 (en) 1978-12-13 1978-12-13 Aluminum anodizing treatment method and equipment

Publications (2)

Publication Number Publication Date
JPS5579895A JPS5579895A (en) 1980-06-16
JPS5843476B2 true JPS5843476B2 (en) 1983-09-27

Family

ID=15556459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15316578A Expired JPS5843476B2 (en) 1978-12-13 1978-12-13 Aluminum anodizing treatment method and equipment

Country Status (1)

Country Link
JP (1) JPS5843476B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286403U (en) * 1988-12-17 1990-07-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286403U (en) * 1988-12-17 1990-07-09

Also Published As

Publication number Publication date
JPS5579895A (en) 1980-06-16

Similar Documents

Publication Publication Date Title
EP0568733B1 (en) Low profile copper foil and process for making bondable metal foils
US4183799A (en) Apparatus for plating a layer onto a metal strip
US3799848A (en) Method for electrolytically coating anodized aluminum with polymers
DE19821781C2 (en) Coating process and coating device for the production of three-dimensional metal objects
CN107099800B (en) A kind of micro- turbid treatment process of copper foil smooth surface and equipment
US4642173A (en) Cell having coated valve metal electrode for electrolytic galvanizing
DE2924251C2 (en)
JPS58199895A (en) Method and apparatus for plating metal wire
DE2551988A1 (en) PROCESS FOR THE SELECTIVE GALVANIC DEPOSITION OF METALS AND DEVICE FOR CARRYING OUT THE PROCESS
DE1928062C3 (en) Electroplating cell
US3038850A (en) Aluminum anodizing apparatus
JPS5843476B2 (en) Aluminum anodizing treatment method and equipment
US4376683A (en) Method and device for the partial galvanization of surfaces which are conducting or have been made conducting
DE2045787C3 (en) Process and device for the continuous anodic oxidation of strip or wire-shaped aluminum
JPS56127791A (en) Surface treatment of heat radiating body
US4132609A (en) Method of and apparatus for electrolytic treatment of metal
JPS62133097A (en) Apparatus for plating semiconductor wafer
US4248674A (en) Anodizing method and apparatus
US4702812A (en) Electrolytic apparatus and a method of operating it
US2737487A (en) Electrolytic apparatus
US3865706A (en) Concentration and coating processes
JPS6147918B2 (en)
JPS6353280B2 (en)
DE2632209C2 (en) Process for the continuous production of ductile iron foil
AT222453B (en) Method and device for preferably continuous one-sided anodization of metal foils or strips