JPS5841349B2 - Method for manufacturing low-temperature conductive material with excellent thermal conductivity - Google Patents

Method for manufacturing low-temperature conductive material with excellent thermal conductivity

Info

Publication number
JPS5841349B2
JPS5841349B2 JP12102876A JP12102876A JPS5841349B2 JP S5841349 B2 JPS5841349 B2 JP S5841349B2 JP 12102876 A JP12102876 A JP 12102876A JP 12102876 A JP12102876 A JP 12102876A JP S5841349 B2 JPS5841349 B2 JP S5841349B2
Authority
JP
Japan
Prior art keywords
thermal conductivity
conductive material
oxide film
low
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12102876A
Other languages
Japanese (ja)
Other versions
JPS5346426A (en
Inventor
光夫 吉沢
きみ子 倉田
長 池田
晶昭 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP12102876A priority Critical patent/JPS5841349B2/en
Publication of JPS5346426A publication Critical patent/JPS5346426A/en
Publication of JPS5841349B2 publication Critical patent/JPS5841349B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は導電性と熱伝導性に優れ、しかも電気的絶縁性
を有する低温用導電材料の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a low-temperature conductive material that has excellent electrical conductivity and thermal conductivity, and has electrical insulation properties.

一般に一50℃以下の低温において用いられる導電材料
としては優れた導電性と熱伝導性が要求される。
Generally, conductive materials used at low temperatures of -50° C. or lower are required to have excellent electrical conductivity and thermal conductivity.

この導電材料の導電性は電気抵抗の大きさによって判断
され、この電気抵抗ρは格子振動によるρT(温度の画
数)と不純物や格子欠陥などの結晶不整によるρ。
The conductivity of this conductive material is determined by the magnitude of electrical resistance, and this electrical resistance ρ is caused by ρT (temperature fraction) due to lattice vibration and ρ due to crystal irregularities such as impurities and lattice defects.

との和で示される。特に純銅においては極低抗温領域で
ρ。
It is shown as the sum of Especially for pure copper, ρ in the extremely low temperature range.

が支配的となり、従って低温用導電材料としては不純物
や内部歪等の格子欠陥がないものほど導電性が優れてい
る。
is dominant, and therefore, as a conductive material for low temperature use, a material free of lattice defects such as impurities and internal strain has better conductivity.

また熱伝導性と導電性とは比例関係にあり、導電性が優
れている材料はど熱伝導性に優れている。
Furthermore, there is a proportional relationship between thermal conductivity and electrical conductivity, and materials with excellent electrical conductivity also have excellent thermal conductivity.

即ち低温領域における材料の熱伝導率には一般に1/に
=αT2+βTなる関係で表わされる(但し、式中α、
βは材料によって決まる定数)。
That is, the thermal conductivity of a material in a low-temperature region is generally expressed by the relationship 1/=αT2+βT (however, in the formula, α,
β is a constant determined by the material).

上式中第1項は格子振動による因子、第2項は結晶不整
による因子であり、特に純金属においては20°に以下
の極低温領域においては第2項が支配的となり熱伝導率
にはに=LT (但し式中りは口ρ〇 一レンツ数と呼ばれる定数、ρ。
In the above equation, the first term is a factor due to lattice vibration, and the second term is a factor due to crystal misalignment. Particularly in pure metals, in the extremely low temperature region below 20°, the second term becomes dominant and affects thermal conductivity. = LT (However, in the formula, ρ is a constant called the Lenz number, ρ.

は電気抵抗の残留抵抗)なる関係で表わされる。is the residual resistance of electrical resistance).

従って極低温領域においては残留抵抗が低いもの、即ち
導電性が高いものほど熱伝導率が高いと考えられている
Therefore, in the cryogenic temperature range, it is believed that the lower the residual resistance, that is, the higher the conductivity, the higher the thermal conductivity.

この低温領域で用いられる導電材料の用途としては例え
ば電線や回転機の巻線、或は変動磁界の印加による渦電
流損を少なくするように分割された電気導体や伝熱体な
どがある。
Applications of conductive materials used in this low-temperature region include, for example, electric wires, windings of rotating machines, and electrical conductors and heat transfer bodies that are divided to reduce eddy current loss due to the application of a varying magnetic field.

このような用途に用いられる導電材料は通常その表面に
マグネシャやガラスなどの無機絶縁物をコーティングす
るか、或はホルマール、ポリイミド、ウレタンなどのワ
ニス、マイラーテープ、カプトンテープなどの無機絶縁
物を設けて、絶縁皮膜を形成することが行なわれている
Conductive materials used for such applications are usually coated with an inorganic insulating material such as magnesia or glass, or coated with an inorganic insulating material such as formal, polyimide, urethane varnish, Mylar tape, Kapton tape, etc. As a result, an insulating film is formed.

しかしながら、無機絶縁物を被覆したものは製造コスト
が高く、しかも可撓性が悪いため底形する上で致命的な
欠点を有する。
However, those coated with an inorganic insulating material are expensive to manufacture and have poor flexibility, which is a fatal drawback in shaping the bottom shape.

一方、有機絶縁物を被覆したものは、この被覆工程で材
料に歪が加わり、これが導電性と熱伝導性を損ねる原因
となる。
On the other hand, for those coated with an organic insulator, strain is added to the material during the coating process, which causes loss of electrical conductivity and thermal conductivity.

更にこの有機絶縁物を被覆した導電材料は皮膜の耐熱性
の点から歪を除去するための焼鈍処理を行なうことがで
きず、性能の改善を図ることができなかった。
Further, the conductive material coated with this organic insulator cannot be annealed to remove distortion due to the heat resistance of the film, and the performance cannot be improved.

本発明はかかる点に鑑み種々研究を行なった結果、鋼材
の表面に厚さ500人〜10μmの銅酸化皮膜を形成し
た後、これを200 ’C〜700’Cに加熱して、前
記酸化皮膜中に含まれる酸素を鋼材の内部に拡散させる
ことにより、優れた導電性と熱伝導性を有し、しかも表
面に絶縁皮膜を形成した低温用導電材料の製造方法を見
い出したものである。
In view of the above, the present invention has been made as a result of various studies. After forming a copper oxide film with a thickness of 500 to 10 μm on the surface of a steel material, this is heated to 200'C to 700'C to remove the oxide film. We have discovered a method for manufacturing a low-temperature conductive material that has excellent electrical and thermal conductivity and has an insulating film formed on its surface by diffusing the oxygen contained therein into the interior of the steel material.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において用いる鋼材としては特に限定されるもの
ではなく、通常導電材料として用いられる無酸素銅、タ
フピッチ銅など何れのものでも良い。
The steel material used in the present invention is not particularly limited, and any steel material such as oxygen-free copper or tough pitch copper that is normally used as a conductive material may be used.

これら鋼材を線状、板状など所望の形状に成形した後、
前処理としてこれを希硫酸、などの溶液中に浸漬して表
面の清浄化処理を行なう。
After forming these steel materials into a desired shape such as a line or plate,
As a pretreatment, the surface is cleaned by immersing it in a solution such as dilute sulfuric acid.

この清浄化処理は必ずしも必要とされるものではないが
次工程で形成される酸化皮膜にピンホールなどの欠陥の
発生を防止する上で行なうことが望ましい。
Although this cleaning treatment is not necessarily required, it is desirable to perform it in order to prevent defects such as pinholes from occurring in the oxide film formed in the next step.

次に、この表面を清浄化した鋼材を化成処理、或は陽極
酸化などの電気化学的処理、又は大気中での焼鈍処理な
どを行なって鋼材の表面にCu2OやCuO又はこれら
の複合した銅酸化皮膜を形成する。
Next, the surface-cleaned steel material is subjected to chemical conversion treatment, electrochemical treatment such as anodic oxidation, or annealing treatment in the atmosphere to form copper oxides such as Cu2O, CuO, or a combination of these on the surface of the steel material. Forms a film.

この銅酸化皮膜の厚さは500人〜10μm程度であれ
ば十分である。
It is sufficient that the thickness of this copper oxide film is about 500 to 10 μm.

次に銅酸化皮膜を形成した鋼材を更に必要に応じて所望
形状に成形加工した後、真空中、不活性ガス中、或は酸
素雰囲気中で200〜7000Cに加熱して、銅酸化皮
膜中に含まれる酸素を内部に拡散させるものである。
Next, the steel material on which the copper oxide film has been formed is further formed into a desired shape as necessary, and then heated to 200 to 7000C in a vacuum, inert gas, or oxygen atmosphere to form the copper oxide film. This is to diffuse the oxygen contained inside.

このように鋼材を200°C以上に加熱して銅酸化皮膜
中に含まれる酸素を鋼材中に拡散させることにより、こ
の酸素が鋼材中に含まれる不純物を結晶粒界に析出させ
て、粒内の純度を向上させると共に、加工により発生し
た歪を除去することができる。
By heating the steel material to 200°C or higher and diffusing the oxygen contained in the copper oxide film into the steel material, this oxygen causes the impurities contained in the steel material to precipitate at the grain boundaries, causing intragranular In addition to improving the purity of the material, it is possible to remove distortion caused by processing.

また、700℃を越えると電気的絶縁性が低下する。Moreover, when the temperature exceeds 700° C., the electrical insulation property decreases.

このように鋼材中の不純物を除去すると共に、歪を除去
して結晶不整の原因を除去することにより、低温領域に
おける導電性と熱伝導性を向上させることができる。
By removing impurities in the steel material as well as removing strain and eliminating the cause of crystal irregularity, electrical conductivity and thermal conductivity in a low temperature region can be improved.

また本発明においては鋼材の表面に銅酸化皮膜が形成さ
れているので、その絶縁性をも兼ね備えており、印加さ
れる電圧が低い導電材料として用いる場合には絶縁皮膜
を更に設ける必要がなく、しかも銅酸化皮膜は鋼材と一
体に且つ強固に形成されているので、可撓性に優れ加工
を加えても剥離することがない。
In addition, in the present invention, since a copper oxide film is formed on the surface of the steel material, it also has insulating properties, and when used as a conductive material with a low applied voltage, there is no need to further provide an insulating film. Moreover, since the copper oxide film is formed strongly and integrally with the steel material, it has excellent flexibility and will not peel off even if processed.

なお、本発明において、鋼材の表面に形成する酸化皮膜
の厚さを上記範囲に限定した理由は500人未満の場合
には性能の改善効果が見られず、また10μmを越える
と銅酸化皮膜が剥離する虞れがあるからである。
In addition, in the present invention, the reason why the thickness of the oxide film formed on the surface of the steel material is limited to the above range is that the performance improvement effect is not seen when there are less than 500 people, and when the thickness exceeds 10 μm, the copper oxide film is This is because there is a risk of peeling.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例 1 99%以上の冷間加工を加えた線径0.3 mmの高純
度無酸素銅0FHC材(商品名:米国アマツクス社製)
を用い、これを希硫酸中に1分間浸漬した後、これを水
洗し、次いで80°Cに保持した黒色仕上剤ロブラック
Cu (商品名:愛鋼玉業株式会社製)中に2分間浸漬
して化成処理を行ない表面に0.5μmの銅酸化皮膜を
形成した。
Example 1 High-purity oxygen-free copper 0FHC material with a wire diameter of 0.3 mm that has been cold-worked to a degree of 99% or more (product name: manufactured by Amax Corporation, USA)
After immersing it in dilute sulfuric acid for 1 minute, it was washed with water, and then immersed for 2 minutes in the black finishing agent Roblac Cu (trade name: manufactured by Aikodamagyo Co., Ltd.) kept at 80°C. A 0.5 μm copper oxide film was formed on the surface by chemical conversion treatment.

次にこれを水洗した後、2000Cから100℃ごとに
700°Cまでの温度で各鋼材について1時間真空加熱
を行なった。
Next, after washing this with water, each steel material was vacuum heated for 1 hour at a temperature of 700°C at every 100°C from 2000°C.

このようにして得られた試験片の液体ヘリウム(4,2
°K)中における電気抵抗ρ。
Liquid helium (4,2
electrical resistance ρ in °K).

を測定すると共に、常温における電気抵抗ρを夫々測定
し、これらの測定値から残留抵抗比を求め低温における
導電性の良否を判断した。
At the same time, the electrical resistance ρ at room temperature was also measured, and the residual resistance ratio was determined from these measured values to determine the quality of the conductivity at low temperatures.

この残留抵抗比は夫々2本の試験片について行ない、そ
の平均値を求めて第1図のグラフに実線で示す。
This residual resistance ratio was determined for each of two test pieces, and the average value was determined and is shown as a solid line in the graph of FIG.

なお残留抵抗比は常温における電気抵抗ρと、4.2°
Kにおける電気抵抗ρ。
The residual resistance ratio is the electrical resistance ρ at room temperature and 4.2°
Electrical resistance ρ at K.

の比で表わされ、この値が大きい程低温における導電性
が優れたものである。
The larger the value, the better the conductivity at low temperatures.

また4 00 ’Cで1時間の加熱処理を行なった試験
片について4.2〜10°にの平均熱伝導率を求めたと
ころ約8W/7°にと優れた結果が得られた。
Further, when the average thermal conductivity from 4.2 to 10° was determined for the test piece heat-treated at 400'C for 1 hour, an excellent result of about 8W/7° was obtained.

比較例 1 上記実施例1において用いたものと同一のOF HC材
を用い、これを酸化皮膜を形成させることなく、直接1
000Gから100’Cごとに70000まで真空中で
加熱処理した。
Comparative Example 1 Using the same OF HC material as that used in Example 1 above, it was directly coated with 1
Heat treatment was performed in vacuum from 000G to 70000G every 100'C.

このようにして得られた試験片について上記実施例1と
同様に残留抵抗比を測定し、その結果を第1図のグラフ
に破線で示す。
The residual resistance ratio of the thus obtained test piece was measured in the same manner as in Example 1 above, and the results are shown in the graph of FIG. 1 as a broken line.

また400℃で1時間の加熱処理を行なった試鋏片につ
いて、4.2〜100にの平均熱伝導率を求めたところ
約7W/crrL’にであった。
Further, the average thermal conductivity of the test scissors pieces heat-treated at 400° C. for 1 hour was determined to be about 7 W/crrL' from 4.2 to 100.

比較例 2 上記実施例1において用いたものと同一の0FHC材を
用いこれを300°C,400°C1及び500 ’C
で夫々1時間の真空加熱処理を行なった後、ホルマール
被覆加工を施して厚さ10μmの絶縁皮膜を形成した。
Comparative Example 2 The same 0FHC material used in Example 1 was heated at 300°C, 400°C1 and 500'C.
After performing a vacuum heat treatment for 1 hour each, formal coating was performed to form an insulating film with a thickness of 10 μm.

このようにして得られた試験片について上記実施例と同
様に残留抵抗比を測定し、その結果を第1図のグラフに
一点鎖線で示す。
The residual resistance ratio of the thus obtained test piece was measured in the same manner as in the above example, and the results are shown in the graph of FIG. 1 by the dashed line.

なおこの場合、2本の試験片のバラツキが太きいため、
夫々について示した。
In this case, since the variation between the two test pieces is large,
Each is shown below.

また400℃で1時間の加熱処理を行なった試験片につ
いて4.2〜10°にの平均熱伝導率を求めたところ約
6W/crn0にと低い熱伝導率を示した。
Further, when the average thermal conductivity from 4.2° to 10° was determined for the test piece heat-treated at 400° C. for 1 hour, it showed a low thermal conductivity of about 6 W/crn0.

実施例 2 上記実施例1において銅酸化皮膜を形成した後、これを
500’Cで1時間の真空加熱処理を行なった試験片を
用いて絶縁性の試験を行なった。
Example 2 After forming the copper oxide film in Example 1 above, an insulation test was conducted using a test piece that was subjected to vacuum heat treatment at 500'C for 1 hour.

この試験は試験片を2つに折曲げて荷重を加えながら撚
合せた後、折曲部を切断し、その両端に電圧を印加して
絶縁抵抗を測定するJISC3203−1966によっ
て行なった。
This test was conducted in accordance with JISC3203-1966, in which the test piece was bent in two and twisted together while applying a load, then the bent portion was cut, and the insulation resistance was measured by applying a voltage to both ends of the bent portion.

なお試験電圧は直流でステップ状に昇圧し、電流を測定
することにより行なった。
It should be noted that the test voltage was increased stepwise with direct current, and the current was measured.

また測定は液体窒素(−196℃)中及び常温大気中で
夫々行ない、この結果は第2図のグラフに示す通りであ
る。
The measurements were carried out in liquid nitrogen (-196 DEG C.) and in the atmosphere at room temperature, and the results are shown in the graph of FIG.

このグラフより明らかな如く、本発明方法により製造し
た試験片は低温において極めて優れた絶縁抵抗を有し、
変動磁界が印加させる電気導体や伝熱体においては、別
に絶縁物を被覆することなくそのまま使用することがで
きる。
As is clear from this graph, the test piece manufactured by the method of the present invention has extremely excellent insulation resistance at low temperatures.
Electric conductors and heat transfer bodies to which a fluctuating magnetic field is applied can be used as they are without being coated with an insulating material.

以上説明した如く本発明に係る低温用導電材料の製造方
法によれば、極めて簡単な操作により低温における優れ
た導電率と熱伝導性を有する導電材料を得ることができ
る。
As explained above, according to the method for producing a low-temperature conductive material according to the present invention, a conductive material having excellent electrical conductivity and thermal conductivity at low temperatures can be obtained by extremely simple operations.

更に本発明方法によれば銅酸化皮膜からなる絶縁皮膜が
形成されているため、加わる電圧が比較的低い場合には
、別個に絶縁被覆を施すことなくそのまま使用すること
ができると共に、該酸化皮膜は鋼材と一体的に形成され
ているので、可撓性にも優れているなど顕著な効果を有
するものである。
Furthermore, according to the method of the present invention, since an insulating film made of a copper oxide film is formed, if the applied voltage is relatively low, it can be used as is without applying a separate insulating film, and the oxide film Since it is formed integrally with the steel material, it has remarkable effects such as excellent flexibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法により製造した導電材料及び比較方
法により製造した導電材料の残留抵抗比を示すグラフ、
第2図は本発明方法により製造した導電材料の絶縁性を
測定したグラフである。
FIG. 1 is a graph showing the residual resistance ratio of the conductive material manufactured by the method of the present invention and the conductive material manufactured by the comparative method;
FIG. 2 is a graph showing measurements of the insulation properties of conductive materials produced by the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 銅材の表面に厚さ500A〜1011.mの銅酸化
皮膜を形成した後、これを200〜7000cに加熱し
て、前記酸化皮膜中に含まれる酸素を鋼材の内部に拡散
させることを特徴とする熱伝導性に優れた低温用導電材
料の製造方法。
1 Thickness 500A to 1011mm on the surface of copper material. A low-temperature conductive material with excellent thermal conductivity, characterized in that after forming a copper oxide film of 200 m, this is heated to 200 to 7000 c to diffuse oxygen contained in the oxide film into the interior of the steel material. manufacturing method.
JP12102876A 1976-10-08 1976-10-08 Method for manufacturing low-temperature conductive material with excellent thermal conductivity Expired JPS5841349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12102876A JPS5841349B2 (en) 1976-10-08 1976-10-08 Method for manufacturing low-temperature conductive material with excellent thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12102876A JPS5841349B2 (en) 1976-10-08 1976-10-08 Method for manufacturing low-temperature conductive material with excellent thermal conductivity

Publications (2)

Publication Number Publication Date
JPS5346426A JPS5346426A (en) 1978-04-26
JPS5841349B2 true JPS5841349B2 (en) 1983-09-12

Family

ID=14801018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12102876A Expired JPS5841349B2 (en) 1976-10-08 1976-10-08 Method for manufacturing low-temperature conductive material with excellent thermal conductivity

Country Status (1)

Country Link
JP (1) JPS5841349B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523646A1 (en) * 1995-06-29 1997-01-02 Km Europa Metal Ag Copper tape or sheet with a brown top layer and process for its manufacture
JP3918397B2 (en) * 2000-04-11 2007-05-23 三菱マテリアル株式会社 Adhesion-resistant oxygen-free copper rough wire, its manufacturing method and manufacturing apparatus

Also Published As

Publication number Publication date
JPS5346426A (en) 1978-04-26

Similar Documents

Publication Publication Date Title
JPH052940A (en) Material for electric contact and manufacture the same
JP2975246B2 (en) Sn-plated wire for electrical contact and method of manufacturing the same
JPS5841349B2 (en) Method for manufacturing low-temperature conductive material with excellent thermal conductivity
US2665243A (en) Method of providing aluminum with a flexible oxide coating
JP7032783B2 (en) A method for heat-treating a precursor wire for Nb3Al superconducting wire, and a method for manufacturing an Nb3Al superconducting wire using this precursor wire.
JPH0715138B2 (en) Method for manufacturing conductors for image display equipment and audio equipment
JP3050554B2 (en) Magnet wire
JPH01289021A (en) Manufacture of copper clad steel stranded wire
JPH0547252A (en) Electric contact material and its manufacture
JP2001073186A (en) Production of parts for wiring laminated with insulating film
KR20210149830A (en) Copper alloys having high strength and high conductivity and methods for producing such copper alloys
JPH0437524B2 (en)
US3270400A (en) Process of making niobium stannide bodies
JPH0118139B2 (en)
JP2017016956A (en) Insulated wire and manufacturing method thereof
JPH04103110A (en) Winding and manufacture thereof
US2213397A (en) Alloys
JP2737950B2 (en) Ceramic insulated wire
JPS5827334B2 (en) summary line
WO2014156026A1 (en) Linear conductor and method for producing same
JP4332412B2 (en) Cu-Ti alloy plate having excellent surface characteristics and method for producing the same
JPH04115423A (en) Superconductive strand
JPH0480485B2 (en)
JPH05255779A (en) Production of copper alloy for electrical and electronic equipment
JPH09235635A (en) High-strength and high-conductivity copper alloy excellent in migration resistance