JPS5839235B2 - Pickling and descaling method for steel wire rod - Google Patents

Pickling and descaling method for steel wire rod

Info

Publication number
JPS5839235B2
JPS5839235B2 JP17163981A JP17163981A JPS5839235B2 JP S5839235 B2 JPS5839235 B2 JP S5839235B2 JP 17163981 A JP17163981 A JP 17163981A JP 17163981 A JP17163981 A JP 17163981A JP S5839235 B2 JPS5839235 B2 JP S5839235B2
Authority
JP
Japan
Prior art keywords
pickling
descaling
steel wire
solution
wire rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17163981A
Other languages
Japanese (ja)
Other versions
JPS5873779A (en
Inventor
信幸 丸山
博夫 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17163981A priority Critical patent/JPS5839235B2/en
Publication of JPS5873779A publication Critical patent/JPS5873779A/en
Publication of JPS5839235B2 publication Critical patent/JPS5839235B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【発明の詳細な説明】 この発明は、鋼線材な酸洗により脱スケールする方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for descaling steel wire by pickling.

従来、2塩基系酸洗溶液を用いる鋼線材の脱スケール操
業では、硫酸溶液が用いられている。
Conventionally, a sulfuric acid solution has been used in a steel wire descaling operation using a dibasic pickling solution.

その一般的酸洗条件は、 (1)硫酸濃度 7〜20wt% (2)溶液温度 50〜70℃ (3)浸漬時間 40〜50 m1n (※但し、鋼線材をコイル状に巻いて浸漬した場合。The general pickling conditions are: (1) Sulfuric acid concentration 7-20wt% (2) Solution temperature 50-70℃ (3) Immersion time 40-50 m1n (*However, when the steel wire is wound into a coil and immersed.

)というものである。).

即ち、従来の酸洗脱スケールは、脱スケールに関与する
物質が酸のみであって、脱スケール作用を促進させたい
場合には、物理的環境を変える方法、すなわち溶液温度
を変える方法が採られていたのである。
That is, in conventional pickling descaling, the only substance involved in descaling is acid, and if it is desired to promote the descaling effect, a method of changing the physical environment, that is, a method of changing the solution temperature, is adopted. It was.

しかし、溶液温度をあまり高めるとヒユーム等の飛散の
原因となり、又、必然的に装置の大型化が必要となって
脱スケールのコストアップを招く。
However, if the solution temperature is increased too much, fumes etc. will be scattered, and the equipment will inevitably need to be enlarged, leading to an increase in the cost of descaling.

本発明は、上記実状に鑑み、太祖りな設備投資をするこ
となく脱スケール時間の短縮を図る目的でなされ、その
特徴とするところは、酸洗溶液の一スである2塩基系の
酸1wt%〜飽和濃度に、更にF e SO4を0.2
wt%−飽和濃度及びFe2(SO4)3を1wt%〜
飽和濃度を加えて該溶液中で酸洗脱スケール操業を行い
、この操業中にFe”lン’Fe2+c。
In view of the above-mentioned circumstances, the present invention was made for the purpose of shortening the descaling time without making extensive equipment investment. % to saturation concentration, and further add 0.2 F e SO4
wt% - saturation concentration and Fe2(SO4)3 from 1 wt%
A pickling descaling operation is carried out in the solution by adding a saturated concentration, and during this operation Fe'l'Fe2+c is added.

酸化還元電位を測定してFe3+が酸洗溶液中に常時I
w t ftJU上存在するように調整する点にある
The redox potential was measured and Fe3+ was constantly I in the pickling solution.
The point is to adjust it so that it exists on w t ftJU.

以下、実施例を示す図面及び表に基き詳述する。Examples will be described in detail below based on drawings and tables showing examples.

第1図は本発明の1実施例を示し、同図において1は酸
洗液槽、2は一定テンションのもと所定速度で矢印方向
に送られる鋼線材、3は案内ロール、4は酸洗溶液を示
し、該酸洗溶液は10wt%H2SO4に10wt%F
eSO4・7H20及び1wt%のF e2 (S 0
4) 3 ・nH2Oを含ませたものである。
FIG. 1 shows one embodiment of the present invention, in which 1 is a pickling liquid tank, 2 is a steel wire rod fed in the direction of the arrow under constant tension at a predetermined speed, 3 is a guide roll, and 4 is a pickling liquid tank. The pickling solution is 10 wt% F in 10 wt% H2SO4.
eSO4・7H20 and 1 wt% F e2 (S 0
4) Contains 3 ・nH2O.

5は酸洗溶液4内の酸化還元電位を測定する白金電極、
6は塩化第1水銀電極を示し、両電極5,6はそれぞれ
電位検知器7に接続され、該電位検知器7において両電
極5,6の電位差が測定されるようになっている。
5 is a platinum electrode for measuring the redox potential in the pickling solution 4;
Reference numeral 6 indicates a mercurous chloride electrode, both electrodes 5 and 6 are each connected to a potential detector 7, and the potential difference between the two electrodes 5 and 6 is measured by the potential detector 7.

8は高濃度のFe2(804)s水溶液9を貯え管理す
るFe2(SO4)s槽、10はF e2 (5O4)
s水溶液9を酸洗液槽1に導く注入管を示し、該注入
管10の中程にバルブ11が設けられ、該バルブ11は
上記電位差検知器7の発する電気エネルギーにより、所
定ケースに応じて開閉する構成とされている。
8 is a Fe2(SO4)s tank for storing and managing a high concentration Fe2(804)s aqueous solution 9; 10 is Fe2(5O4)
s shows an injection pipe that leads the aqueous solution 9 to the pickling liquid tank 1; a valve 11 is provided in the middle of the injection pipe 10; It is configured to open and close.

具体的には、両電極5゜6により検知された電位差がI
″Fe3+が1wt%を割っている。
Specifically, the potential difference detected by both electrodes 5°6 is I
``Fe3+ is less than 1wt%.

」ことを示す場合には、バルブ11が自動的に開き、注
入管11から高濃度のp e 2 (804) 3水溶
液9が酸洗液槽1に注入される構成となっている。
”, the valve 11 is automatically opened and the highly concentrated p e 2 (804) 3 aqueous solution 9 is injected into the pickling liquid tank 1 from the injection pipe 11.

なお、上記バルブ11の開閉時間は、酸洗液槽1の容量
、使用鋼線材2の線径や鋼質等の条件により定められる
The opening/closing time of the valve 11 is determined by conditions such as the capacity of the pickling liquid tank 1 and the wire diameter and quality of the steel wire 2 used.

下記表−1、表−2は、上述の方途により酸洗脱スケー
ルを行った場合の結果を、従来の酸洗溶液(10%H2
SO4+0.2多イビツト600(商品名Oに依る結果
と比較して示すものである。
Tables 1 and 2 below show the results of pickling and descaling using the method described above using a conventional pickling solution (10% H2).
SO4+0.2 multi-bit 600 (shown in comparison with results obtained from product name O).

すなわち、上記実施例においては、順次送り込まれる鋼
線材2が酸洗液槽1内で酸洗溶液4に浸漬され、ここで
鋼線材2はF e”+、 F e”十の存在下、良好に
脱スケールされる。
That is, in the above embodiment, the steel wire rods 2 that are fed one after another are immersed in the pickling solution 4 in the pickling liquid tank 1, and here the steel wire rods 2 are in good condition in the presence of Fe''+, Fe''+. Descaled to .

ここで、本発明の酸洗機構は であって、鋼線材2に付着しているスケールの割れ目を
通ってH2SO4がスケールの内部に浸入し、ここでH
2SO4が地金を腐蝕してH2ガスを発生し、このH2
ガスがスケールの上層部を形成するFe2O3層、Fe
3O4層に対して内部圧を与えることによりスケールを
効率良く剥離する。
Here, in the pickling mechanism of the present invention, H2SO4 penetrates into the scale through cracks in the scale attached to the steel wire rod 2, and H2SO4 enters the inside of the scale.
2SO4 corrodes the base metal and generates H2 gas, and this H2
Fe2O3 layer where the gas forms the upper part of the scale, Fe
Scale is efficiently removed by applying internal pressure to the 3O4 layer.

この場合に、実施例中の酸洗溶液4に含まれているF3
+は の如く反応し、脱スケール性向上(酸洗所要時間の短縮
)に寄与する。
In this case, F3 contained in pickling solution 4 in the example
+ reacts as shown below and contributes to improved descaling performance (reduced pickling time).

上記表−1、表−2はこの脱スケール性向上を和実に示
すもので、従来例に比すと、表−1の場合、2.3倍の
スピードで、表−2の場合は、2倍のスピードで良好な
脱スケール状態が得られている。
Tables 1 and 2 above clearly show this improvement in descaling performance. Compared to the conventional example, in the case of Table 1, the speed is 2.3 times faster, and in the case of Table 2, the speed is 2.3 times faster. Good descaling conditions are obtained at twice the speed.

ところで、FeSO4中のFe2+は一般的には、その
添加量t5wt%以上で腐蝕量を増大するのであるが、
本発明の場合はFe3+が共存していてFe SO2が
o、2wt%であっても良好な脱スケール状態が得られ
る。
By the way, Fe2+ in FeSO4 generally increases the amount of corrosion when its addition amount is t5wt% or more.
In the case of the present invention, Fe3+ coexists and a good descaling state can be obtained even if Fe SO2 is 0.2 wt%.

一方、上記Fe3+の量は脱スケール操業中、少しづつ
減少する。
On the other hand, the amount of Fe3+ decreases little by little during the descaling operation.

すなわち、Fe3+3tH2SO,によってFe2+に
還元されてゆく。
That is, it is reduced to Fe2+ by Fe3+3tH2SO.

しかしながら、上記実施例に示す如く本発明ではFe3
+の量が常時1wt%保持するようになされていて、脱
スケール操業は連続して良好に行われる。
However, as shown in the above example, in the present invention, Fe3
The amount of + is maintained at 1 wt% at all times, and the descaling operation is carried out continuously and satisfactorily.

これを実施例についてみると、酸洗溶液4中のFe3+
の量が1wt%を割った場合、電位差検知器7から出る
電気エネルギーがバルブ11を開かせ、注入器10から
高濃度のFe2(SO4)3水溶液9を酸洗溶液4中に
流し込み、常時Fe3+が1wt%以上酸洗溶液4中に
存在するようになっており、この結果、脱スケール操業
が連続して安定に行える。
Looking at this example, Fe3+ in pickling solution 4
When the amount of Fe2(SO4)3 is less than 1wt%, the electric energy emitted from the potential difference detector 7 opens the valve 11, and a highly concentrated Fe2(SO4)3 aqueous solution 9 is poured into the pickling solution 4 from the syringe 10, and the Fe3+ is present in the pickling solution 4 in an amount of 1 wt % or more, and as a result, descaling operation can be performed continuously and stably.

なお、本発明においてFe3+の添加量が常時1wt%
以上であるとした理由は、第2図として表わしたグラフ
に示すように、F e2 (5O4)3の添加効果がl
w t%J上の濃度において顕著となるからである。
In addition, in the present invention, the amount of Fe3+ added is always 1 wt%.
The reason for this is that, as shown in the graph shown in Figure 2, the effect of adding F e2 (5O4)3 is
This is because it becomes noticeable at concentrations above wt%J.

当該グラフは酸洗溶液4のベースとして10wt%H2
SO4+l 0wt% F esO4・7H20を用い
、その酸洗溶液温度を35℃、使用鋼線材は0.5%炭
素鋼とし、表示は表−1、表−2と同じにして表わした
ものである。
The graph shows 10 wt% H2 as the base of pickling solution 4.
SO4 + l 0wt% FesO4.7H20 was used, the pickling solution temperature was 35°C, the steel wire used was 0.5% carbon steel, and the display was the same as Table 1 and Table 2.

以上説明したように本発明は、従来の酸洗脱スケール方
法に比べ、脱スケール所要時間が著しく短縮されるもの
であり、その方途は、2塩基系の酸にFeSO4及びF
e2(SO4)3を添加して酸洗溶液となし、該酸洗溶
液中のF♂+の量を酸化還元電位の測定によって1wt
%以上に保持調整するものであって格別の装置を必要と
しないし、溶液温度を上げることなく脱スケール所要時
間を短縮するものである故に、冒頭に記したようなヒユ
ーム飛散等の問題はなくなる許りでなく、F♂+の量が
常時適正に保持されていて、良好な酸洗脱スケール操業
が順調に行われる。
As explained above, the present invention significantly shortens the time required for descaling compared to the conventional pickling descaling method.
e2(SO4)3 was added to prepare a pickling solution, and the amount of F♂+ in the pickling solution was determined to be 1wt by measuring the redox potential.
% or more, no special equipment is required, and the time required for descaling is shortened without raising the solution temperature, so the problems such as fume scattering mentioned at the beginning are eliminated. Rather, the amount of F♂+ is always maintained at an appropriate level, and good pickling and descaling operations are carried out smoothly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示す概略図、第2図はFe
2(SO4)3の添加効果を表示するグラフである。 4は酸洗溶液、Tは電位差検知器。
FIG. 1 is a schematic diagram showing one embodiment of the present invention, and FIG. 2 is a schematic diagram showing an embodiment of the present invention.
2 is a graph displaying the effect of adding 2(SO4)3. 4 is a pickling solution, and T is a potential difference detector.

Claims (1)

【特許請求の範囲】[Claims] 12塩基系の酸1wtφ〜飽和濃度を含有する酸洗溶液
で鋼線材の脱スケールを行う酸洗脱スケール方法におい
て、上記2塩基系の酸にFe50.を0.2wt%〜飽
和濃度及びFe2(SO4)3を1wt%〜飽和濃度を
加え、脱スケール操業中に酸洗溶液中のFe3+/Fe
2+の酸化還元電位を測定し、上記Fe3+が酸洗溶液
中に常時1wt係以上存在するように調整することを特
徴とする鋼線材の酸洗脱スケール方法。
In a pickling descaling method in which steel wire is descaled with a pickling solution containing a 1wtφ to saturation concentration of a 12-base acid, 50. Fe3+/Fe in the pickling solution was added during the descaling operation.
A method for pickling and descaling steel wire rods, characterized in that the oxidation-reduction potential of 2+ is measured and the Fe3+ is adjusted so that 1 wt or more of Fe3+ is always present in the pickling solution.
JP17163981A 1981-10-26 1981-10-26 Pickling and descaling method for steel wire rod Expired JPS5839235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17163981A JPS5839235B2 (en) 1981-10-26 1981-10-26 Pickling and descaling method for steel wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17163981A JPS5839235B2 (en) 1981-10-26 1981-10-26 Pickling and descaling method for steel wire rod

Publications (2)

Publication Number Publication Date
JPS5873779A JPS5873779A (en) 1983-05-04
JPS5839235B2 true JPS5839235B2 (en) 1983-08-29

Family

ID=15926926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17163981A Expired JPS5839235B2 (en) 1981-10-26 1981-10-26 Pickling and descaling method for steel wire rod

Country Status (1)

Country Link
JP (1) JPS5839235B2 (en)

Also Published As

Publication number Publication date
JPS5873779A (en) 1983-05-04

Similar Documents

Publication Publication Date Title
Kelly The active iron electrode: I. Iron dissolution and hydrogen evolution reactions in acidic sulfate solutions
EP0236354A1 (en) Method for the acid etching of stainless steel products.
Dickinson et al. Mechanism of Kolbe's electrosynthesis. Part 1.—Anode potential phenomena
Jones The polarograph1c estimation of molybdenum in plant materials
JPS5839235B2 (en) Pickling and descaling method for steel wire rod
JPS5839234B2 (en) Pickling and descaling method for steel wire rod
DE4231256C2 (en) Electrochemical oxygen sensor with an atmospheric oxygen electrode as a reference electrode
KR880014141A (en) Electrolytic acid-pickling method of chromium-containing stainless steel
Willard et al. Bimetallic electrode systems in electrometric analysis. I. Systems comprising two dissimilar metals
FR2562097A1 (en) Process for pickling alloy steels, copper, alloys of non-ferrous heavy metals, titanium, zirconium, tantalum and the like by means of nitric acid baths
Adams Potentiometric Titrations with Controlled Current Input
Lochel et al. On the mechanism of breakdown of passivity of iron for instationary conditions
JP2002531700A (en) Apparatus and method for controlling the pickling process of steel
Rostron The correlation between molecular structure and tendency to maintain or to destroy iron passivity in aqueous solution—II. Activation effectiveness of anions present together with a corrosion inhibitor and/or an oxidant
Gustavson et al. THE SUCCESSIVE ELECTROMETRIC TITRATION OF IRON, VANADIUM AND URANIUM
Sužnjević et al. Determination of copper in wine by anodic stripping voltammetry with rotating glassy carbon and microfiber carbon electrode
JPS5861283A (en) Descaling method for steel wire rod by pickling
Monier-Williams Electrolytic apparatus for the estimation of arsenic
AT359751B (en) MEASURING ARRANGEMENT FOR THE QUANTITATIVE AND CONTINUOUS ELECTROCHEMICAL DETERMINATION OF THE OZONE CONTENT IN GAS MIXTURES
Tench et al. Reduction of metallic surface oxides via an electrochemically-generated redox species
Van Venrooij et al. Electrode kinetics and the nature of the metal electrode: Part 3. The Zn (II)/Zn electrode reaction studied at In+ Ga dropping (micro) electrodes
Pouw et al. An analytically useful coulometric generation of micro amounts of metal ions: Part I. Electrogeneration of bismuth (III)
DE1798222C (en) Method for determining the acid content of metal, in particular molten steel
KR830002447B1 (en) Treatment method of drainage
Hayakawa et al. Studies on the Controlled Potential Electrolysis.(IX): Electrolytic Separation of Copper from Bismuth by the Use of Ethylenediaminetetraacetic Acid