JPS5837482A - Boiling and cooling device - Google Patents

Boiling and cooling device

Info

Publication number
JPS5837482A
JPS5837482A JP13419081A JP13419081A JPS5837482A JP S5837482 A JPS5837482 A JP S5837482A JP 13419081 A JP13419081 A JP 13419081A JP 13419081 A JP13419081 A JP 13419081A JP S5837482 A JPS5837482 A JP S5837482A
Authority
JP
Japan
Prior art keywords
cooling device
insulating material
semiconductor element
boiling
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13419081A
Other languages
Japanese (ja)
Inventor
Sadayuki Okada
岡田 定之
Hiroshi Goko
郷古 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13419081A priority Critical patent/JPS5837482A/en
Publication of JPS5837482A publication Critical patent/JPS5837482A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To make the titled device compact in size and to increase airtight property, by utilizing the boil and condensation of refrigerent liquid having excellent evaporating property such as flon, using it when semiconductor elements are cooled, electrically insulating all cooling bodies, and manufacturing the entire device by metal. CONSTITUTION:A high heat conductive insulating material 4 is provided between each semiconductive element 1 and each cooling body 3. The effect of a high voltage current around the semiconductor element 1 is eliminated against the cooling body 3. Since the part between an evaporator and a condenser is not required to electrically insulate, the cooling body 3 can be manufactured by the same metal. Therefore the manufacture becomes easy. Since no insulating coupling is necessary, the height of the cooling body can be made low, the device can be made compact, and the airtight property in the evaporating part 5a and the condensing part 5d can be increased.

Description

【発明の詳細な説明】 本発明はフロン等の蒸発性の良い冷媒液の沸騰及び凝縮
を利用して半導体素子の冷却を行う沸騰冷却装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a boiling cooling device that cools semiconductor devices by utilizing boiling and condensation of a refrigerant liquid with good evaporability, such as fluorocarbon.

沸騰冷却装置においては、一般に、冷媒液を内部に封入
した蒸発器とその上部に設けられた凝縮器とから成シ立
っているが、半導体素子を直接蒸発器に接触させて冷却
していただめ、凝縮器を含めた冷却装置が高電圧を生じ
るので、隣9合った凝縮器の部分で電気的な絶縁破壊も
しくは短絡が生じる。
A boiling cooling system generally consists of an evaporator with a refrigerant liquid sealed inside and a condenser installed above the evaporator. Since the cooling device including the condenser generates a high voltage, electrical breakdown or short circuit occurs in adjacent condenser parts.

これを避けるために、従来の装置では、蒸発器と凝縮器
の間に酸化アルミナあるいは磁器などの絶縁材で作られ
た管を接続させる方式が採用されている。
To avoid this, conventional systems employ a system in which a tube made of an insulating material such as alumina oxide or porcelain is connected between the evaporator and the condenser.

ところで、この沸騰冷却装置では、半導体素子の熱負荷
の大小によって内圧が真空から2〜3気圧まで変化する
ために、厳重な気密容器としなければならない。従来の
装置では非金属と金属の接合及び異種金属の接合があシ
真に気密容器を製作するには高度の接合技術が必要であ
った。そして、凝縮器と蒸発器の間に絶縁管を設けるた
めには、その絶縁材とよく接合できる別の金属材料を介
在させたり、熱的な膨張収縮を緩衝するためのベローズ
も設ける必要があるため、凝縮器と蒸発器の高さが大き
くなること、また、絶縁材は金属と比較して強度が弱い
だめ、とくに強固な枠で組立てる必要があり装置が大型
となる欠点があった。
By the way, in this boiling cooling device, the internal pressure varies from vacuum to 2 to 3 atmospheres depending on the magnitude of the heat load on the semiconductor element, so the container must be tightly airtight. Conventional equipment requires advanced bonding technology to bond non-metals and metals and to bond dissimilar metals in order to fabricate truly airtight containers. In order to provide an insulating tube between the condenser and evaporator, it is necessary to use another metal material that can bond well with the insulating material, or to provide bellows to buffer thermal expansion and contraction. As a result, the height of the condenser and evaporator becomes large, and since the insulating material is weaker than metal, it must be assembled with a particularly strong frame, resulting in a large device.

本発明の目的は、蒸発器と凝縮器との間を絶縁材で接続
することなく全体が金属で製作できるようにし、これに
よハ小型で気密性に対し信頼性の高い沸騰冷却装置を提
供するにある。
An object of the present invention is to enable the evaporator and condenser to be made entirely of metal without connecting them with an insulating material, thereby providing a boiling cooling device that is compact and highly reliable in terms of airtightness. There is something to do.

本発明はこの目的を達成するために、半導体素子と冷却
体(蒸発器、凝縮器等)との間に高熱伝導性電気絶縁□
材を介設し、半導体素子の電気的な影響をなくし熱のみ
蒸発器に移動させることにょシ半導体素子を冷却するよ
うにしだものである。
In order to achieve this object, the present invention provides a high thermal conductive electrical insulation between a semiconductor element and a cooling body (evaporator, condenser, etc.).
The device is designed to cool the semiconductor device by interposing a material to eliminate the electrical influence on the semiconductor device and only transfer heat to the evaporator.

以下本発明を一実施例の図に基づき説明する。The present invention will be explained below based on the drawings of one embodiment.

符号1は通電されたときに発熱する半導体素子で、この
半導体素子1の両側には、密着して電源端子2が設けら
れている。この電源端子2には通常電気伝導性並びに熱
伝導性の大きい銅が用いられる。前記電源端子2に隣接
して冷却体3が設けられ、この冷却体3と前記電源端子
2との間には高熱伝導性絶縁材4が設けられている。こ
の高熱伝導性絶縁材4としては、例えば、SiCセラミ
ックスやベベリア磁器などが用いられる。
Reference numeral 1 denotes a semiconductor element that generates heat when energized, and power terminals 2 are provided on both sides of this semiconductor element 1 in close contact with each other. Copper, which has high electrical conductivity and high thermal conductivity, is usually used for the power supply terminal 2. A cooling body 3 is provided adjacent to the power terminal 2, and a highly thermally conductive insulating material 4 is provided between the cooling body 3 and the power terminal 2. As this highly thermally conductive insulating material 4, for example, SiC ceramics, Beveria porcelain, etc. are used.

SiCセラミックスとしては、炭化けい素を主成分とし
、これに酸化ベリリウム、窒化はう素の少なくとも一種
を含む焼結体から構成されている。
The SiC ceramic is composed of a sintered body containing silicon carbide as a main component and at least one of beryllium oxide and boron nitride.

しかも、酸化べIJ IJウム、窒化はう素の含有量は
、炭化けい素100重量部に対し、2重量部以上のもの
が最適である。
Furthermore, the optimum content of benzyl oxide and boron nitride is 2 parts by weight or more per 100 parts by weight of silicon carbide.

又、前記冷却体3はその内部が中空になったところの蒸
発部5aと凝縮部5dから成シ立っている。さらに、符
号6は前記蒸発部5aの中に設けられた熱伝導性の良い
アルミニウム、銅等からなる沸騰部であり、この沸騰部
6は蒸発性の良い、例えばフロンの如き冷媒液7で浸さ
れている。又、と−の沸騰部6は、蒸発部5aが後記す
る締付金具10により締付けられた時の蒸発部5aの変
形を防止する。8は前記沸騰部6が過熱された場合の蒸
気泡である。9は前記凝縮部5dの外形に設けられた放
熱フィンであり、11はこの放熱フィン9を冷やすだめ
の冷却風を示している。10は締付金具であり、前記半
導体素子1をはじめとして電源端子2、高熱伝導性絶縁
材4及び冷却体3を積み重ねた状態で前記締付金具10
によって装置が組立てられている。
The cooling body 3 is made up of an evaporating section 5a and a condensing section 5d, both of which are hollow inside. Further, reference numeral 6 is a boiling part made of aluminum, copper, etc. with good thermal conductivity and provided in the evaporating part 5a. has been done. Further, the boiling part 6 of - prevents deformation of the evaporating part 5a when the evaporating part 5a is tightened by a fastening fitting 10, which will be described later. 8 represents steam bubbles when the boiling section 6 is overheated. Reference numeral 9 indicates a heat radiation fin provided on the outer shape of the condensing portion 5d, and reference numeral 11 indicates a cooling air for cooling the heat radiation fin 9. Reference numeral 10 denotes a fastening fitting, and when the semiconductor element 1, power supply terminal 2, high thermal conductive insulating material 4, and cooling body 3 are stacked, the tightening fitting 10 is
The device is assembled by.

本実施例の沸騰冷却装置は以上のようになっているので
、半導体素子lが電源端子2からの通電によシ発熱され
た熱は両端に伝わり、高熱伝導性絶縁材4を通して蒸発
部5a中の沸騰部6に熱伝導される。この沸騰部6によ
シ蒸発部5a内の冷媒液7を沸騰させ、その蒸気泡8は
凝縮部5d内に侵入し、外部の放熱フィン9によって冷
却された内壁面で液にもどされ、再び冷媒g、7が蒸発
部5a内にもどシこの蒸発部5a内を冷却する。
Since the evaporative cooling device of this embodiment is configured as described above, the heat generated when the semiconductor element 1 is energized from the power supply terminal 2 is transmitted to both ends, passes through the highly thermally conductive insulating material 4, and enters the evaporation section 5a. The heat is conducted to the boiling part 6. The boiling section 6 boils the refrigerant liquid 7 in the evaporating section 5a, and the vapor bubbles 8 enter the condensing section 5d, where they are returned to liquid form on the inner wall surface cooled by the external heat radiation fins 9, and are returned to the liquid state. The refrigerants g and 7 are returned to the evaporator 5a to cool the inside of the evaporator 5a.

この実施例によれば、半導体素子1と冷却体3の間に高
熱ち導性絶縁材4を、介しているので、冷却体3には半
導体素子1の周辺の高電圧電流の影響がなくなっている
。従って、°蒸発器と凝縮器の間を電気絶縁する必要が
ないため冷却体3は同一の金属で製作することができる
。このため製作が容易となり、絶縁継手がないため冷却
体の高さが著しく低くできて装置が小型化し、さらに蒸
発部5a、凝縮部5d内の気密性が増大し信頼性が高く
なる。
According to this embodiment, since the high-temperature conductive insulating material 4 is interposed between the semiconductor element 1 and the cooling body 3, the influence of high voltage current around the semiconductor element 1 is eliminated on the cooling body 3. There is. Therefore, since there is no need for electrical insulation between the evaporator and the condenser, the cooling body 3 can be made of the same metal. This facilitates manufacturing, and since there is no insulating joint, the height of the cooling body can be significantly reduced, making the device more compact.Furthermore, the airtightness within the evaporating section 5a and the condensing section 5d is increased, increasing reliability.

第2図は本発明に係る第2の実施例を示す説明図であり
、各符号は前第1実施例(第1図)で説明したそれぞれ
の符号のものと同−或いはほぼ同一物を示している。こ
の第2図の実施例で前記第1図と大きく異なるところは
次の如くである。即ち、第1図では複数個の半導体素子
1に対しては蒸発部5aと凝縮部5dから成る1つの冷
却体3が複数個から成っている。これに対し第2図の実
゛   雄側では、半導体素子10両側に高熱伝導性絶
縁材4を介して接触させる蒸発部5aはその上部の凝縮
部5dとの間に液溜部5Cを設け、との液溜部5Cと前
記蒸発部5aの間には可撓管5bを介して連結されてい
る構造である。即ち、冷却体3は複数個の蒸発部5aが
1つの凝縮部5dによって行う構造となっている。なお
、可撓管5bの役目は、半導体素子1をはじめとして電
源端子2、高熱伝導性絶縁材4及び蒸発部5aの温度変
化にともなう膨張収縮のわずかな変位を液溜iscと蒸
発部5aの間で吸収するようにしだものである。
FIG. 2 is an explanatory diagram showing a second embodiment according to the present invention, and each reference numeral indicates the same or almost the same thing as the respective reference numeral explained in the previous first embodiment (FIG. 1). ing. The major differences between the embodiment shown in FIG. 2 and the embodiment shown in FIG. 1 are as follows. That is, in FIG. 1, for a plurality of semiconductor elements 1, one cooling body 3 consisting of an evaporating section 5a and a condensing section 5d is made up of a plurality of cooling bodies. On the other hand, on the real male side of FIG. 2, the evaporating section 5a, which is in contact with both sides of the semiconductor element 10 via the highly thermally conductive insulating material 4, has a liquid reservoir section 5C between it and the condensing section 5d above it. The liquid reservoir section 5C and the evaporation section 5a are connected via a flexible tube 5b. That is, the cooling body 3 has a structure in which a plurality of evaporating sections 5a are operated by one condensing section 5d. The role of the flexible tube 5b is to absorb slight displacements caused by expansion and contraction of the semiconductor element 1, the power supply terminal 2, the highly thermally conductive insulating material 4, and the evaporator 5a due to temperature changes between the liquid reservoir ISC and the evaporator 5a. It is something that is meant to be absorbed in between.

本実施例の作用は基本的には第1の実施例と同一である
。即ち、半導体素子1が電源端子2からの通電により発
熱された熱は両端に伝わ9、高熱伝導性絶縁材4を通し
て蒸発部5a中の沸騰部6に熱伝導される。そしてこの
部分の過熱により蒸発部5a内の冷媒液7を沸騰させ、
この蒸気泡8は可撓管5bよシ液溜部5C内に侵入し、
さらにその上部の凝縮部5d内に入り、冷却風11によ
って冷やされて液にもどされる。そして再び冷媒液7が
液溜部5Cから蒸発部5a内にもどり、この蒸発部5a
内を冷却する。
The operation of this embodiment is basically the same as that of the first embodiment. That is, the heat generated by the semiconductor element 1 due to energization from the power supply terminal 2 is transmitted to both ends 9 and is thermally conducted to the boiling part 6 in the evaporating part 5a through the highly thermally conductive insulating material 4. Then, the refrigerant liquid 7 in the evaporation section 5a is boiled by the overheating of this part,
This vapor bubble 8 enters into the liquid reservoir 5C through the flexible tube 5b,
The liquid then enters the condensing section 5d at the top thereof, is cooled by the cooling air 11, and is returned to liquid form. Then, the refrigerant liquid 7 returns from the liquid reservoir 5C to the evaporator 5a, and the evaporator 5a returns to the evaporator 5a.
Cool the inside.

上記第2の実施例によれば、半導体素子1と冷却体3の
蒸発部5aの間に高熱伝導性絶縁材4を介しているので
、各蒸発部5aならびに可撓管5b、液溜部5Cへの接
続はすべて金属で製作することができる。従って、凝縮
器又は液溜部と蒸発器の間に絶縁管が不要となり、高さ
が小さくなるばかシでなく、装置の製作が容易で小型と
なり、かつ気密に対して信頼性も高い。
According to the second embodiment, since the highly thermally conductive insulating material 4 is interposed between the semiconductor element 1 and the evaporator section 5a of the cooling body 3, each evaporator section 5a, the flexible tube 5b, and the liquid reservoir section 5C All connections to can be made of metal. Therefore, there is no need for an insulating tube between the condenser or liquid reservoir and the evaporator, the height is not reduced, the device is easy to manufacture, compact, and highly reliable in terms of airtightness.

次に第3の実施例を第3,4図により説明する。Next, a third embodiment will be explained with reference to FIGS. 3 and 4.

各符号のものは前筒1.2の各実施例(第1,2図)で
説明したそれぞれの符号のものと同−或いはほぼ同一で
ある。本実施例で前述の第1,2の実1例と大きく異な
るところは次の如くである。
Each reference numeral is the same or almost the same as the reference numeral described in each embodiment of the front cylinder 1.2 (FIGS. 1 and 2). The major differences between this embodiment and the first and second examples described above are as follows.

即ち、本実施例では、冷却体3が下部に蒸発部5a、上
部に凝縮部5d、その中間に液溜部5Cを設けた構造で
ある。また、この冷却体3は1つの大きな蒸発部5a、
凝縮部5d、及び液溜部5Cとよりなる金属で作られた
密i式の一体構造であり、またこの蒸発器の両側には、
冷却風の方向に沿って複数個の半導体素子1が取付けら
れる構造である。伺、この図中、符号12は通常の絶縁
材である。
That is, in this embodiment, the cooling body 3 has a structure in which an evaporating part 5a is provided at the lower part, a condensing part 5d is provided at the upper part, and a liquid reservoir part 5C is provided in the middle. Moreover, this cooling body 3 has one large evaporation part 5a,
It has a compact integrated structure made of metal, consisting of a condensing part 5d and a liquid reservoir part 5C, and on both sides of this evaporator,
This is a structure in which a plurality of semiconductor elements 1 are attached along the direction of cooling air. In this figure, reference numeral 12 is a normal insulating material.

本実施例の作用は前述の第1,2の実施例と同じであシ
説明を省略する。
The operation of this embodiment is the same as that of the first and second embodiments described above, and the explanation thereof will be omitted.

この実施例によれば、前述の第1,2の実施例で述べた
効果を奏する上に、1つの大きな蒸発部5aの両側に複
数個の半導体素子1を並列に取付けられているだめ、半
導体素子が故障した際にも容易に取り換えられ暮利点が
ある。
According to this embodiment, in addition to producing the effects described in the first and second embodiments, since a plurality of semiconductor elements 1 are mounted in parallel on both sides of one large evaporation section 5a, the semiconductor This has the advantage that even if an element breaks down, it can be easily replaced.

尚、この実施例においては、蒸発部の両側に配列した場
合について示したが、蒸発部の形状によっては端面や底
部などいわゆる蒸発部の周囲すべてに高熱伝導性絶縁材
をはさみ込み、半導体素子をとりつけることもできる。
In this example, the case is shown in which they are arranged on both sides of the evaporator, but depending on the shape of the evaporator, a highly thermally conductive insulating material may be sandwiched all around the evaporator, such as the end face or the bottom, to protect the semiconductor element. You can also attach it.

以上述べた通り、本発明によれば、冷却体がすべて電気
的に絶縁されているため、全体を金属製で作ることがで
き、また、これにより、小型で気密性に優れ、かつ信頼
性の高いものを提供できる。
As described above, according to the present invention, since all the cooling bodies are electrically insulated, the entire cooling body can be made of metal. We can provide high quality products.

この結果常に安定した冷却性能のある冷却装置が得うれ
るという顕著な効果を達成できる。
As a result, a remarkable effect can be achieved in that a cooling device with always stable cooling performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る沸騰冷却装置の第1の実施例を示
す部分断面図、第2図は同第2の実施例を示す部分断面
図、第3.4図は同第3の実施例を示す側面図及び第3
図の■〜■断面図である。 l・・・半導体素子、2・・・電源端子、3・・・冷却
体、4・・・高熱伝導性絶縁材、5a・・・蒸発部、5
b・・・可撓管、5C・・・液溜部、6・・・沸騰部、
7・・・冷媒液、9名trn 蔓2図 第30
FIG. 1 is a partial sectional view showing a first embodiment of the boiling cooling device according to the present invention, FIG. 2 is a partial sectional view showing the second embodiment, and FIG. 3.4 is a third embodiment of the same. Side view and third example
It is a sectional view of ■ to ■ of the figure. l... Semiconductor element, 2... Power supply terminal, 3... Cooling body, 4... High thermal conductive insulating material, 5a... Evaporation part, 5
b...Flexible tube, 5C...Liquid reservoir part, 6...Boiling part,
7...Refrigerant liquid, 9 people trn Vines 2 Figure 30

Claims (1)

【特許請求の範囲】 1、内部に蒸発性の良い冷媒液を封入した蒸発部と、こ
の蒸発部の冷媒液が熱により蒸発した時冷却して液体に
戻す凝縮部とから成る冷却体を備え、前記蒸発部に半導
体素子を圧接してこの素子の冷却を行うようにした沸騰
冷却装置において、前記半導体素子と前記蒸発部との間
に高熱伝導性絶縁材を設け、かつ、この高熱伝導性絶縁
材として、炭化けい素を主成分とし、これに酸化べIJ
 IJウム、窒化はう素の少なくとも一種を含む焼結体
から成るSiCセラミックスとしたことを特徴とした沸
騰冷却装置。 2、 前記炭化けい素を100重量部とした時、酸化は
う素或いは窒化はう累の含有量を2重量部以上としたこ
とを特徴とする特許請求の範囲第1項記載の沸騰冷却装
置。 3、前記半導体素子と前記高熱伝導性絶縁材との間に電
源端子を設けたことを特徴とする特許請求の範囲第1項
記載の沸騰冷却装置。 4、前記蒸発部内部に沸騰部を形成し、かつ、前記蒸発
部と凝縮部とを一体にすると共に、この凝縮部に放熱フ
ィンを設けた仁とを特徴とする特許請求の範囲第1項記
載の沸騰冷却装置。 5、前記蒸発部と凝縮部との間に、液溜部を形成したこ
とを特徴とする特許請求の範囲第1項記載の沸騰冷却装
置。   ′ 6、 前記半導体素子と前記蒸゛発部および高熱伝導性
絶縁材とを締付金具によ勺一体に締付は固定したことを
特徴とする特許請求の範囲第1項記載の沸騰冷却装置。 7、前記液溜部を1個とし、この液溜部から多数の蒸発
部を垂下すると共に、この蒸発部間に高熱伝導性絶縁材
を介して半導体素子を設けたことを特徴とする特許請求
の範囲第1項記載の沸騰冷却装置。 8、前記液溜部から下方に延長して蒸発部を形成し、こ
の蒸発部側壁に高熱伝導性絶縁材を介して半導体素子を
設けたことを特徴とする特許請求の範囲第1項記載の沸
騰冷却装置。
[Claims] 1. A cooling body consisting of an evaporation section in which a refrigerant liquid with good evaporability is sealed, and a condensation section that cools the refrigerant liquid in the evaporation section and returns it to liquid when it evaporates due to heat. , a boiling cooling device in which a semiconductor element is pressed into contact with the evaporation section to cool the element, wherein a high thermal conductivity insulating material is provided between the semiconductor element and the evaporation section, and the high thermal conductivity As an insulating material, silicon carbide is the main component, and IJ oxide is added to this.
A boiling cooling device characterized in that it is made of SiC ceramics made of a sintered body containing at least one of IJum and boron nitride. 2. The boiling cooling device according to claim 1, wherein the content of boron oxide or nitride deposits is 2 parts by weight or more when the silicon carbide is 100 parts by weight. . 3. The evaporative cooling device according to claim 1, characterized in that a power supply terminal is provided between the semiconductor element and the highly thermally conductive insulating material. 4. Claim 1, characterized in that a boiling part is formed inside the evaporating part, the evaporating part and the condensing part are integrated, and the condensing part is provided with radiation fins. Boiling cooling device as described. 5. The boiling cooling device according to claim 1, characterized in that a liquid reservoir is formed between the evaporating section and the condensing section. '6. The evaporative cooling device according to claim 1, wherein the semiconductor element, the evaporation section, and the highly thermally conductive insulating material are integrally fastened and fixed by a fastening fitting. . 7. A patent claim characterized in that the liquid reservoir is one, a number of evaporators are suspended from the liquid reservoir, and a semiconductor element is provided between the evaporators with a highly thermally conductive insulating material interposed therebetween. The boiling cooling device according to item 1. 8. An evaporation section is formed extending downward from the liquid reservoir, and a semiconductor element is provided on the side wall of the evaporation section via a highly thermally conductive insulating material. Boiling cooler.
JP13419081A 1981-08-28 1981-08-28 Boiling and cooling device Pending JPS5837482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13419081A JPS5837482A (en) 1981-08-28 1981-08-28 Boiling and cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13419081A JPS5837482A (en) 1981-08-28 1981-08-28 Boiling and cooling device

Publications (1)

Publication Number Publication Date
JPS5837482A true JPS5837482A (en) 1983-03-04

Family

ID=15122533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13419081A Pending JPS5837482A (en) 1981-08-28 1981-08-28 Boiling and cooling device

Country Status (1)

Country Link
JP (1) JPS5837482A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674989A1 (en) * 1991-04-02 1992-10-09 Hitachi Ltd COOLING DEVICE FOR A SEMICONDUCTOR ELEMENT

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099273A (en) * 1973-12-28 1975-08-06
JPS5621457B2 (en) * 1977-11-30 1981-05-19
JPS5626958B2 (en) * 1971-08-31 1981-06-22

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626958B2 (en) * 1971-08-31 1981-06-22
JPS5099273A (en) * 1973-12-28 1975-08-06
JPS5621457B2 (en) * 1977-11-30 1981-05-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674989A1 (en) * 1991-04-02 1992-10-09 Hitachi Ltd COOLING DEVICE FOR A SEMICONDUCTOR ELEMENT

Similar Documents

Publication Publication Date Title
US5508884A (en) System for dissipating heat energy generated by an electronic component and sealed enclosure used in a system of this kind
US4012770A (en) Cooling a heat-producing electrical or electronic component
US3852805A (en) Heat-pipe cooled power semiconductor device assembly having integral semiconductor device evaporating surface unit
KR950014046B1 (en) Optimized integral heat pipe and electronic circuit module arrangement
KR100836305B1 (en) Thermoelectric module
US4947648A (en) Thermoelectric refrigeration apparatus
US4145708A (en) Power module with isolated substrates cooled by integral heat-energy-removal means
US3225549A (en) Thermoelectric cooling device
JP3826667B2 (en) Double-sided cooling type semiconductor card module and refrigerant indirect cooling type semiconductor device using the same
JPH0621289A (en) Cooler for semiconductor
US3852803A (en) Heat sink cooled power semiconductor device assembly having liquid metal interface
US3826957A (en) Double-sided heat-pipe cooled power semiconductor device assembly using compression rods
US7584622B2 (en) Localized refrigerator apparatus for a thermal management device
US20200028321A1 (en) Refrigeration structure of semiconductor laser, and semiconductor laser and stack thereof
CN105703214A (en) Liquid refrigeration semiconductor laser based on insulation heat sink
KR850001098B1 (en) Boiling / cooling system
CN205724361U (en) A kind of based on heat sink liquid refrigeration semiconductor laser and the folded battle array of insulating
JPS5896992A (en) Circuit substrate with heat pipe structure
JPS5837482A (en) Boiling and cooling device
CN111670505A (en) Thermoelectric module for generating electricity and corresponding production method
JPS61279157A (en) Cooling apparatus for semiconductor device
JPH0714029B2 (en) Power semiconductor device
JPH0364950A (en) Electrically insulated heat pipe
CN218917903U (en) Efficient refrigeration camera dispels heat
JPH04196154A (en) Semiconductor cooling device