JPS5837372B2 - Copper alloy for sliding current collector - Google Patents

Copper alloy for sliding current collector

Info

Publication number
JPS5837372B2
JPS5837372B2 JP4585880A JP4585880A JPS5837372B2 JP S5837372 B2 JPS5837372 B2 JP S5837372B2 JP 4585880 A JP4585880 A JP 4585880A JP 4585880 A JP4585880 A JP 4585880A JP S5837372 B2 JPS5837372 B2 JP S5837372B2
Authority
JP
Japan
Prior art keywords
weight
current collector
wear
alloys
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4585880A
Other languages
Japanese (ja)
Other versions
JPS56142839A (en
Inventor
勝博 小室
真人 大沢
浩 添野
史郎 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP4585880A priority Critical patent/JPS5837372B2/en
Publication of JPS56142839A publication Critical patent/JPS56142839A/en
Publication of JPS5837372B2 publication Critical patent/JPS5837372B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は集電子用鋳造合金に係り、特に比較的容量の大
きな電力条件下でかつ作動時に入力端子との間に摺動が
発生するような条件で使用される集電子に好適な鋳造銅
合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cast alloy for a current collector, and particularly for a current collector used under conditions of relatively large power and where sliding occurs between the input terminal and the input terminal during operation. This invention relates to cast copper alloys suitable for electronic applications.

上記のような条件下で使用される集電子には電動車又は
走行クレーンの集電子などを好適な例として挙げること
ができる。
Suitable examples of the current collector used under the above conditions include a current collector for an electric vehicle or a traveling crane.

これらの集電子に適用される材料には種々のものがあり
、大別すれば導電性を特に重視したものと、耐摩耗性を
特に重視したもの、さらには導電性と耐摩耗性の二つを
兼備せしめたもσい三つが挙げられる。
There are various materials that can be applied to these current collectors, and they can be roughly divided into those that place particular emphasis on conductivity, those that place particular emphasis on wear resistance, and those that place particular emphasis on conductivity and wear resistance. There are three important points that can be mentioned.

導電性重視のものとしては、Cu,kt,Ag系の材料
があり、耐摩耗性重視のものにはFe合金ならびに非金
属材料として炭素質のものがある。
Materials with emphasis on conductivity include Cu, Kt, and Ag-based materials, and materials with emphasis on wear resistance include Fe alloys and carbonaceous materials as non-metallic materials.

導電性と耐摩耗性を同時に満足することを狙いとしたも
のには、CuならびにA7合金があり、特にこれらの粉
体に黒鉛粒子とその他耐アーク性、耐摩耗性向上を狙い
とした粉体又は粒体物質を適宜混合した焼結合金も提供
されている。
Examples of powders that aim to satisfy both electrical conductivity and wear resistance are Cu and A7 alloys, and these powders are especially supplemented with graphite particles and other powders that aim to improve arc resistance and wear resistance. Alternatively, sintered alloys in which granular materials are appropriately mixed are also provided.

特に耐アーク性の見地から低融点金属元素又は基材中に
これらの低融点金属を添加した合金、あるいは蒸気モの
高い元素又は基材中にこれらの蒸気圧の高い元素を添加
した合金も採用されている。
In particular, from the viewpoint of arc resistance, low-melting metal elements or alloys in which these low-melting point metals are added to the base material, or elements with high vapor pressure or alloys in which these high vapor pressure elements are added to the base material are also used. has been done.

耐摩耗性向上については、すでに挙げた焼結合金での黒
鉛粒子の混合はその代表的なもので、黒鉛の固体潤滑材
としての作用を活用したものである。
A typical example of improving wear resistance is the addition of graphite particles in the sintered alloy mentioned above, which takes advantage of graphite's ability to act as a solid lubricant.

一方、集電子材としてCu及びCu合金は導電性におい
て望ましく、機械的性質に好ましい特徴を有すると同時
に経済性にもすぐれているため最も費用されるものであ
るか、入力端子側材料としてもCuは屡々採用されるた
め摺動形集電の場合は同種金属摩擦という摩耗に関して
は最も苛酷な条件となる。
On the other hand, as current collector materials, Cu and Cu alloys are desirable in terms of electrical conductivity, have favorable characteristics in mechanical properties, and at the same time are excellent in economic efficiency, so they are the most expensive ones, and Cu is also used as input terminal side materials. Since sliding type current collectors are often used, the most severe condition regarding wear is friction between similar metals.

こうした場合の対策としては基材中にPbを添加し、P
bがCuに対して殆んど溶解度を持たぬことを利用して
基材基地中にPb粒子を析出分布させたり、あるいは焼
結合金ではPb粒子を混合焼結したりしている。
As a countermeasure for such cases, Pb is added to the base material, and Pb is added to the base material.
Taking advantage of the fact that b has almost no solubility in Cu, Pb particles are precipitated and distributed in the base material, or in the case of sintered alloys, Pb particles are mixed and sintered.

このような種々な工夫がなされており、中でも焼結金属
では金属元素に留まらず、各種化合物粒子の混合なども
比較的容易であり、焼結後液状物質を含浸させることも
可能であることから種々の特徴ある材料が提供されてい
る。
These various ideas have been made, and among them, sintered metals are relatively easy to mix with not only metal elements but also various compound particles, and it is also possible to impregnate liquid substances after sintering. A variety of distinctive materials are available.

しかしながら、導電性、耐摩耗性、耐アーク性へ云った
すべての要求を満足すると云えるものはなく、焼結材料
にしても適用条件によっては機械的性質の不足が難点と
なり、経済性などの問題もある。
However, there is no material that can satisfy all requirements such as conductivity, wear resistance, and arc resistance, and even sintered materials may suffer from insufficient mechanical properties depending on the application conditions, making it difficult to achieve economic efficiency. There are also problems.

本発明の目的は以上に述べたような従来材の欠点を補な
い、導電性、耐摩耗性、耐アーク性の三つを満足すると
同時に機械的性質にもすぐれ、需要量やサイズ、形状の
いかんに拘らず安価に供給することにある。
The purpose of the present invention is to compensate for the drawbacks of conventional materials as described above, to satisfy the three requirements of electrical conductivity, wear resistance, and arc resistance, as well as to have excellent mechanical properties. The goal is to supply it at a low price, no matter what.

特に本発明での特徴は耐摩耗性と機械的性質の充実をは
かったところにある。
In particular, the present invention is characterized by its enhanced wear resistance and mechanical properties.

すでに述べた通り、摺動集電材に課せられる摩耗条件に
は同種金属摩擦が挙げられ、この時には一般に凝着摩耗
として知られる異常摩耗を生じる。
As already mentioned, the wear conditions imposed on sliding current collectors include like-metal friction, which causes abnormal wear generally known as adhesive wear.

この対策としてはCu系集電材においては基材にpb添
加をなし、Cuに対してpbの溶解度が殆んどないこと
を利用してCu基地にpbを粒状析出させる方法が採用
される。
As a countermeasure against this problem, in the case of Cu-based current collectors, a method is adopted in which PB is added to the base material, and PB is precipitated in granular form on the Cu base by taking advantage of the fact that PB has almost no solubility in Cu.

しかしながら、こうした方法で析出させられたPb粒子
は時としてかなり粗大化したり、基地中分布において均
一性を欠くことがあり、これがまた耐摩耗性の不安定に
つながる。
However, the Pb particles precipitated in this manner sometimes become quite coarse and lack uniformity in distribution in the matrix, which also leads to unstable wear resistance.

本発明では同種金属摩耗での凝着摩耗を防止する手段と
して、Pbを利用することは上記問題からしてとりあげ
ず、新たにBiを利用することを着想した。
In the present invention, the use of Pb was not considered as a means for preventing adhesive wear due to wear of similar metals due to the above-mentioned problems, but the idea was to use Bi.

こ\でBi利用を考えた理由の第一は、BiはPbと物
理的性質において近似するところが多いことであるが、
さらにその析出形態をより微細かつ均一になし得る手段
を見出したからでもある。
The first reason why we considered using Bi here is that Bi has many similar physical properties to Pb.
Furthermore, we have found a means to make the precipitation form finer and more uniform.

ここで、Cuに対するBi添加の影響は古くから研究さ
れたものがあるがBiの存在はCu及びCu合金を脆化
するにつき0.02重量%以下の含有量であることが必
要といわれている。
Here, the effect of Bi addition on Cu has been studied for a long time, but it is said that the presence of Bi needs to be at a content of 0.02% by weight or less in order to embrittle Cu and Cu alloys. .

本発明においては、凝着摩耗抑制の見地からBiを積極
的に添加するが、その量は上記規制値以上であってなお
材料脆化の防止がはかられている。
In the present invention, Bi is actively added from the viewpoint of suppressing adhesive wear, but the amount is greater than the above-mentioned regulation value to prevent material embrittlement.

そのための配慮としてBiと同時にSnを同時添加する
ことにある。
A consideration for this is to add Sn at the same time as Bi.

Cu及びCu合金に対するSnの影響もすでに知られた
ところが多く、硬度や強度を高めるとか耐食性向上効果
などが公知である。
The influence of Sn on Cu and Cu alloys is already known in many places, and its effects such as increasing hardness and strength and improving corrosion resistance are well known.

青銅の特徴はとりもなさずCu −Sn合金の特徴と云
ってさしつかえない。
The characteristics of bronze can be said to be the characteristics of Cu-Sn alloy.

一般に青銅と呼称されるCu合金ではSn含有量は2重
量7oから11重量%にまでにわたる。
In Cu alloys, commonly referred to as bronze, the Sn content ranges from 2% by weight to 11% by weight.

一方、Cuに対するSnの溶解度はかなりあり、平衡状
態では最大15重量渉にも達する。
On the other hand, the solubility of Sn in Cu is quite high, reaching a maximum of 15% by weight in an equilibrium state.

しかしながら、普通の金属凝固では非平衡凝固の形態を
示し、Snは一次晶間隙に濃縮していわゆる樹枝間隙に
偏析する。
However, ordinary metal solidification shows a non-equilibrium solidification mode, in which Sn is concentrated in the primary crystal pores and segregated in so-called dendritic pores.

本発明はこの非平衡凝固なるがゆえのSnの微少部偏析
を積極的に利用するものでもある。
The present invention also actively utilizes the minute segregation of Sn due to non-equilibrium solidification.

すなわち、Cuに対してPbが殆んど溶解度を有しない
のと同様に、BiのCuに対する溶解度もまたすこぶる
小さく、0.5原子%以下と云われている。
That is, just as Pb has almost no solubility in Cu, the solubility of Bi in Cu is also extremely small, and is said to be 0.5 atomic % or less.

しかし、SnとBiでは共晶合金をつくり、Snに対す
るBiの溶解度はかなり太きい。
However, Sn and Bi form a eutectic alloy, and the solubility of Bi in Sn is quite high.

すなわち、Cu及びCu合金中にSnとBiを適量添加
すればSnの微少偏析部にBiをSnとの化合物の形で
析出させることができ、Snの偏析部は樹枝間隙である
がために微細分商であり、従ってBi −Sn化合物の
分而も微細且つ均一ならしめることが可能となる。
In other words, if appropriate amounts of Sn and Bi are added to Cu and Cu alloys, Bi can be precipitated in the form of a compound with Sn in the minute segregated areas of Sn, and since the areas where Sn segregated are interdendritic spaces, they are fine. Therefore, it is possible to make the fraction of the Bi-Sn compound fine and uniform.

また、BiはすべてSnとの化合物の形で粒状に析出し
、粒界濃縮の形態をとらぬので材料の脆化も生じ難い。
In addition, all Bi is precipitated in the form of particles in the form of a compound with Sn and does not take the form of grain boundary concentration, so that embrittlement of the material is less likely to occur.

Bi,SnともCu及びCu合金の導電性を低下させる
ところは少ないので、Cu−Sn化合物の存在が集電材
としての導電性をそこなうことも少ない。
Since both Bi and Sn have little effect on the conductivity of Cu and Cu alloys, the presence of the Cu-Sn compound rarely impairs the conductivity as a current collector.

また、Snは蒸気圧が比較的低い元素なので、Bi−S
n化合物の存在が集電材の耐アーク性をそこなうことも
ない。
In addition, since Sn is an element with a relatively low vapor pressure, Bi-S
The presence of the n-compound does not impair the arc resistance of the current collector.

本発明における以上の特徴を発揮せしむるに必要なSn
,Bi量は次の通りである。
Sn necessary to exhibit the above features of the present invention
, Bi amounts are as follows.

すなわち、Snは2〜20重量%、Biは0.5 〜1
0重量%とする。
That is, Sn is 2 to 20% by weight and Bi is 0.5 to 1% by weight.
0% by weight.

ここでBi及びSnのそれぞれの含有量を規制する理由
は次の通りである。
The reason for regulating the respective contents of Bi and Sn is as follows.

まず、Snの含有量が、2重量%未満ではBiとの化合
物を形或するに足る程度の微少偏析を生じ難く、20重
量%を越えると合金基地強さの急激を低下を生じ機械的
性質としての不足を招くからである。
First, if the Sn content is less than 2% by weight, it is difficult to cause micro-segregation sufficient to form a compound with Bi, and if it exceeds 20% by weight, the strength of the alloy matrix decreases rapidly and the mechanical properties This is because it will lead to a lack of quality.

又Biの含有量が、0.5重量%未満では耐摩耗性を保
証するに足るだけのBi化合物を生ぜず、10重量%を
越えるとSnとのバランスにおいて耐摩耗性の向上はな
されないからである。
Furthermore, if the Bi content is less than 0.5% by weight, Bi compounds sufficient to guarantee wear resistance will not be produced, and if it exceeds 10% by weight, the wear resistance will not be improved in balance with Sn. It is.

Sn含有量がBi含有量の少なくとも1.0倍以上であ
ることを指定する理由は、Biは純粋な形でなく、あく
までもBi −Sn化合物の形で析出させることを目的
とするからである。
The reason why the Sn content is specified to be at least 1.0 times the Bi content is that Bi is intended to be precipitated not in a pure form but in the form of a Bi-Sn compound.

以上の説明において、本発明における集電子材?凝固偏
析を積極的に利用したものであることを述べたが、凝固
偏析をオリ用する上で当該材料は鋳造のまXで用いるこ
とができることは云うまでもない。
In the above explanation, what is the current collector material in the present invention? Although it has been described that solidification segregation is actively used, it goes without saying that the material can be used in X even for casting, in which solidification segregation is used.

すなわち、提供すべき集電子は鋳造によって得られるた
め、焼結合金の如くサイズや形状で規制を受けるところ
はなく、安価に提供することができる。
That is, since the current collector to be provided is obtained by casting, it is not subject to restrictions on size or shape unlike sintered alloys, and can be provided at low cost.

上記Sn及びBiを含む銅合金に100メッシュ以下の
炭素粒子を黒鉛又は黒鉛と無定形炭素の混合形態で0.
5〜10重量%分散含有させることにより凝着摩耗に対
する抵抗性とは別に固体潤滑剤としての炭素の作用によ
る耐摩耗性を向上させるものである。
Carbon particles of 100 mesh or less are added to the copper alloy containing Sn and Bi in the form of graphite or a mixture of graphite and amorphous carbon.
By dispersing and containing 5 to 10% by weight, the wear resistance due to the action of carbon as a solid lubricant is improved in addition to the resistance to adhesive wear.

炭素粒子は、その大きさが100メッシュを越えると合
金溶湯の流れを阻害して好ましくない。
If the size of the carbon particles exceeds 100 mesh, the flow of the molten alloy will be inhibited, which is not preferable.

又、分散量が0.5重量70未満では耐摩耗性に寄与せ
ず、10重量%を越えると導電性が低下する。
Further, if the dispersion amount is less than 0.5% by weight, it does not contribute to wear resistance, and if it exceeds 10% by weight, the conductivity decreases.

以下本発明の実施例を説明する。Examples of the present invention will be described below.

実施例 第1図には、本発明による集電子材におけるBi −S
n化合物の析出状況を示す一例として、Bi 3重量%
、Sn4重量添加し、さらに炭素粒子トして100メッ
シュ以下の黒鉛を6重量%分散含有させた場合のものを
示した。
Embodiment FIG. 1 shows Bi-S in the current collector material according to the present invention.
As an example showing the precipitation situation of the n compound, Bi 3% by weight
, 4 weights of Sn were added, and carbon particles were added to disperse graphite of 100 mesh or less at 6% by weight.

図中、黒く片状に見えるのが同時に分散させた黒鉛片で
あり、その他点状に分布するのがBi −Sn化合物で
ある。
In the figure, the black pieces that look like flakes are the graphite pieces that were dispersed at the same time, and the other things that are distributed dotted are the Bi-Sn compounds.

Bi −Sn化合物は樹枝間隙に微細かつ均一に分布し
ている。
The Bi-Sn compound is finely and uniformly distributed in the dendritic spaces.

第2図には本発明による集電子材の耐久性を示すもので
、この場合入力端子の形態は硬銅トロリー線で集電子と
の接触圧は5kg、集電電流は700A、摺動速度は6
0 icm/ hである。
Figure 2 shows the durability of the current collector material according to the present invention. In this case, the input terminal is a hard copper trolley wire, the contact pressure with the current collector is 5 kg, the current is 700 A, and the sliding speed is 6
0 icm/h.

なお、図中Aと示したのは従来材としての鉄硫化物5重
量%、黒鉛1重量%、を含む銅基材の焼結合金Bとして
示したのは本発明と組或的には共通しながらなお凝着摩
耗の防止をPb 3重量%添加ではかったもの、Cは第
1図に示したのと同様の組織を有する本発明による集電
子材である。
In addition, the symbol A in the figure is a conventional material, and the symbol B is a sintered alloy with a copper base material containing 5% by weight of iron sulfide and 1% by weight of graphite, which is similar to the present invention. However, adhesive wear could still be prevented by adding 3% by weight of Pb.C is a current collector material according to the present invention having a structure similar to that shown in FIG.

図上方、累積摩耗量曲線からして本発明によるところが
最も損耗量の少ないことが理解されようが、図下方の比
摩耗量曲線からは耐凝着摩耗性にすぐれていることが説
明できる。
It can be seen from the cumulative wear loss curve in the upper part of the figure that the present invention has the least amount of wear, but from the specific wear loss curve in the lower part of the figure, it can be explained that it has excellent adhesive wear resistance.

すなわち、曲線Aではしゆう動距離約150軸から、曲
線Bでは約400/aLゆう動以上で急激に比摩耗量が
増加するのはそれぞれ凝着摩耗の発生を示す。
That is, in curve A, the sudden increase in the specific wear amount from about 150 axes of shearing distance to about 400/aL shearing distance or more in curve B indicates the occurrence of adhesive wear.

曲線Cでは1000krnしゆう動にいたるもなお比摩
耗量の増加を示さず、本発明においてBi −Sn化合
物を基材中に析出せしめたことが従来のPb粒子の析出
効果以上に耐凝着摩耗性の確保に有効であることが示さ
れている。
Curve C shows no increase in the specific wear amount even after 1000 krn of movement, and the fact that the Bi-Sn compound is precipitated into the base material in the present invention improves adhesive wear resistance more than the conventional precipitation effect of Pb particles. It has been shown to be effective in ensuring sexual health.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による合金組織の顕微鏡写真(拡大倍率
100倍)であり、第2図は本発明による集電子材の摺
動拒離と摩耗量との関係を示した線図である。
FIG. 1 is a micrograph (magnification: 100 times) of the alloy structure according to the present invention, and FIG. 2 is a diagram showing the relationship between sliding rejection and wear amount of the current collector material according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 合金組威としてSn2〜20重量%, Bi0.5
〜10重量%を含有し、Sn含有量がBi@有量の少な
くとも1.0倍以上であるように配分して基地中にSn
とBiの化合物粒子を均一に析出分布させ、さらに該合
金に100メッシュ以下の炭素粒子を黒鉛又は黒鉛と無
定形炭素との混合形態で0.5〜10重量渉分散含有さ
せてなる摺動集電用銅合金。
1 Alloy composition: Sn2-20% by weight, Bi0.5
~10% by weight, and distributed so that the Sn content is at least 1.0 times the amount of Bi@
and Bi compound particles are uniformly precipitated and distributed, and the alloy further contains carbon particles of 100 mesh or less in the form of graphite or a mixture of graphite and amorphous carbon dispersed by weight of 0.5 to 10%. Copper alloy for electrical use.
JP4585880A 1980-04-07 1980-04-07 Copper alloy for sliding current collector Expired JPS5837372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4585880A JPS5837372B2 (en) 1980-04-07 1980-04-07 Copper alloy for sliding current collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4585880A JPS5837372B2 (en) 1980-04-07 1980-04-07 Copper alloy for sliding current collector

Publications (2)

Publication Number Publication Date
JPS56142839A JPS56142839A (en) 1981-11-07
JPS5837372B2 true JPS5837372B2 (en) 1983-08-16

Family

ID=12730900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4585880A Expired JPS5837372B2 (en) 1980-04-07 1980-04-07 Copper alloy for sliding current collector

Country Status (1)

Country Link
JP (1) JPS5837372B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4551395A (en) * 1984-09-07 1985-11-05 D.A.B. Industries, Inc. Bearing materials
WO1991014012A1 (en) * 1990-03-06 1991-09-19 United States Bronze Powders Incorporated Improvements in and relating to powder metallurgy compositions
JP4827680B2 (en) 2006-10-06 2011-11-30 大豊工業株式会社 Sliding member
CN102918286B (en) 2010-03-09 2016-04-06 大丰工业株式会社 Slide member

Also Published As

Publication number Publication date
JPS56142839A (en) 1981-11-07

Similar Documents

Publication Publication Date Title
AU599332B2 (en) Grain refining of copper-based alloys
CN101960029B (en) Plain bearing alloy consisting of a tin-based white metal
US4383970A (en) Process for preparation of graphite-containing aluminum alloys
KR102309320B1 (en) Copper alloy, use of a copper alloy, bearing having a copper alloy, and method for producing a bearing composed of a copper alloy
JP4476634B2 (en) Pb-free copper alloy sliding material
US4194910A (en) Sintered P/M products containing pre-alloyed titanium carbide additives
JP5289065B2 (en) Pb-free copper-based sintered sliding material
US3619170A (en) Copper infiltrating composition for porous ferruginous parts
JP2918292B2 (en) Sliding material
US4084669A (en) Composite collector
KR0149739B1 (en) Sintered contact component
JPH0120215B2 (en)
WO2020136935A1 (en) Bronze alloy, and sliding member using said bronze alloy
US3983615A (en) Sliding seal member for an internal combustion engine
JP4170195B2 (en) Cu-based alloy for sliding members
AU1844599A (en) Aluminium-bismuth bearing alloy and methods for its continuous casting
JPS5837372B2 (en) Copper alloy for sliding current collector
US3385696A (en) Process for producing nickel-magnesium product by powder metallurgy
JPH0995759A (en) Oil-impregnated sintered bearing and its production
JPH07166278A (en) Coppery sliding material and production thereof
JP6363931B2 (en) Copper alloy for slide bearing
EP3985140A1 (en) Kiniz alloy having homogeneous microstructure
US3720507A (en) Copper-lead alloy
JPS626737B2 (en)
JPS6316455B2 (en)