JPS5835371B2 - semiconductor storage device - Google Patents

semiconductor storage device

Info

Publication number
JPS5835371B2
JPS5835371B2 JP55004883A JP488380A JPS5835371B2 JP S5835371 B2 JPS5835371 B2 JP S5835371B2 JP 55004883 A JP55004883 A JP 55004883A JP 488380 A JP488380 A JP 488380A JP S5835371 B2 JPS5835371 B2 JP S5835371B2
Authority
JP
Japan
Prior art keywords
transistor
column
region
mos
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55004883A
Other languages
Japanese (ja)
Other versions
JPS56101770A (en
Inventor
英輔 一戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55004883A priority Critical patent/JPS5835371B2/en
Publication of JPS56101770A publication Critical patent/JPS56101770A/en
Publication of JPS5835371B2 publication Critical patent/JPS5835371B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0711Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with bipolar transistors and diodes, or capacitors, or resistors
    • H01L27/0716Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with bipolar transistors and diodes, or capacitors, or resistors in combination with vertical bipolar transistors and diodes, or capacitors, or resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 本発明は半導体記憶装置とくに大容量のROM装置等に
関し、その内部寄生容量によって制限されている動作速
度を改善し、更に高速動作のものを得ることを目的とす
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor memory devices, particularly large-capacity ROM devices, etc., and an object thereof is to improve the operating speed, which is limited by the internal parasitic capacitance, and to obtain an even faster operating device.

従来ROM装置は、記憶素子としてダイオードを用いた
ものやその他種々のものがあるが、近年高集積化が可能
なMOS)ランジスタを用いたものが多く用いられてい
る。
Conventional ROM devices include those using diodes as storage elements and various other types, but in recent years, ROM devices using MOS (MOS) transistors, which can be highly integrated, have been increasingly used.

記憶素子の配列方法として、第1図に示すようにMOS
)ランジスタQのソースが接地され、ゲートがロウ線を
介してロウアドレス回路に接続され、ドレインがコラム
線にコラムアドレスおよびセンス回路が接続された方式
が一般に用いられてきた。
As a method of arranging memory elements, as shown in Fig. 1, MOS
) A system has generally been used in which the source of transistor Q is grounded, the gate is connected to a row address circuit via a row line, and the drain is connected to a column line with a column address and sense circuit.

又、第2図に示すように更に高集積化及び低消費電力化
をはかるため、コラム線とセンス線を設け、トランジス
タのソースをコラム線を介してコラムアドレス回路に、
ドレインをセンス線を介してセンス回路に、ゲートをロ
ウ線を介してロウアドレス回路に接続し、選択すべきコ
ラム線のみを接地する方式も用いられている。
In addition, as shown in Figure 2, in order to achieve higher integration and lower power consumption, column lines and sense lines are provided, and the source of the transistor is connected to the column address circuit via the column line.
A method is also used in which the drain is connected to a sense circuit via a sense line, the gate is connected to a row address circuit via a row line, and only the column line to be selected is grounded.

又、スタティックRAM等では、例えば第1図の記憶用
MOSトランジスタの所に7リツプフロツプ素子が用い
られ、原理的には記憶用素子が異なるのみで、同様の構
成になっている。
In addition, in a static RAM or the like, for example, seven lip-flop elements are used in place of the storage MOS transistor shown in FIG. 1, and the structure is basically the same except that the storage element is different.

ROM装置のセンス回路の1例を第3図に示す。An example of a sense circuit of a ROM device is shown in FIG.

この例はE/D型n−チャネルMO8)ランジスタによ
る回路で、非同期動作である。
This example is a circuit using an E/D type n-channel MO8 transistor and operates asynchronously.

記憶素子をM3として、ロウ線R3によってM3が選択
されているとする。
Assume that the memory element is M3 and that M3 is selected by row line R3.

コラム線S3はトランジスタQ31を通じて充電されて
おり、選択されたM3によりコラム線S3を〃O〃レベ
ルにスル。
Column line S3 is charged through transistor Q31, and selected M3 pulls column line S3 to 〃O〃 level.

Q3□・O33はインバータ回路であり、コラムS3の
レベルが〃0〃、〃I〃に対応して出力O8を得る。
Q3□・O33 is an inverter circuit, which obtains an output O8 in response to the level of column S3 being "0" or "I".

又、ロウ線R8′のごとく選択された場所にトランジス
タM3がない場合は(M、 = tt Q ttと称す
る)S。
Further, if the transistor M3 is not located at the selected location such as the row line R8', then the signal is S (referred to as M, = tt Q tt).

は放電されず、したがって、O8は〃O〃となり、M、
がある場合(M=〃■〃と称する)、03は1/ ■/
/となる。
is not discharged, therefore O8 becomes 〃O〃, and M,
If there is (referred to as M=〃■〃), 03 is 1/■/
/becomes.

第4図に第1図の例のメモリ用トランジスタの模式的断
面図を示す。
FIG. 4 shows a schematic cross-sectional view of the memory transistor of the example shown in FIG.

h工学導体基板、21.23は第1図のトランジスタM
3のソースで、22はドレイン、41.42はゲートで
ロウ線に相当する。
h Engineering conductor substrate, 21.23 is the transistor M in Fig. 1
3 is the source, 22 is the drain, and 41.42 is the gate, which corresponds to the row line.

31は薄いゲート絶縁膜、32は厚いフィールド絶縁膜
である。
31 is a thin gate insulating film, and 32 is a thick field insulating film.

5は絶縁膜、6はコラム線となる金属配線である。5 is an insulating film, and 6 is a metal wiring serving as a column line.

この図の例では21.23は接地電位に接続されており
、又、21.23゜41.42は図面と垂直方向すなわ
ちロウ方向に延長されている。
In the example shown in this figure, 21.23 is connected to the ground potential, and 21.23° and 41.42 extend in the direction perpendicular to the drawing, that is, in the row direction.

6はコラム方向に延長されていて、他のトランジスタの
ドレインに接続される。
6 extends in the column direction and is connected to the drains of other transistors.

メモリの情報は、ゲート絶縁膜の厚さによって定められ
、すなわち、薄いゲート絶縁膜31の場合にはトランジ
スタM3がある状態に対応し、フィールド絶縁膜32の
場合は記憶素子となるトランジスタがR8′のロウ線の
ごとくない状態M3=〃O〃に対応する。
The memory information is determined by the thickness of the gate insulating film, that is, in the case of the thin gate insulating film 31, the transistor M3 corresponds to the state, and in the case of the field insulating film 32, the transistor serving as the storage element is R8'. This corresponds to the state M3=〃O〃 which is not like a row line.

ところで、大容量のROM、例えば64にピッ)ROM
では2560つ×256コラムの構成とすれば、コラム
方向、この場合コラム線6には256ケの記憶用トラン
ジスタが接続され得るようになるため、大きな寄生容量
ヲ持つととKj、Cる。
By the way, large capacity ROM (for example 64) ROM
If the configuration is 2560 x 256 columns, 256 storage transistors can be connected in the column direction, in this case to the column line 6, and therefore have a large parasitic capacitance Kj,C.

この寄生容量は例えば、第3図のC5で示されているが
、通常10PF程度もあり、コラム線の応答速度を遅く
する。
This parasitic capacitance, shown for example by C5 in FIG. 3, is usually about 10 PF and slows down the response speed of the column line.

又、メモリ用トランジスタM3は集積度の関係で小さな
サイズで構成されているため、大容量のメモリでも同じ
寸法が用いられており、メモリの大容量化によって寄生
容量が増加するにもかかわらず、トランジスタによって
の放電能力は増加しない。
Furthermore, since the memory transistor M3 is configured with a small size due to the degree of integration, the same size is used even in large capacity memories, and even though parasitic capacitance increases as memory capacity increases, The discharge capacity by the transistor is not increased.

本発明はこのような検討に鑑み、記憶用トランジスタの
放電能力を、集積度を保ちつつバイポーラトランジスタ
を付加して高めることを特徴とするものである。
In view of such considerations, the present invention is characterized by increasing the discharge capacity of a memory transistor by adding a bipolar transistor while maintaining the degree of integration.

第5図a −eに、本発明の1実施例のROMの要部の
製造工程を説明する断面図を示す。
5a to 5e are cross-sectional views illustrating the manufacturing process of essential parts of a ROM according to an embodiment of the present invention.

第5図aで101はシリコン基板で、例えばP型15〜
25Ω備のものである。
In FIG. 5a, 101 is a silicon substrate, for example P type 15~
It is equipped with 25Ω.

表面に薄いシリコン酸化膜102とシリコンナイトライ
ド膜103の積層膜を設け、フィールド酸化膜を形成す
る部分にフォトエッチ工程で窓あげする。
A laminated film of a thin silicon oxide film 102 and a silicon nitride film 103 is provided on the surface, and a window is formed in a portion where a field oxide film is to be formed by a photoetch process.

次いで、窓あげした部分のシリコンを一部エッチングし
、この窓を通してチャネルストッパとしてのボロンイオ
ンを注入する。
Next, a portion of the silicon in the raised window is etched, and boron ions as a channel stopper are implanted through the window.

その後選択状酸化を行ない、フィールド酸化膜132を
成長させる。
Thereafter, selective oxidation is performed to grow a field oxide film 132.

シリコンナイトライド膜103及びシリコン酸化膜10
2を除去した後、ゲート酸化膜131を形成後全面にポ
リシリコン膜を形成し、フォトエッチ工程によりゲート
141,142を形成する(第5図b)。
Silicon nitride film 103 and silicon oxide film 10
2, a gate oxide film 131 is formed, a polysilicon film is formed on the entire surface, and gates 141 and 142 are formed by a photo-etching process (FIG. 5b).

次いで、ゲート141,142をマスクとして、ゲート
酸化膜を通してイオン注入によりソース・ドレイン領域
122及びソース領域121,123を形成する。
Next, using the gates 141 and 142 as masks, ions are implanted through the gate oxide film to form source/drain regions 122 and source regions 121 and 123.

123は別のトランジスタ用である。次に全面にCVD
酸化膜150を成長させ、フォトエッチ工程によりドレ
イン領域122の上に窓151を形成し、窓151より
ボロンを拡散してP型エミッタ110を形成する(第5
図C)。
123 is for another transistor. Next, CVD on the entire surface
An oxide film 150 is grown, a window 151 is formed on the drain region 122 by a photo-etching process, and boron is diffused through the window 151 to form a P-type emitter 110 (fifth
Figure C).

これらのドレイン及びベースとなる領域122の拡散深
さと、エミッタとなる領域110の拡散深さは、最終的
に適当なバイポーラトランジスタ4RIEが得られるよ
うに調整する。
The diffusion depths of the regions 122 that will become the drain and base and the diffusion depths of the region 110 that will become the emitter are adjusted so that a suitable bipolar transistor 4RIE is finally obtained.

次に更にCVD酸化膜153を成長させ、エミッタへの
窓152を形成しく第5図d)、アルミニウムを全面に
蒸着し、フォトエッチ工程によりアルミ配線パターン1
60を形成する(第5図e)、。
Next, a CVD oxide film 153 is further grown to form a window 152 to the emitter (FIG. 5d), aluminum is deposited on the entire surface, and an aluminum wiring pattern 1 is formed by a photoetch process.
60 (Fig. 5e).

MOS)ランジスタはメモリ用として必要なときは、ソ
ース121、ドレイン1220間に薄いゲート酸化膜1
31を介してゲート141を設けることにより作成され
るが、トランジスタが不必要なときは、ソース123、
ドレイン122間に厚いフィールド酸化膜132を介し
てゲート142を設げるので、この部分はトランジスタ
として動作しない。
When a transistor (MOS) transistor is required for memory use, a thin gate oxide film 1 is placed between the source 121 and drain 1220.
31, but when the transistor is not needed, the source 123,
Since the gate 142 is provided between the drains 122 via the thick field oxide film 132, this portion does not operate as a transistor.

また本発明において、ドレイン122はバイポーラトラ
ンジスタのベースとなるので、比較的低い不純物濃度の
方が都合が良いが、その場合、ソース121,123を
同じ条件で作成するとその直列抵抗弁が重視できない場
合がある。
In addition, in the present invention, since the drain 122 becomes the base of the bipolar transistor, it is convenient to have a relatively low impurity concentration, but in that case, if the sources 121 and 123 are created under the same conditions, the series resistance valve may not be important. There is.

このようなときは、ソース121,123に別の工程で
高濃度の不純物を拡散させて、ソースの直列抵抗を下げ
る方法も適用できる。
In such a case, a method can also be applied in which a high concentration impurity is diffused into the sources 121 and 123 in a separate process to lower the series resistance of the sources.

第6図に本発明の詳細な説明する等価回路図を示す。FIG. 6 shows an equivalent circuit diagram explaining the present invention in detail.

図中に示した数字(101〜142)は第5図eの記号
に対応させである。
The numbers (101 to 142) shown in the figure correspond to the symbols in FIG. 5e.

今メモリ素子M6がある場合について説明する。Now, the case where there is memory element M6 will be explained.

今多くのMOS)ランジスタのゲートに共通接続された
所定のコラ線R0が選択されて// (//状態になる
とMOS)ランジスタM6はオン状態となり、Q6のベ
ースはi6 の電流を流す。
Now, a predetermined line R0 commonly connected to the gates of many MOS transistors is selected, and when the // state is reached, MOS transistor M6 is turned on, and the base of Q6 flows a current of i6.

バイポーラトランジスタQ6の電流増巾率をi c、/
ib= hFEとすると、i e= (1+hyP、)
i b となる。
The current amplification rate of bipolar transistor Q6 is i c, /
If ib= hFE, i e= (1+hyP,)
It becomes ib.

今MO8)ランジスタM6がオンになって流し得る電流
ibは、Q6によって増巾されて、寄生容量C6の電荷
をコラム線S6を介してエミッタ電流1e(ibの1+
hFF、倍)によって放電する。
The current ib that can flow when the transistor M6 (MO8) is turned on is amplified by Q6, and the charge of the parasitic capacitance C6 is transferred to the emitter current 1e (1+ of ib) through the column line S6.
hFF, times).

通常バイポーラトランジスタQ6のhFEは30程度の
値が容易に得られる。
Normally, hFE of the bipolar transistor Q6 can easily have a value of about 30.

したがって、メモリ用MOSトランジスタM6 の寸法
を従来と同じものにしたとしても、これらの寄生容量c
6の放電を十分速くすることができる。
Therefore, even if the dimensions of the memory MOS transistor M6 are the same as before, these parasitic capacitances c
6 can be made sufficiently fast.

次にM6カ近い場合ニかで説明する。Next, I will explain the case where M6 is close to 2.

この場合バイポーラトランジスタQ6のベースに’t”
K、P nジャンクションのリーク電流等に相当する電
流が流れるのみであるので、第3図で示した従来例のよ
ウニ、コラム線S6は通常プルアップされているので、
このプルアップの電流値をPnジャンクションのり一タ
電流分より大きくしておけば問題はない。
In this case, 't' at the base of bipolar transistor Q6.
Since only the current corresponding to the leakage current of the K and Pn junctions flows, the column wire S6 is normally pulled up as in the conventional example shown in FIG.
There is no problem if the pull-up current value is made larger than the Pn junction gate current.

なお、第5図eの例では、バイポーラトランジスタQ6
のコレクタに相当する部分は基板101で共通にしであ
るが、これらをPnで分離してコラム信号で選択するよ
うにもできる。
In the example of FIG. 5e, the bipolar transistor Q6
The parts corresponding to the collectors are shared in common on the substrate 101, but they can also be separated by Pn and selected by column signals.

以上述べたように、本発明によれば、従来ROM等のメ
モリの大容量化において、コラム線の寄生容量の増加に
もかかわらず、メモリ間MO8)ランジスタの放電能力
が少なくそのため動作速度が遅くなるといった問題に関
し、コラム線の放電能力をいちじるしく改善し、より高
速度、大容量のメモリを容易に実現できる。
As described above, according to the present invention, when increasing the capacity of conventional memories such as ROM, despite the increase in the parasitic capacitance of column lines, the discharge capacity of MO8) transistors between memories is small, and therefore the operation speed is slow. With regard to this problem, it is possible to significantly improve the discharging capacity of column lines and easily realize higher-speed, larger-capacity memories.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来のROM装置のメモリ素子の配列
を説明する図、第3図は従来のROMにおけるメモリ素
子とセンス回路の動作を説明する等価回路図、第4図は
従来メモリ素子(MOS)ランジスタ)の断面図、第5
図a”−eは本発明の1実施例のメモリ素子製造工程を
説明する断面図、第6図は本発明の詳細な説明する等価
回路図である。 M6・・・・・・MOS)ランジスタ、Q6−・・・・
・バイポーラトランジスタ、S6 ・・・・・・コラム
線、R6・・・・・・ロウ線、101・・・・・・P型
シリコン基板(コレクタ)、110・・・・・・エミッ
タ、121.123・・・・・・ソース、122・・・
・・・ドレイン(ベース)。
Figures 1 and 2 are diagrams explaining the arrangement of memory elements in a conventional ROM device, Figure 3 is an equivalent circuit diagram explaining the operation of the memory element and sense circuit in a conventional ROM, and Figure 4 is a diagram explaining the arrangement of memory elements in a conventional ROM device. Cross-sectional view of element (MOS transistor), No. 5
Figures a"-e are cross-sectional views explaining the manufacturing process of a memory element according to one embodiment of the present invention, and Figure 6 is an equivalent circuit diagram explaining the present invention in detail. M6...MOS) transistor , Q6-...
- Bipolar transistor, S6... Column line, R6... Row line, 101... P-type silicon substrate (collector), 110... Emitter, 121. 123...source, 122...
...Drain (base).

Claims (1)

【特許請求の範囲】 1一方の導電型の第1の領域を有する半導体基板の一主
面上に他方の導電型のMOS)ランジスタを記憶装置の
情報に応じて設けた記憶装置において、前記MO8)ラ
ンジスタのソースを一方の電位に接続する手段と、前記
MO8−・ジスタのドレイン領域内に一方の導電型の
を設け、前記第1の領域、ドレイン領 び
第2の領域にてパン糸−ラトランジスタを形成して成る
ことを特徴 する半導体記憶装置。 2 第1のデ域、ドレイン領域、第2の領域を夫夫コレ
クタ、ベース、エミッタとすることを特徴とする特許請
求の範囲第1項に記載の半導体記憶装置。
[Scope of Claims] 1. A storage device in which a MOS (MOS) transistor of the other conductivity type is provided on one main surface of a semiconductor substrate having a first region of one conductivity type according to information of the storage device, wherein the MO8 ) means for connecting the source of the transistor to one potential;
What is claimed is: 1. A semiconductor memory device characterized in that a breadth-layer transistor is formed in the first region, the drain region, and the second region. 2. The semiconductor memory device according to claim 1, wherein the first region, the drain region, and the second region are used as a collector, a base, and an emitter.
JP55004883A 1980-01-18 1980-01-18 semiconductor storage device Expired JPS5835371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55004883A JPS5835371B2 (en) 1980-01-18 1980-01-18 semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55004883A JPS5835371B2 (en) 1980-01-18 1980-01-18 semiconductor storage device

Publications (2)

Publication Number Publication Date
JPS56101770A JPS56101770A (en) 1981-08-14
JPS5835371B2 true JPS5835371B2 (en) 1983-08-02

Family

ID=11596069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55004883A Expired JPS5835371B2 (en) 1980-01-18 1980-01-18 semiconductor storage device

Country Status (1)

Country Link
JP (1) JPS5835371B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484990A (en) * 1990-07-30 1992-03-18 Miyamoto Kk Housing for machine sewing thread
JPH0521875U (en) * 1991-09-05 1993-03-23 株式会社品田ミシン商会 Sewing thread disorder prevention device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974666A (en) * 1982-10-20 1984-04-27 Ricoh Co Ltd Memory element
US4868628A (en) * 1984-08-22 1989-09-19 Signetics Corporation CMOS RAM with merged bipolar transistor
JPH0831541B2 (en) * 1989-02-16 1996-03-27 株式会社東芝 Semiconductor integrated circuit
US5247200A (en) * 1989-02-16 1993-09-21 Kabushiki Kaisha Toshiba MOSFET input type BiMOS IC device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484990A (en) * 1990-07-30 1992-03-18 Miyamoto Kk Housing for machine sewing thread
JPH0521875U (en) * 1991-09-05 1993-03-23 株式会社品田ミシン商会 Sewing thread disorder prevention device

Also Published As

Publication number Publication date
JPS56101770A (en) 1981-08-14

Similar Documents

Publication Publication Date Title
US4105475A (en) Epitaxial method of fabricating single igfet memory cell with buried storage element
US4675715A (en) Semiconductor integrated circuit vertical geometry impedance element
US4178674A (en) Process for forming a contact region between layers of polysilicon with an integral polysilicon resistor
US4070653A (en) Random access memory cell with ion implanted resistor element
EP0175378A2 (en) Dynamic random access memory (DRAM)
KR0128062B1 (en) Method for producing semiconductor integrated cirucit device
US5187114A (en) Method of making SRAM cell and structure with polycrystalline P-channel load devices
EP0460833B1 (en) Method of fabricating a field effect device with polycrystaline silicon channel
JPS62274773A (en) Semiconductor memory
JPH0264992A (en) High-performance bipolar differential sense amplifier for bicoms sram
US4604641A (en) Semiconductor device and method for manufacturing the same
US4471374A (en) Single polycrystalline silicon memory cell
EP0190070B1 (en) Semiconductor structure
US4878100A (en) Triple-implanted drain in transistor made by oxide sidewall-spacer method
US4364075A (en) CMOS Dynamic RAM cell and method of fabrication
US5945715A (en) Semiconductor memory device having a memory cell region and a peripheral circuit region and method of manufacturing the same
USRE37769E1 (en) Methods for fabricating memory cells and load elements
JPS5835371B2 (en) semiconductor storage device
JPS58220464A (en) Semiconductor memory device
US4910576A (en) Memory cell
US4888628A (en) Dynamic memory in integrated circuit form
JPH05275642A (en) Manufacture of bipolar dynamic ram having vertical structure, and structure of the dynamic ram
JPH08139206A (en) Semiconductor device and manufacture of the same
US5593922A (en) Method for buried contact isolation in SRAM devices
US5027175A (en) Integrated circuit semiconductor device having improved wiring structure