JPS5835242B2 - Method for producing fine particulate metal nickel powder - Google Patents

Method for producing fine particulate metal nickel powder

Info

Publication number
JPS5835242B2
JPS5835242B2 JP52009938A JP993877A JPS5835242B2 JP S5835242 B2 JPS5835242 B2 JP S5835242B2 JP 52009938 A JP52009938 A JP 52009938A JP 993877 A JP993877 A JP 993877A JP S5835242 B2 JPS5835242 B2 JP S5835242B2
Authority
JP
Japan
Prior art keywords
nickel
nickel powder
hydrazine
fine particulate
producing fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52009938A
Other languages
Japanese (ja)
Other versions
JPS5395165A (en
Inventor
裕久 菊山
正 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP52009938A priority Critical patent/JPS5835242B2/en
Publication of JPS5395165A publication Critical patent/JPS5395165A/en
Publication of JPS5835242B2 publication Critical patent/JPS5835242B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は微粒子状の金属ニッケル粉末の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing fine particulate metallic nickel powder.

従来、金属ニッケル粉末を製造する方法としては、■セ
ンド法、■電解、■水素還元、■熱分解など種々の方法
があるが、金属ニッケル粉末を工業的に製造する上で必
要な条件としては、製造が簡単で安全であり、しかも金
属ニッケルの純度が高く、液相反応で生成することがで
き、公害間項を引き起こさないなど種々の条件が要求さ
れる。
Conventionally, there are various methods for producing metallic nickel powder, such as ■ send method, ■ electrolysis, ■ hydrogen reduction, and ■ thermal decomposition, but the conditions necessary for industrially producing metallic nickel powder are as follows. It is simple and safe to manufacture, has high purity metal nickel, can be produced by liquid phase reaction, and does not cause pollution, among other requirements.

上記したような条件を考慮した金属ニッケル粉末の製造
方法としては、ニッケル含有溶液にヒドラジンあるいは
ヒドラジン化合物を添加し、反応終了後の最終pHが7
.0以上となるようにpHを調節し、攪拌しなから10
0’C以上の温度に加熱することによって金属ニッケル
粉末を還元析出させる方法があった。
A method for producing metallic nickel powder that takes into account the above conditions is to add hydrazine or a hydrazine compound to a nickel-containing solution, and adjust the final pH after the reaction to 7.
.. Adjust the pH so that it is 0 or more, and do not stir.
There is a method in which metallic nickel powder is reduced and precipitated by heating to a temperature of 0'C or higher.

しかしながらこの方法によれば、還元反応を100℃以
上で行なわせるため、温度管理上密閉容器を用いなけれ
ばならず、また、混合溶液を高速で攪拌しなければ析出
したニッケル粉末が器壁に付着するという欠点が見られ
た。
However, according to this method, since the reduction reaction is carried out at 100°C or higher, a closed container must be used for temperature control, and if the mixed solution is not stirred at high speed, the precipitated nickel powder will adhere to the vessel wall. There were drawbacks to doing so.

この発明は、このようなヒドラジンあるいは、ヒドラジ
ン化合物を還元剤として使用する金属ニッケル粉末の製
造方法をさらに押し進めたもので、pHの調節が不要で
、100℃以下の温度で加熱しても金属ニッケル粉末が
製造でき、しかも常圧下で反応させることのできる金属
ニッケル粉末の製造方法を提供せんとするものである。
This invention further advances the method for producing metallic nickel powder using hydrazine or a hydrazine compound as a reducing agent, and eliminates the need for pH adjustment and produces metallic nickel powder even when heated at temperatures below 100°C. It is an object of the present invention to provide a method for producing metallic nickel powder that can be produced into powder and can be reacted under normal pressure.

すなわち、この発明の要旨とするところは、塩化ニッケ
ル、炭酸ニッケル、酢酸ニッケルのうちいずれか一種を
含むニッケル含有溶液に、ヒドラジンあるいはヒドラジ
ン化合物を添加、混合して100℃以下で加熱すること
を特徴とするものである。
That is, the gist of this invention is that hydrazine or a hydrazine compound is added to a nickel-containing solution containing any one of nickel chloride, nickel carbonate, and nickel acetate, mixed, and heated at 100°C or less. That is.

ここで、ヒドラジンあるいはヒドラジン化合物としては
、ヒドラジンはもちろん、ヒドラジンヒトラード、硫酸
ヒドラジン、硫酸ヒドラゾニウム、塩化ヒドラゾニウム
などがある。
Here, examples of hydrazine or hydrazine compounds include hydrazine, hydrazine hydride, hydrazine sulfate, hydrazonium sulfate, and hydrazonium chloride.

また、加熱温度は10000以下であるが、特に70〜
96°Cの温度範囲が金属ニッケル粉末を生成させる上
で好ましい。
In addition, the heating temperature is 10,000℃ or less, but especially 70℃~
A temperature range of 96°C is preferred for producing metallic nickel powder.

炭酸ニッケルの場合は室温で攪拌するだけで、かなり金
属ニッケル粉末の生成が見られた。
In the case of nickel carbonate, considerable formation of metallic nickel powder was observed just by stirring at room temperature.

また、反応時間は特に限定されないが、15分間では一
応ニッケル析出は見られるものの、青いニッケルのうわ
ずみ液が残る。
Further, the reaction time is not particularly limited, but after 15 minutes, some nickel precipitation is observed, but a blue nickel liquid remains.

60分間反応させると、はぼ反応は終了しており、金属
ニッケル粉末を生成させるに十分な時間であることが確
認できた。
It was confirmed that the reaction was completed after 60 minutes of reaction, which was sufficient time to generate metallic nickel powder.

ニッケル塩とヒドラジンあるいはヒドラジン化合物の混
合比は、たとえば塩基性炭酸ニッケルとヒドラジンヒト
ラードの場合、炭酸ニッケル1モルに対しヒドラジンヒ
トラードは3〜20モルが適当である。
As for the mixing ratio of nickel salt and hydrazine or hydrazine compound, for example, in the case of basic nickel carbonate and hydrazine hydroxide, the appropriate mixing ratio is 3 to 20 mol of hydrazine hydroxide per 1 mol of nickel carbonate.

3モル未満の場合は反応速度が遅く工業的生産には適さ
ない。
If it is less than 3 moles, the reaction rate is slow and it is not suitable for industrial production.

また、20モルを越えると歩留り、粒径において所期の
効果が得られなかった。
Moreover, when the amount exceeds 20 mol, the desired effects on yield and particle size cannot be obtained.

また、この場合4モルにしたとき金属ニッケルの一次粒
子径は1μ、7モルのときは0.7μ、14モルのとき
は0.3μであった。
In this case, the primary particle diameter of metallic nickel was 1 μ when the amount was 4 mol, 0.7 μ when the amount was 7 mol, and 0.3 μ when the amount was 14 mol.

したがって還元剤量を変化させることにより用途に適し
た粒径を得ることができる。
Therefore, by changing the amount of reducing agent, a particle size suitable for the application can be obtained.

以下にこの発明を実施例に従って詳述する。This invention will be described in detail below according to examples.

実施例 *; 第
1表に示すように、各ニッケル塩を水に溶かし、ヒドラ
ジンあるいはヒドラジン化合物を加えて混合して攪拌し
た。
Example *: As shown in Table 1, each nickel salt was dissolved in water, hydrazine or a hydrazine compound was added, mixed and stirred.

このまま室温で放置しておくと少しづづ金属ニッケル粉
末が析出した。
When left as it was at room temperature, metallic nickel powder gradually precipitated.

徐々に湿度を上げると青緑色のけん濁液になった。When the humidity was gradually increased, it became a blue-green suspension.

さらに温度を上げ最高温度を第1表に示す温度とすると
液は透明になった。
When the temperature was further increased to the maximum temperature shown in Table 1, the liquid became transparent.

1時間放置して冷却し、室温下でグラスフィルターを用
いて液をろ過し、水洗したのちアセトンで洗浄して乾燥
した。
The mixture was left to cool for 1 hour, and the liquid was filtered at room temperature using a glass filter, washed with water, and then washed with acetone and dried.

得られた各金属ニッケル粉末の粒径は第1表に示すとお
りであった。
The particle size of each of the obtained metallic nickel powders was as shown in Table 1.

なお、参考例として硫酸ニッケルアンモニウム、硫酸ニ
ッケル、ギ酸ニッケル、硝酸ニッケル、水酸化ニッケル
について、第1表に示した条件で前記実施例と同様に処
理したところ、硫酸ニッケルアンモニウム、硫酸ニッケ
ルについては、金属ニッケル粉末の析出は認められなか
った。
As a reference example, nickel ammonium sulfate, nickel sulfate, nickel formate, nickel nitrate, and nickel hydroxide were treated in the same manner as in the above example under the conditions shown in Table 1. As for nickel ammonium sulfate and nickel sulfate, No precipitation of metallic nickel powder was observed.

また、ギ酸ニッケル、硝酸ニッケル、水酸化ニッケルに
ついては器壁に金属ニッケル粉末がわずかに析出し、未
反応物も多く、十分な生成反応が見られなかつf(。
In addition, for nickel formate, nickel nitrate, and nickel hydroxide, a small amount of metallic nickel powder precipitates on the vessel wall, and there are many unreacted substances, and sufficient production reaction is not observed.

第1図は実施例中、試料番号2についての顕微鏡写真(
X3000)である。
Figure 1 is a micrograph of sample number 2 in the examples (
X3000).

図から0.7μ程度の金属ニッケル粉末の生成されてい
ることが確認できる。
From the figure, it can be confirmed that metallic nickel powder of about 0.7μ was produced.

以上説明したように、従来ヒドラジンあるいはヒドラジ
ン化合物を用いる場合、pH調整後100’C,Il上
に加熱しなければ金属ニッケル粉末の生成がみられなか
ったが、この発明によれば、塩化ニッケル、炭酸ニッケ
ル、酢酸ニッケルのうちいずれか一種を含むニッケル含
有溶液にヒドラジンあるいはヒドラジン化合物を添加、
混合して100℃以下で加熱することによって、十分に
金属ニッケル粉末の析出が認められ、低い温度で反応さ
せることができるため、製造が簡単なばかりでなく、し
かもpH調整も要らないため工程管理がきわめて容易で
あるという効果を有する。
As explained above, when using hydrazine or a hydrazine compound, the formation of metallic nickel powder was not seen unless it was heated to 100'C, Il after adjusting the pH, but according to the present invention, nickel chloride, Adding hydrazine or a hydrazine compound to a nickel-containing solution containing either nickel carbonate or nickel acetate,
By mixing and heating at below 100°C, sufficient precipitation of metallic nickel powder is observed, and the reaction can be carried out at a low temperature, which not only simplifies production, but also eliminates the need for pH adjustment, which facilitates process control. This has the effect that it is extremely easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例によって得られた金属ニッケ
ル粉末の顕微鏡写真である。
FIG. 1 is a microscopic photograph of metallic nickel powder obtained according to an example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 塩化ニッケル、炭酸ニッケル、酢酸ニッケルのうち
いずれか一種を含むニッケル含有溶液に、ヒドラジンあ
るいはヒドラジン化合物を添加、混合して100℃以下
に加熱することを特徴とする微粒子状金属ニッケル粉末
の製造方法。
1. A method for producing fine particulate metallic nickel powder, which comprises adding hydrazine or a hydrazine compound to a nickel-containing solution containing any one of nickel chloride, nickel carbonate, and nickel acetate, mixing the mixture, and heating the mixture to 100°C or below. .
JP52009938A 1977-01-31 1977-01-31 Method for producing fine particulate metal nickel powder Expired JPS5835242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52009938A JPS5835242B2 (en) 1977-01-31 1977-01-31 Method for producing fine particulate metal nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52009938A JPS5835242B2 (en) 1977-01-31 1977-01-31 Method for producing fine particulate metal nickel powder

Publications (2)

Publication Number Publication Date
JPS5395165A JPS5395165A (en) 1978-08-19
JPS5835242B2 true JPS5835242B2 (en) 1983-08-01

Family

ID=11733951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52009938A Expired JPS5835242B2 (en) 1977-01-31 1977-01-31 Method for producing fine particulate metal nickel powder

Country Status (1)

Country Link
JP (1) JPS5835242B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130412A (en) * 1980-03-17 1981-10-13 Sanyo Electric Co Ltd Production of metallic nickel for electrode
JPS59162206A (en) * 1983-03-08 1984-09-13 Mitsui Mining & Smelting Co Ltd Manufacture of fine nickel and cobalt powder
CN103706804A (en) * 2013-12-25 2014-04-09 南昌航空大学 Environment-friendly preparing method of nickel nanocrystalline

Also Published As

Publication number Publication date
JPS5395165A (en) 1978-08-19

Similar Documents

Publication Publication Date Title
CN109453773B (en) Supported bimetallic core-shell structure catalyst and preparation method thereof
KR100427005B1 (en) Spheroidally Agglomerated Basic Cobalt(II) Carbonate and Spheroidally Agglomerated Cobalt(II) Hydroxide, Process for Their Production and Their Use
CN106558695A (en) A kind of nickel cobalt aluminum complex hydroxide, nickel cobalt aluminium composite oxide and preparation method thereof
US4089676A (en) Method for producing nickel metal powder
CN104117372B (en) A kind of nanometer red phosphorus is the hydrothermal preparing process of the support type catalyst of phosphatizing nickel of phosphorus source
JP2003503300A (en) Method for producing cobalt hydroxide or cobalt mixed hydroxide of high density and large particle size and product produced by this method
CN111215032A (en) Rapid preparation method of MOF material
CN104625082B (en) Nanometer nickel powder preparation method
CN106335877B (en) Fine granularity α-AlH3Synthetic method
KR20100091533A (en) Preparing method of cobalt powder
US4164557A (en) Process for the production of β-lithium aluminate and needle-shaped product
JPS63274706A (en) Production of metallic fine powder
JP2703487B2 (en) Method for producing nickel hydroxide
JPS5835242B2 (en) Method for producing fine particulate metal nickel powder
US5658395A (en) Method of preparing powders for hard materials from APT and soluble cobalt salts
US3925114A (en) Process for preparation of magnetic alloy powder
CN116199270A (en) Treatment process for reducing wastewater in cobalt oxide production process
JPH02294416A (en) Production of platinum powder
JP2002274847A (en) Method of preparing needle zinc oxide
JPS6029645B2 (en) Method for producing acicular zinc oxide particles
CN113415821A (en) Hollow ZnxCd1-xPreparation method and application of S solid solution nanosphere
JPS6251894B2 (en)
JPH0426514A (en) Production of plate-like conductive zinc oxide
JP3353600B2 (en) Apparatus and method for producing nickel hydroxide powder
CN112169811B (en) Preparation method of palladium sulfate solution