JPS5834975A - Insulated gate type field effective semiconductor device - Google Patents

Insulated gate type field effective semiconductor device

Info

Publication number
JPS5834975A
JPS5834975A JP56135273A JP13527381A JPS5834975A JP S5834975 A JPS5834975 A JP S5834975A JP 56135273 A JP56135273 A JP 56135273A JP 13527381 A JP13527381 A JP 13527381A JP S5834975 A JPS5834975 A JP S5834975A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
conductivity type
type
gate electrode
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56135273A
Other languages
Japanese (ja)
Inventor
Toshiaki Hoshi
俊明 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56135273A priority Critical patent/JPS5834975A/en
Publication of JPS5834975A publication Critical patent/JPS5834975A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Abstract

PURPOSE:To produce a complementary FET having different threshold voltages of identical conductivity type without calling for any additional manufacturing process by forming a gate electrode of polycrystalline silicon consisting of one conductivity type and reverse conductivity type regions. CONSTITUTION:For a P type channel transistor, a gate electrode is of P type polycrystalline silicon 21 at the ends of a source and drain, and of N type polycrystalline silicon 22 in the middle. Therefore, a P-N junction is produced in the gate electrode so that holes 17 can be formed through both the P type polycrystalline silicon 21 and the N type polycrystalline silicon 22 to connect them together through metal 18. It is found that three transistors M1-M3 are connected in series according to the equivalent electric circuit of the transistors. The threshold voltage becomes the same as that of the transistor M2 so that higher threshold voltage can normally be maintained than P type channel transistors.

Description

【発明の詳細な説明】 本発明は絶縁ゲート壓電界効果半導体装置に係り、特に
多結晶シリコンゲート電極を有し、そのゲート電極の導
電型が、N、P双方の導電型を有する絶縁ゲート型電界
効果半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulated gate field effect semiconductor device, and more particularly to an insulated gate field effect semiconductor device having a polycrystalline silicon gate electrode, the gate electrode having both N and P conductivity types. The present invention relates to a type field effect semiconductor device.

従来、相補型電界効果トランジスタにおいて、Nチャン
ネル、Pチャンネルトランジスタの閾値電圧(スレッシ
ョールド電圧)は、ウェル濃度。
Conventionally, in complementary field effect transistors, the threshold voltage of N-channel and P-channel transistors depends on the well concentration.

基板濃度によって決定する事が多かったが、近年、イオ
ン注入技術の進歩によシゲート電極下のシリコン−シリ
コン酸化物との界面付近へ不純物をイオン注入し、界面
近傍の不純物濃度をコントロールする事により希望する
スレッショールド電圧に定める事ができるようになって
きた。
In many cases, it was determined by the substrate concentration, but in recent years, advances in ion implantation technology have made it possible to control the impurity concentration near the interface by implanting impurity ions near the silicon-silicon oxide interface under the silicate electrode. It has become possible to set the desired threshold voltage.

ところで、一般の集積回路において、その回路によって
はトランジスタのスレッショールド電圧が一種類だけで
なく、多種類ある事によシ、回路構成の簡略化、設計の
容易さ等が増す事がある。
Incidentally, in general integrated circuits, depending on the circuit, transistors may have not only one type of threshold voltage but many types, which may simplify the circuit configuration and increase ease of design.

この場合、異なったスレッショールド電圧を得る為に前
述したイオン注入技術を用いる事ができるが、その場合
には異なったスレッショールド電圧としたいトランジス
タ部分以外には、イオン注入によって不純物が注入され
ない様に、イオン注入に対してマスクとなる材質(例え
ばフォトレジスト)で覆う必要がある。この様にイオン
注入技術を用いて一部のトランジスタのスレッシ、−ル
ド電圧を変更するには、そ、の製造工程中に前述した必
要以外の部分を徨うパターンを作シ出す為の工程(以下
フォトレジスト工程と称する)及びイオン注入工程の追
加が最低限必要であり、製造工程をより複雑にするとい
う欠点があった。以下、従来技術による相補型電界効果
トランジスタの製造方法の一例を第1図(a)〜(g)
 K示し、簡単に′説明する。
In this case, the ion implantation technique described above can be used to obtain different threshold voltages, but in that case, impurities are not implanted by ion implantation except in the transistor parts where the different threshold voltages are desired. Similarly, it is necessary to cover it with a material (for example, photoresist) that serves as a mask for ion implantation. In order to change the threshold and voltage of some transistors using ion implantation technology in this way, it is necessary to create a pattern that extends beyond the necessary areas during the manufacturing process ( This method requires at least the addition of a photoresist process (hereinafter referred to as a photoresist process) and an ion implantation process, which has the disadvantage of making the manufacturing process more complicated. An example of a method for manufacturing a complementary field effect transistor according to the prior art is shown in FIGS. 1(a) to 1(g) below.
K is shown and briefly explained.

第1図(a) : N型シリコン基板1(例えば101
4〜10傭 の不純物濃度)にシリコン熱酸化膜2を設
け、所定の領域の酸化膜を除去し、イオン注入法でP型
不純物(例えば、ボロン)を注入し、その後1100℃
〜1200℃の高温で熱処理を行ない、比較的深い不純
物領域(P−ウェル)13を形成する。
FIG. 1(a): N-type silicon substrate 1 (for example, 101
A silicon thermal oxide film 2 is provided at an impurity concentration of 4 to 10 degrees centigrade), the oxide film is removed in a predetermined region, a P-type impurity (for example, boron) is implanted by ion implantation, and then heated at 1100°C.
Heat treatment is performed at a high temperature of ~1200° C. to form a relatively deep impurity region (P-well) 13.

第1図(b)二次にNチャンネル及びPチャンネルトラ
ンジスタを形成する領域の酸化膜を除去する。
FIG. 1(b) Second, the oxide film in the regions where N-channel and P-channel transistors are to be formed is removed.

第1図(C)二次に比較的薄いゲート酸化膜4を成長さ
せ、その彼さらに多結晶シリコン5を気相成長法等に依
って成長させ、通常の7オトレジストエ程を通して、ゲ
ート電極となるべき部分と配線として使用する部分を除
いて、弗酸−硝酸の混合液によって除去する。
FIG. 1(C) Second, a relatively thin gate oxide film 4 is grown, and then polycrystalline silicon 5 is grown by a vapor phase growth method, etc., and a gate electrode is formed through the usual 7 photoresist process. Remove the parts except for the parts to be used as wiring and the parts to be used as wiring using a mixed solution of hydrofluoric acid and nitric acid.

第1図(d):次に、フォトレジスト6をNチャンネル
トランジスタを形成すべき部分を覆うようにして、イオ
ン注入法によってP型不純物(例えばボロン)をゲート
電極の多結晶シリコン及びソース・ドレインとなるべき
部分にゲート酸化膜を通して注入し、ゲート電極をP型
多結晶シリコン9、及びソース・ドレインとなるP型不
純物拡散領域8を形成する。
FIG. 1(d): Next, a photoresist 6 is placed to cover the area where an N-channel transistor is to be formed, and a P-type impurity (for example, boron) is added to the polycrystalline silicon of the gate electrode and the source/drain region by ion implantation. The impurity is implanted through the gate oxide film into the portion where the impurity is to be formed, and P-type polycrystalline silicon 9 is used as the gate electrode, and P-type impurity diffusion regions 8 are formed as the source and drain.

第1図(e):次に前工程とは逆にPチャンネルトラン
ジスタを形成した部分を7オトレジスト10で覆い、イ
オン注入法によってN型不純物(例えば、リン、ヒ素)
をゲート電極の多結晶シリコン及びソース・ドレインと
なるべき部分にゲート酸化膜を通して注入し、ゲート電
極をN型多結晶シリコン12、及びソース・ドレインと
なるN型不純物拡散領域11を形成する。
Figure 1(e): Next, in the opposite direction to the previous step, the part where the P-channel transistor was formed was covered with a 7-photoresist 10, and N-type impurities (for example, phosphorus, arsenic) were added by ion implantation.
is implanted through the gate oxide film into the polycrystalline silicon of the gate electrode and the portions to become the source/drain to form the N-type polycrystalline silicon 12 for the gate electrode and the N-type impurity diffusion regions 11 to become the source/drain.

第1図(f)二次にイオン注入による結晶のダメージを
回復させ、注入した不純物を活性化させる為の熱処理を
行なった後、酸化膜14を気相成長法などに依って成長
させ、後に配線すべき金属との結合の為の穴15を所定
の位置に通常のフォトレジスト工程、酸化膜除去工程を
経て設ける。
FIG. 1(f) After a heat treatment is performed to recover the damage to the crystal caused by the secondary ion implantation and activate the implanted impurities, an oxide film 14 is grown by vapor phase growth, etc. A hole 15 for bonding with the metal to be wired is provided at a predetermined position through a normal photoresist process and an oxide film removal process.

第1図(g):最後に金属(例えばアルミニウム)を真
空蒸着法によって形成し所定の配線16を施す0 以上説明したのが、Pウェル中にNチャンネルトランジ
スタ、基板にPチャンネルトランジスタを形成する従来
技術の製造方法の一例である。こo場合、P 、No)
ランジスタのスレッショールド電圧は、それぞれ、基板
濃度、P−ウェル濃度で決定され、P、Nチャンネルで
それぞれ一種類である。ここでそれぞれの導電型のトラ
ンジスタで異なったスレッショールド電圧を得るには、
従来ゲート酸化膜を形成彼、多結晶シリコンを気相成長
する前に、フォトレジスト工程でによって異なったスレ
ッショールド電圧を得たいトランジスタ部分以外をイオ
ン注入に対してマスクとなる物質で覆い、イオン注入を
用いなければならなt・つた。このように従来技術にお
いては、同一導電型で異なったスレッショールド電圧を
得るには、少なくとも1回の7オトレジストエ程とイオ
ン注入工程が必要であり、その製造工程数が増加し、よ
シ製造方法を複雑にしてしまうという欠点があった。
Figure 1 (g): Finally, a metal (for example, aluminum) is formed by vacuum evaporation and a predetermined wiring 16 is applied.0 What has been explained above is the formation of an N-channel transistor in the P-well and a P-channel transistor in the substrate. This is an example of a conventional manufacturing method. If this is the case, P, No)
The threshold voltage of the transistor is determined by the substrate concentration and the P-well concentration, and is one type for each of the P and N channels. To obtain different threshold voltages for each conductivity type of transistor,
Conventionally, forming a gate oxide film, before vapor-phase growth of polycrystalline silicon, a photoresist process is used to cover areas other than the transistor parts where different threshold voltages are to be obtained with a material that serves as a mask for ion implantation. Injection must be used. In this way, in the prior art, in order to obtain different threshold voltages for the same conductivity type, at least one photoresist process and an ion implantation process are required, which increases the number of manufacturing steps and reduces the manufacturing cost. The drawback was that it made the method complicated.

本発明は、新規な構成の多結晶シリコンゲート電極によ
って容易にスレッシ、−ルド電圧を設定できる絶縁ゲー
ト型電界効果半導体装置の提供を目的とするものである
An object of the present invention is to provide an insulated gate field effect semiconductor device in which threshold and field voltages can be easily set using a polycrystalline silicon gate electrode having a novel configuration.

本発明の他の目的は、製造工程数の増加する事なく、同
一導電型の異なったスレッシロールド電圧を持つ相補型
電界効果トランジスタを提供する事にある。
Another object of the present invention is to provide complementary field effect transistors of the same conductivity type but having different threshold voltages without increasing the number of manufacturing steps.

本発明の特徴は、一導電型基板上に逆導電型のソース、
ドレイン領域が形成され、このソース。
A feature of the present invention is that a source of an opposite conductivity type is placed on a substrate of one conductivity type,
A drain region is formed and this source.

ドレイン領域間の前記一導電型基板上に薄い絶縁膜を介
してゲート電極が形成された絶縁ゲート型電界効果半導
体装置において、前記ゲート電極が一導電製領域と逆導
電型領域とを含む多結晶シリコンによって形成されてい
る絶縁ゲート型電界効呆半導体装置にある。そして、こ
の多結晶シリコンゲート電極の少なくともソース、ドレ
イン領域近傍が逆導電型に形成されていることが好まし
い。
In an insulated gate field effect semiconductor device in which a gate electrode is formed on the one conductivity type substrate between the drain regions via a thin insulating film, the gate electrode is a polycrystalline material including a one conductivity region and an opposite conductivity type region. This is an insulated gate field effect semiconductor device made of silicon. Preferably, at least the vicinity of the source and drain regions of this polycrystalline silicon gate electrode are formed to have opposite conductivity types.

さらに、この多結晶シリコンゲート電極の中央部が一導
電型に形成され、かつソース、ドレイン領域近傍の端部
が逆導電型に形成されていることが好ましい構造である
。そして、この多結晶シリコンゲート電極の一導電型領
域と逆導電型領域とをオーミック接線することによって
、Pn接合による影醤を除くことが出来るので、この絶
縁ゲート型電界効果半導体装置は極めて良好なる特性を
示す。そして、このような絶縁ゲート型電界効果半導体
装置は、相補型絶縁ゲート電界効果半導体集積回路装置
に含まれることが好ましい。
Furthermore, it is a preferable structure that the central portion of the polycrystalline silicon gate electrode is formed to have one conductivity type, and the end portions near the source and drain regions are formed to be of the opposite conductivity type. By forming an ohmic tangent between the one conductivity type region and the opposite conductivity type region of the polycrystalline silicon gate electrode, it is possible to eliminate the influence caused by the Pn junction, resulting in an extremely good insulated gate field effect semiconductor device. Show characteristics. Preferably, such an insulated gate field effect semiconductor device is included in a complementary insulated gate field effect semiconductor integrated circuit device.

本発明によれば、製造工程数を増加する事なく、同一導
電型の異なったスレッシロールド電圧を持つ相補型電界
効果トランジスタを提供することが出来る。すなわち、
多結晶シリコンをゲート電極とする相補型電界効果トラ
ンジスタにおいて、ゲート電極である多結晶シリコンの
導電型が、ソース、ドレイン端ではソース、ドレインを
形成する拡散層と同一導電型とし、その中間部では逆導
電型とするように、製造工程中の7オトレジストエ程の
パターンを変更するだけで製造工程数を増加する事遊く
、同一導電型の異なったスレッシ、−ルド電圧を得る事
ができる。
According to the present invention, complementary field effect transistors of the same conductivity type but having different threshold voltages can be provided without increasing the number of manufacturing steps. That is,
In a complementary field effect transistor that uses polycrystalline silicon as a gate electrode, the conductivity type of the polycrystalline silicon that is the gate electrode is the same conductivity type as the diffusion layer forming the source and drain at the source and drain ends, and By simply changing the pattern of the seven photoresist layers in the manufacturing process so as to create opposite conductivity types, it is possible to increase the number of manufacturing steps and obtain different threshold and negative voltages of the same conductivity type.

次に本発明をよシ判シ易くする為、まず第2図(2I)
〜(ωを用いて、本発明の一実施例の絶縁ゲート型電界
効果半導体装置の製造方法を工程順に説明する。
Next, in order to make the present invention easier to read, first of all, Figure 2 (2I)
~ (Using ω, a method for manufacturing an insulated gate field effect semiconductor device according to an embodiment of the present invention will be explained step by step.

本製造方法では、前述した従来の絶縁ゲート型電界効果
半導体装置の製造方法の一例のうち、第1図(a)〜(
C)に対応する気相成長させた多結晶シリコンをゲート
電極となるべき部分及び配線として使用する部分を残し
て除去する工程迄は第2図(a)〜(C)から明らかな
ように同じである。
This manufacturing method is one of the conventional methods for manufacturing an insulated gate field effect semiconductor device as described above.
As is clear from Figures 2 (a) to (C), the steps up to the step of removing the vapor-grown polycrystalline silicon corresponding to C), leaving behind the portions that will become gate electrodes and the portions that will be used as wiring, are the same. It is.

第2図(d):次に1フオトレジストでNチャンネルト
ランジスタを形成すべき部分、及びPチャンネルトラン
ジスタのゲート電極となるべき多結晶シリコンのうち、
ンース、ドレインとなるヘキ端部を除いた中間部分を覆
い、イオン注入法によってP型不純物をPチャンネルト
ランジスタのゲート電極多結晶シリコンの7オトレジス
トで扱われていないソース、ドレインに近い端部、及び
ソース、ドレインとなるべき部分にゲート酸化膜を通し
て注入し、ゲート電極の一部をP型多結晶シリコンとし
、ソース、ドレインとなるP型不純物拡散領域を形成す
る。 − 第2図(e)二次に前工程とは逆にPチャンネルトラン
ジスタを形成する部分のうち、前工程で7オトレジスト
を様ったゲート電極の多結晶シリコン部を除く部分を7
オトレジストで榎い、イオン注入法によって、N型不純
物をフォトレジストで覆われていない多結晶ンリコン、
及び、ソース、ドレインとなるべき部分にゲート酸化膜
を違して注入し、Pチャ/ネルトランジスタのゲート電
極の中間部のN型多結晶シリコン、Nチャンネルトラン
ジスタのN型結晶シリコンゲート電極、及び、ソース、
ドレインとなるN型不純物拡散領域を形成する。
FIG. 2(d): Next, the part where an N-channel transistor is to be formed using one photoresist, and the polycrystalline silicon which is to become the gate electrode of the P-channel transistor.
7. Cover the middle part except for the edges that will become the source and drain, and use ion implantation to inject P-type impurities into the gate electrode of the P-channel transistor. The impurity is implanted through the gate oxide film into the portions to become the sources and drains, and part of the gate electrode is made of P-type polycrystalline silicon, forming P-type impurity diffusion regions that will become the sources and drains. - Figure 2 (e) Second, in contrast to the previous process, out of the parts where the P-channel transistor will be formed, remove the polycrystalline silicon part of the gate electrode that was coated with 7 photoresists in the previous process.
Polycrystalline silicon that is not covered with photoresist is coated with N-type impurities by ion implantation.
Then, a gate oxide film is implanted into the parts that are to become the source and drain, and the N-type polycrystalline silicon in the middle part of the gate electrode of the P-channel/channel transistor, the N-type crystalline silicon gate electrode of the N-channel transistor, and ,sauce,
An N-type impurity diffusion region that will become a drain is formed.

第2図(0:次に通常の製造方法と同様に熱処理を行な
い、金属との結合の為の穴を設ける。
FIG. 2 (0: Next, heat treatment is performed in the same manner as in the normal manufacturing method to form holes for bonding with metal.

第2図(g):最後に金属を蒸着させ、所定の配線を施
す。
Figure 2 (g): Finally, metal is deposited and predetermined wiring is provided.

このように本製造方法は、通常の製造工程に対して、何
らの工程の追加なしにそのマスクパターンの変更のみで
達成する事ができる。
In this manner, the present manufacturing method can be achieved by simply changing the mask pattern without adding any steps to the normal manufacturing process.

次に本発明の同一導電型で異なったスレッショールド電
圧を得る原理を説明する為、本発明の一実施例のPチャ
ンネルトランジスタの平面図を第3図(a)に示す。こ
のPチャンネルトランジスタのゲート電極は、ソース、
ドレイン端部ではP製条結晶シリコン21中間部ではN
型多結晶シリコン22となシ、ゲート電極中にPN接合
を生じるのでP型多結晶シリコンとN型多結晶シリコン
に穴17を設け、金属18で互いに接続する。この場合
のこのトランジスタの電気的等価回路は、第3図(b)
に示すように3つのトランジスタの直列接続回路として
表わされる。ところで電界効果トランジスタのスレッシ
、−ルド電圧vthは次式で表ΦM8 ’半導体基体と
ゲート電極との仕事関数差、 QS8 ’表面準位密度、 Φf :フェルミ準位、 QB 二基板の不純物密度、 Co :単位面積当シのゲート容量、 第3図(b)に示されている本発明の一実施例であるP
。hトランジスタの3分割形(Ml 、M2 。
Next, in order to explain the principle of obtaining different threshold voltages with the same conductivity type according to the present invention, a plan view of a P-channel transistor according to an embodiment of the present invention is shown in FIG. 3(a). The gate electrode of this P-channel transistor is the source,
At the end of the drain, P made of strip crystal silicon 21 At the middle part, N
Since a PN junction is formed in the gate electrode with the type polycrystalline silicon 22, a hole 17 is provided in the P-type polycrystalline silicon and the N-type polycrystalline silicon, and they are connected to each other with a metal 18. The electrical equivalent circuit of this transistor in this case is shown in Figure 3(b).
It is expressed as a series connection circuit of three transistors as shown in FIG. By the way, the threshold voltage vth of a field effect transistor is expressed by the following formula: ΦM8' work function difference between semiconductor substrate and gate electrode, QS8' surface state density, Φf: Fermi level, QB impurity density of two substrates, Co : Gate capacitance per unit area, P which is an embodiment of the present invention shown in FIG. 3(b)
. 3-part type of h transistor (Ml, M2.

M3)トランジスタのうち、Ml 、M3とM2との違
いは、製造方法からもわかるように上記式(1)の項の
0M8だけである。この0M8は又、次式で表わされる
Among M3) transistors, the only difference between M1, M3, and M2 is 0M8 in the term of the above equation (1), as can be seen from the manufacturing method. This 0M8 is also expressed by the following equation.

0Mg =ΦM−Φ8        ・・・・・・式
(2)ゲート電極がN型多結晶シリコンであるM2の0
M8は Φfn〉0 ゲート電極がP型多結晶シリコンであるMl。
0Mg = ΦM - Φ8 ...Formula (2) 0 of M2 where the gate electrode is N-type polycrystalline silicon
M8 is Ml whose gate electrode is P-type polycrystalline silicon.

M3の9Mgは Φfo<0 Φso ’ 多結J&シリコンのコンダクションバント
端と酸化膜のコンダクションバ ント端とのポテンシャルエネルギー 差、 Eg :コンダクションバンドとバレンシイバンドとの
エネルギー差、 q  :基板電子当りの電荷量、 Φ、 :シリコンのコンダクションバンド端と酸化膜の
コンダクションバント端 とのポテンシャルエネルギー差、 従って、M19M3とM2との0M8の差がスレッシ、
−ルド電圧の差となる。
9Mg of M3 is Φfo<0 Φso' Potential energy difference between the conduction band edge of the multi-connected J&silicon and the conduction band edge of the oxide film, Eg: Energy difference between the conduction band and the valence band, q: Substrate electron Amount of charge per unit, Φ: Potential energy difference between the conduction band edge of silicon and the conduction band edge of oxide film. Therefore, the difference of 0M8 between M19M3 and M2 is the threshold,
– This is the difference in field voltage.

ΦM8N−ΦM8P”Φfn−Φ(、<0   ”・式
(5)式(5)で示されるように0Mgの差は負であシ
、Pチャンネルトランジスタのエンハンスメントトラン
ジスタのスレッショールド電圧は負であるからM2のス
レッショールド電圧の絶対値は大きくなシ、従って本発
明の一実施例である第3図(a)のようなPチャンネル
トランジスタのスレッシ、−ルド電圧は、M2のスレッ
シ璽−ルド電圧となり、通常Pチャンネルトランジスタ
よシ約0.6volt高いスレッショールド電圧を得る
事ができる。このスレッシ、−ルド電圧は、前述した様
に一切の製造工程の追加なしに得る事ができる。
ΦM8N−ΦM8P”Φfn−Φ(,<0 ”・Equation (5) As shown in Equation (5), the difference of 0 Mg is negative, and the threshold voltage of the enhancement transistor of the P-channel transistor is negative. Since the absolute value of the threshold voltage of M2 is large, the threshold voltage of the P-channel transistor as shown in FIG. 3(a) which is an embodiment of the present invention is It is possible to obtain a threshold voltage that is approximately 0.6 volts higher than that of a normal P-channel transistor.This threshold voltage can be obtained without adding any manufacturing steps as described above.

なお、本発明の実施例では、Pチャンネルトランジスタ
について説明したが、Nチャンネルトランジスタについ
ても同様に実施できる事は轟然である。
In the embodiments of the present invention, a P-channel transistor has been described, but it is obvious that the same can be applied to an N-channel transistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(ωは従来の相補型シリコンゲート電界
効果半導体集積回路装置の製造方法を工程順に示す断面
図、第2図(a)〜(g)は本発明の一実施例である絶
縁ゲート型電界効果半導体装置を含む相補型シリコンゲ
ート電界効果半導体集積回路装置の製造方法を工程順に
示す断面図、第3図(a)は本発明の一実施例であるP
チャンネル型の絶縁ゲート型電界効果半導体装置の平面
図、第3図(b)は第3図(a)で示すところの半導体
装置の電気的等価回路、である。 なお図において、1・・・・・・N型シリコン基板、2
・・・・・・酸化膜、4・・・・・・ゲート酸化膜、5
・・・・・・真性多結晶シリコン、6,10°−−−−
−7オトレジスト、8・・・・・・P型拡散領域、9.
21・・・・・・P型多結晶シリコン、11・・・・・
・N型拡散領域、12,22・・・・・・N型多結晶シ
リコン、13°−°−°−Pウェル、14・°°・°。 気相成長酸化膜、15.17・・・・・・コンタクトホ
ール、16.18・・・・・°金属配線、である。 第1図 始1図 拍1図 1 第2図 第2図 21  22  21 G 第3図
FIGS. 1(a) to (ω) are cross-sectional views showing a conventional complementary silicon gate field-effect semiconductor integrated circuit device manufacturing method in order of process, and FIGS. 2(a) to (g) are one embodiment of the present invention. FIG. 3(a) is a cross-sectional view showing the manufacturing method of a complementary silicon gate field-effect semiconductor integrated circuit device including a certain insulated gate field-effect semiconductor device in order of steps, and FIG. 3(a) is an example of the present invention.
FIG. 3(b), a plan view of a channel type insulated gate field effect semiconductor device, is an electrical equivalent circuit of the semiconductor device shown in FIG. 3(a). In the figure, 1...N-type silicon substrate, 2
...Oxide film, 4...Gate oxide film, 5
...Intrinsic polycrystalline silicon, 6,10°----
-7 Otoresist, 8...P-type diffusion region, 9.
21...P-type polycrystalline silicon, 11...
- N-type diffusion region, 12, 22...N-type polycrystalline silicon, 13°-°-°-P well, 14.°°.°. These are a vapor-phase grown oxide film, 15.17...contact hole, and 16.18...°metal wiring. Figure 1 Start Figure 1 Beat 1 Figure 1 Figure 2 Figure 2 21 22 21 G Figure 3

Claims (5)

【特許請求の範囲】[Claims] (1)  一導電型基板上に逆導電型のソース、ドレイ
領域が形成され、該ソース、ドレイン領域間の前記一導
電型基板上に薄い絶縁膜を介してゲート電極が形成され
た絶縁ゲート型電界効果半導体装置において、前記ゲー
ト電極が一導電型領域と逆導電型領域とを含む多結晶シ
リコンによって形成されていることを特徴とする絶縁ゲ
ート型電界効果半導体装置。
(1) An insulated gate type in which source and drain regions of opposite conductivity type are formed on a substrate of one conductivity type, and a gate electrode is formed on the substrate of one conductivity type between the source and drain regions with a thin insulating film interposed therebetween. An insulated gate field effect semiconductor device, wherein the gate electrode is formed of polycrystalline silicon including a region of one conductivity type and a region of opposite conductivity type.
(2)多結晶シリコンゲート電極の少なくともソース、
ドレイン領域近傍が逆導電型に形成されていることを特
徴とする特許請求の範囲第(1)項記載の絶縁ゲートm
電界効果半導体装置。
(2) at least the source of the polycrystalline silicon gate electrode;
The insulated gate m according to claim (1), characterized in that the vicinity of the drain region is formed to have an opposite conductivity type.
Field effect semiconductor device.
(3)多結晶シリコンゲート電極の中央部が一導電型に
形成され、かつソース、ドレイン領域近傍の端部が逆導
電型に形成されていることを特徴とする特許請求の範囲
第(1)項記載の絶縁ゲート型電界効果半導体装置。
(3) Claim (1) characterized in that the central portion of the polycrystalline silicon gate electrode is formed to have one conductivity type, and the end portions near the source and drain regions are formed to be of the opposite conductivity type. The insulated gate field effect semiconductor device described in 2.
(4)多結晶シリコンゲート電極の一導電型領域と逆導
電型領域とがオーミック接緒されていることを特徴とす
る特許請求の範囲第(3)項記載の船縁ゲート型電界効
果半導体装置。
(4) The edge gate type field effect semiconductor device according to claim (3), wherein the one conductivity type region and the opposite conductivity type region of the polycrystalline silicon gate electrode are ohmically connected.
(5)相補型絶縁ゲート電界効果半導体象積回路装置に
含まnることを特徴とする特許請求の範囲第(1)項記
載の絶縁ゲート型電界効果半導体装置。
(5) The insulated gate field effect semiconductor device according to claim (1), which is included in a complementary insulated gate field effect semiconductor quadrant circuit device.
JP56135273A 1981-08-27 1981-08-27 Insulated gate type field effective semiconductor device Pending JPS5834975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135273A JPS5834975A (en) 1981-08-27 1981-08-27 Insulated gate type field effective semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135273A JPS5834975A (en) 1981-08-27 1981-08-27 Insulated gate type field effective semiconductor device

Publications (1)

Publication Number Publication Date
JPS5834975A true JPS5834975A (en) 1983-03-01

Family

ID=15147844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135273A Pending JPS5834975A (en) 1981-08-27 1981-08-27 Insulated gate type field effective semiconductor device

Country Status (1)

Country Link
JP (1) JPS5834975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272972A (en) * 1985-05-28 1986-12-03 Toshiba Corp Semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272972A (en) * 1985-05-28 1986-12-03 Toshiba Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
US4078947A (en) Method for forming a narrow channel length MOS field effect transistor
JPH02284462A (en) Process for forming high voltage and low voltage cmos transistors on single integrated circuit chip
JPH0355984B2 (en)
JPH01101662A (en) Manufacture of cmos device
JPH02166762A (en) Compact cmos device and
JPS63308949A (en) Manufacture of semiconductor device
JPH0193159A (en) Manufacture of bicmos element
JPH09283708A (en) Semiconductor device and its manufacture
JPS63219152A (en) Manufacture of mos integrated circuit
JPS6360549B2 (en)
JP3307481B2 (en) Semiconductor device
JPS5834975A (en) Insulated gate type field effective semiconductor device
JPH0379035A (en) Mos transistor and manufacture thereof
JP2610906B2 (en) Method for manufacturing BiMOS semiconductor circuit device
JPH01220438A (en) Manufacture of semiconductor device
JPH04115538A (en) Semiconductor device
JPS5975653A (en) Manufacture of semiconductor integrated circuit device
JPS63244768A (en) Bipolar cmos type semiconductor device and manufacture thereof
JPH0575033A (en) Semiconductor integrated circuit device and manufacture thereof
JPH0334378A (en) Mos type field effect transistor
JPH0590594A (en) Manufacture of vertical type mos field effect transistor
JPS62204566A (en) Complementary mos semiconductor device
JPH01117362A (en) Manufacture of semiconductor integrated circuit device
JPS61105873A (en) Manufacture of semiconductor device
JPS5994875A (en) Manufacture of silicon gate type field effect transistor