JPS5834195B2 - Method for removing arsenic and silicic acid contained in industrial wastewater - Google Patents

Method for removing arsenic and silicic acid contained in industrial wastewater

Info

Publication number
JPS5834195B2
JPS5834195B2 JP53104431A JP10443178A JPS5834195B2 JP S5834195 B2 JPS5834195 B2 JP S5834195B2 JP 53104431 A JP53104431 A JP 53104431A JP 10443178 A JP10443178 A JP 10443178A JP S5834195 B2 JPS5834195 B2 JP S5834195B2
Authority
JP
Japan
Prior art keywords
arsenic
silicic acid
ferrous
ions
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53104431A
Other languages
Japanese (ja)
Other versions
JPS5531437A (en
Inventor
恵一郎 幸田
繁彦 千葉
幸夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON JUKAGAKU KOGYO KK
YOKO YATSUKA KOGYOSHO JUGEN
Original Assignee
NIPPON JUKAGAKU KOGYO KK
YOKO YATSUKA KOGYOSHO JUGEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON JUKAGAKU KOGYO KK, YOKO YATSUKA KOGYOSHO JUGEN filed Critical NIPPON JUKAGAKU KOGYO KK
Priority to JP53104431A priority Critical patent/JPS5834195B2/en
Publication of JPS5531437A publication Critical patent/JPS5531437A/en
Publication of JPS5834195B2 publication Critical patent/JPS5834195B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【発明の詳細な説明】 本発明は、産業廃水中に含有される砒素及び珪酸の除去
方法に関し、特に本発明は、地熱発電中蒸気の採取に伴
い噴出する地下熱水中の砒素及び珪酸の除去方法に関す
るものである。
Detailed Description of the Invention The present invention relates to a method for removing arsenic and silicic acid contained in industrial wastewater, and in particular, the present invention relates to a method for removing arsenic and silicic acid contained in industrial wastewater. This relates to a removal method.

金属製錬用原料である鉱石は海外鉱に依存する割合が増
加し、砒素を含む精鉱を取扱うことも多くなりつつあり
、貯鉱ヤードに貯蔵中に雨水の影響を受けて、その廃水
中に溶出する砒素の除去方法として水酸化鉄共沈法が知
られている。
Ore, which is a raw material for metal smelting, is increasingly dependent on overseas ores, and concentrates containing arsenic are increasingly being handled. The iron hydroxide co-precipitation method is known as a method for removing arsenic that is eluted.

Fe3+は他金属イオンに比べて低いpHすなわち2〜
3でFe(OH)3として沈澱するため、古くからFe
”の加水分解は有価金属イオンを含む水溶液からFeを
分離するために利用されてきたが、この場合水溶液中の
As、Sbなども共沈除去される。
Fe3+ has a lower pH than other metal ions, i.e. 2~
3 precipitates as Fe(OH)3, so from ancient times Fe
``hydrolysis has been used to separate Fe from an aqueous solution containing valuable metal ions, but in this case, As, Sb, etc. in the aqueous solution are also removed by coprecipitation.

As(V)はAs(II])8こ比べて水酸化鉄と共に
より共沈しやすく、pI(3〜8の範囲内ではほぼ10
0%共沈することが「分析化学」、10 612−61
6(1961)により開示されている。
As(V) co-precipitates more easily with iron hydroxide than As(II]), and has a pI of approximately 10 within the range of 3 to 8.
0% coprecipitation is "Analytical Chemistry", 10 612-61
6 (1961).

さらにまた日本鉱業会誌92 1066(’76 12
)809〜814によれば、 (1)水溶液中のAsがAs(Vである場合にはAs
(IIDに比べて広いpH範囲にわたり効率よく共沈除
去できる。
Furthermore, Japan Mining Association Journal 92 1066 ('76 12
) 809-814, (1) When As in the aqueous solution is As(V), As
(Compared to IID, coprecipitation can be removed efficiently over a wider pH range.

(2) As(V)に対してFe 添加量が増すと
残留As(V)濃度は低下し、残留As(V)濃度の低
いpH範囲も広がる。
(2) As the amount of Fe added to As(V) increases, the residual As(V) concentration decreases, and the pH range where the residual As(V) concentration is low also widens.

(3)初期As(V)濃度が20〜10100O/lの
範囲にわたり、As(V)に対して2当量以上のFe3
+塩を添加すると排水基準(0,5rrI9/l)以下
までAsを除去できる。
(3) The initial As(V) concentration ranges from 20 to 10,100 O/l, and Fe3 is 2 equivalents or more relative to As(V).
+ Adding salt can remove As to below the wastewater standard (0.5rrI9/l).

ざらにAs(V)がよく共沈除去されることによりH2
O2と03によるAS([0の酸化実験を行ない。
Roughly, As(V) is well coprecipitated and removed, resulting in H2
An oxidation experiment of AS([0) with O2 and 03 was carried out.

次の結果を得た。I got the following results.

(4)H2O2の場合、酸化速度は溶液のpHによって
、著しく影響を受け、pHが高いほど太きい。
(4) In the case of H2O2, the oxidation rate is significantly influenced by the pH of the solution, and the higher the pH, the faster the oxidation rate.

室温においては低pHI液中のAs(IIDの完全な酸
化は期待できないが、 Cu イオンや緩衝剤の添加
At room temperature, complete oxidation of As (IID) in a low pH solution cannot be expected, but the addition of Cu ions and buffering agents.

酸[ヒ温度の上昇により酸fヒを著しく促進させること
ができる。
Increasing the temperature of acids can significantly accelerate the formation of acids.

(5) 03の場合、酸化速度はH2O2に比べて著
しく大きく、低pH溶液でも効率よ<As(II)を完
全に酸化することができ、温度、pHによる影響は小さ
く、非常に有効な酸化剤である。
(5) In the case of 03, the oxidation rate is significantly higher than that of H2O2, and it is possible to completely oxidize As(II) efficiently even in a low pH solution, and the influence of temperature and pH is small, making it a very effective oxidation agent. It is a drug.

ことが知られている。It is known.

しかしながら1例えば地下熱水の如<Asを含む水溶液
中に多量の珪酸が溶解しており、かつ高温である場合A
sを有効に除去するためには、珪酸を含まない溶液を処
理する場合に比し約3〜5倍量という多量の鉄塩を加え
て水酸化鉄の沈澱を生成せしめ、Asを共沈分離するこ
とが必要であり、そのため使用薬品量も多くなるばかり
でなく生成沈澱量も多くなる。
However, if a large amount of silicic acid is dissolved in an aqueous solution containing As, such as underground hot water, and the temperature is high, A
In order to effectively remove S, it is necessary to add a large amount of iron salt, about 3 to 5 times the amount compared to when treating a solution that does not contain silicic acid, to generate a precipitate of iron hydroxide, and to separate As by coprecipitation. This not only increases the amount of chemicals used, but also increases the amount of precipitate produced.

ところで前記水酸化鉄とAsの共沈物はコロイド状のふ
わふわした沈澱であり、多量の付加水を有するため実際
の工業規模の操業に当っては沈澱の濾過、脱水工程の設
備が過大になる欠点がある。
By the way, the coprecipitate of iron hydroxide and As is a fluffy colloidal precipitate and contains a large amount of added water, so in actual industrial scale operation, equipment for precipitate filtration and dehydration processes will be too large. There are drawbacks.

殊に砒素と共に多量の珪酸を溶解し、かつ高温である地
下熱水を上記の方法により処理することは困難であるば
かりでなく実用的でもない。
In particular, it is not only difficult but also impractical to treat underground hot water that dissolves a large amount of silicic acid together with arsenic and is at a high temperature by the above method.

またAsの除去方法としてカルシウム水酸化物による共
沈法も広く知られているが、かなり多量の水酸化カルシ
ウムを使用せねばならず、また石灰は地下熱水のpHを
著しるしく高アルカリ領域にするので、逆中和のため多
量の酸を用いる必要があるだけでなく、多量の石灰スラ
グが生成されるため、前記水酸化鉄法と同様に大量の地
下熱水を連続処理するにはこの方法を適用することが困
難*本である。
Co-precipitation using calcium hydroxide is also widely known as a method for removing As, but it requires the use of a fairly large amount of calcium hydroxide, and lime significantly raises the pH of underground hot water into a highly alkaline region. Therefore, not only is it necessary to use a large amount of acid for reverse neutralization, but also a large amount of lime slag is generated, so it is difficult to continuously treat large amounts of underground hot water as in the iron hydroxide method. This method is difficult to apply*.

本発明は、従来知られた産業廃水中に含有される砒素及
び珪酸の除去方法の欠点を除去、改善する方法を提供す
ることを目的とし、砒素ならびに珪酸を溶解している産
業廃水に第1鉄塩を添加溶解させた後、酸化剤を添加し
て、溶液中に含まれる第1鉄イオンの少なくとも40%
を第2鉄イオンに酸化せしめると共に、前記廃水中に含
まれる3価の砒素イオンを5価の砒素イオンに酸化させ
た後、アルカリを加えて、溶液のpHを2.5〜5の範
囲内に調整することにより砒素ならびに珪酸を第1なら
びに第2鉄塩と共に沈澱させることを特徴とする産業廃
水中に含有される砒素及び珪酸の除去方法によって前記
目的を達成することができる。
The purpose of the present invention is to provide a method for removing and improving the drawbacks of conventionally known methods for removing arsenic and silicic acid contained in industrial wastewater. After adding and dissolving the iron salt, an oxidizing agent is added to reduce at least 40% of the ferrous ions contained in the solution.
After oxidizing the trivalent arsenic ions contained in the wastewater to ferric ions and oxidizing the trivalent arsenic ions contained in the wastewater to pentavalent arsenic ions, an alkali is added to adjust the pH of the solution to within the range of 2.5 to 5. The above object can be achieved by a method for removing arsenic and silicic acid contained in industrial wastewater, which is characterized by precipitating arsenic and silicic acid together with ferrous and ferrous salts.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明者等は地熱発電に供される地下より採取される水
蒸気に伴い噴出する地下熱水(以下単に熱水と称す)の
利用について研究しているが、熱水中には一般に多量の
珪酸と若干の砒素が含有されており、熱水は温度が低下
すると珪酸が析出して輸送配管を閉塞する恐れがあり、
一方前記熱水を例えば暖房等に使用後河川に放流すると
砒素による公害を惹起する危険が生ずる。
The present inventors have been researching the use of underground hot water (hereinafter simply referred to as hot water) that erupts with water vapor extracted from underground for geothermal power generation, but hot water generally contains a large amount of silicic acid. It contains a small amount of arsenic, and when the temperature of hot water drops, silicic acid may precipitate and clog transportation piping.
On the other hand, if the hot water is discharged into a river after being used for heating, for example, there is a risk of causing pollution due to arsenic.

よって本発明者等は熱水中の砒素と珪酸を工業的に除去
する方法につき研究した結果、上記の如く本発明を新規
に完成した。
Therefore, the present inventors conducted research on a method for industrially removing arsenic and silicic acid from hot water, and as a result, they newly completed the present invention as described above.

次にその実験例についで説明する。第1表に示した溶解
成分を含む地下熱水を処理対象水として、砒素及び珪酸
の除去処理を行った。
Next, an experimental example will be explained. Arsenic and silicic acid removal treatment was performed using underground hot water containing the dissolved components shown in Table 1 as water to be treated.

第1図は、実験lとして温度70℃の熱水11をビーカ
ーに取り、硫酸第1鉄の10%溶液を添加した第1鉄の
濃度を100,200,500ppmとし、更に水酸化
ナトリウムでpHをそれぞれの値に調整したときの残留
砒素濃度を示したものである。
Figure 1 shows that as part of experiment 1, hot water 11 at a temperature of 70°C was taken in a beaker, a 10% solution of ferrous sulfate was added to set the ferrous concentration to 100, 200, and 500 ppm, and the pH was adjusted with sodium hydroxide. The figure shows the residual arsenic concentration when adjusted to each value.

第2図は、実験2として同じく硫酸第4鉄に代えて硫酸
第2鉄を用いた場合の残留砒素濃度を示したものである
FIG. 2 shows the residual arsenic concentration when ferric sulfate was used instead of ferric sulfate in Experiment 2.

第1図及び第2図より明らかな如く、第1鉄又は第2鉄
のみを用いた場合には、残留砒素濃度は低くとも約0.
10ppmであって環境基準である0、05p¥mを満
足できないことがわかる。
As is clear from FIGS. 1 and 2, when only ferrous or ferric iron is used, the residual arsenic concentration is at least about 0.
It can be seen that the amount is 10 ppm, which does not satisfy the environmental standard of 0.05 ppm.

第3図は、実験3として実験1と同様に硫酸第1鉄を加
えた後、第1鉄の濃度に対して約2倍の濃度となる量の
晒粉を酸化剤として加え、以後実験1と同様に処理した
ときの残留砒素濃度を示したものである。
Figure 3 shows that in Experiment 3, ferrous sulfate was added in the same manner as in Experiment 1, and then bleaching powder was added as an oxidizing agent in an amount that was about twice the concentration of ferrous iron. The figure shows the residual arsenic concentration when treated in the same manner as above.

第3図より明らかな如く、pHが2.5〜5.0の範囲
にあっては、硫酸第1鉄の添加量が1100ppと少く
とも残留砒素濃度をO1Q5ppm以下にすることがで
きる。
As is clear from FIG. 3, when the pH is in the range of 2.5 to 5.0, the amount of ferrous sulfate added is 1100 ppm, which makes it possible to reduce the residual arsenic concentration to at least 5 ppm of O1Q.

又、この時の鉄の酸化状態は、第1鉄が約2%で第2鉄
が約98%であり、砒素は全量が5価となっていた。
Further, the oxidation state of iron at this time was about 2% ferrous iron and about 98% ferric iron, and the total amount of arsenic was pentavalent.

次に、硫酸第1鉄の添加量を200ppmと一定にし、
且つpHも3.0と一定にして晒粉の添加量を変えて第
1鉄から第2鉄への転化の比率を種々変化させたときの
残留砒素濃度は第4図の様であった。
Next, the amount of ferrous sulfate added was kept constant at 200 ppm,
Furthermore, when the pH was kept constant at 3.0 and the amount of bleaching powder added was varied to vary the conversion ratio of ferrous iron to ferric iron, the residual arsenic concentration was as shown in FIG. 4.

第4図より明らかな如く、添加した第1鉄の少なくとも
40%を第2鉄に転化する如き酸化剤を加えれば良いこ
とがわかる。
As is clear from FIG. 4, it is sufficient to add an oxidizing agent that converts at least 40% of the added ferrous iron into ferric iron.

上述実験ではpHの下限を2.5としたが、これ以下で
は生成する沈澱の濾過性が極端に悪くなり。
In the above experiment, the lower limit of pH was set to 2.5, but below this value, the filterability of the formed precipitate becomes extremely poor.

工業的に有利でないからである。This is because it is not industrially advantageous.

又、珪酸は処理前の濃度が537p□であったが処理後
は第5図の如<3ooppm以下となり、配管輸送にお
いてもス乞−ル生戒の心配のない濃度とすることができ
た。
Furthermore, the concentration of silicic acid before treatment was 537 p□, but after treatment it became less than <3 ooppm as shown in Fig. 5, and the concentration could be maintained without worrying about leakage during pipe transportation.

以上の実験経過より、本発明によれば、廃水中に第1鉄
塩を添加溶解させた後、酸化剤を添加して、前記酸化剤
添加前の溶液中に含まれる第1鉄イオンの少なくとも4
0%を第2鉄イオンに酸化せしめると共に前記廃水中に
含まれる3価の砒素イオンを5価の砒素イオンに酸化さ
せた後、アルカリを加えて溶液のpHを3〜5の範囲内
に調整することにより、大部分の砒素および珪酸を第1
ならび第2鉄イオンと共に沈澱、除去することができる
ことを知見した。
From the above experimental progress, according to the present invention, after adding and dissolving a ferrous salt in wastewater, an oxidizing agent is added to remove at least ferrous ions contained in the solution before adding the oxidizing agent. 4
After oxidizing 0% to ferric ions and oxidizing trivalent arsenic ions contained in the wastewater to pentavalent arsenic ions, alkali is added to adjust the pH of the solution within the range of 3 to 5. By doing this, most of the arsenic and silicic acid are
It was also found that ferric ions can be precipitated and removed together with ferric ions.

本発明によれば、生成される沈澱は沈降性が比較的良好
であり、沈降容積も小さいスラグが生成されるので回収
が容易である。
According to the present invention, the generated precipitate has relatively good sedimentation properties, and the slag with a small sedimentation volume is generated, so that it is easy to recover.

一方策2鉄塩、第1鉄塩あるいは第1、第2鉄塩の混合
物等を使用した従来の水酸化鉄法によれば、珪酸を多量
に溶解している高温熱水中に含まれる砒素を除去するた
めには、珪酸を含まない溶液からの砒素除去に比べ、第
2鉄塩を用いるときは3〜5倍、第1鉄塩を用いる場合
は8〜12倍と比較的多量を用いなければならず、また
熱水の如く、高温の場合には温度が高くなる程砒素の除
去効果が低下する。
On the other hand, according to the conventional iron hydroxide method using di-iron salts, ferrous salts, or mixtures of ferric and ferric salts, arsenic is present in high-temperature hot water containing a large amount of silicic acid dissolved. In order to remove arsenic, compared to removing arsenic from a solution that does not contain silicic acid, a relatively large amount is used, 3 to 5 times as much when using a ferric salt, and 8 to 12 times when using a ferrous salt. In addition, in the case of high temperature such as hot water, the higher the temperature, the lower the arsenic removal effect becomes.

本発明によれば、熱水が適当なpH値すなわち2.5〜
5であれば、80〜95℃の高温熱水であっても、珪酸
を含まない廃水からの砒素除去の場合とほぼ同じく少量
の鉄塩の使用で有効に砒素除去が行われるから、特に熱
水を連続して大量処理する場合には極めて好適である。
According to the present invention, the hot water has a suitable pH value, i.e. 2.5~
5, even with high-temperature hot water of 80 to 95°C, arsenic can be effectively removed by using a small amount of iron salt, almost the same as when removing arsenic from wastewater that does not contain silicic acid. It is extremely suitable for continuous large-scale treatment of water.

次に本発明を第2表について説明する。Next, the present invention will be explained with reference to Table 2.

地下より自噴した高温熱水を原水■として用い、この原
水■を混合器■に導入し、回器中に硫酸第1鉄あるいは
塩化第1鉄などの第1鉄イオン■を含む塩を添加、混合
、溶解させた後、次亜塩素酸ナトリウム、晒粉あるいは
過酸化水素などの酸化剤■を加えて、第1鉄イオン■の
少なくとも40%を第2鉄イオンに酸fヒさせ、同時に
原水中に含まれる砒素をも3価の砒素イオンから5価の
砒素イオンに酸化させる。
High-temperature hot water gushing out from underground is used as raw water (■), this raw water (■) is introduced into a mixer (■), and salt containing ferrous ions such as ferrous sulfate or ferrous chloride (■) is added into the mixer. After mixing and dissolving, an oxidizing agent such as sodium hypochlorite, bleaching powder or hydrogen peroxide is added to convert at least 40% of the ferrous ions into ferric ions, and at the same time the raw material is Arsenic contained in water is also oxidized from trivalent arsenic ions to pentavalent arsenic ions.

前記酸化反応終了後、攪拌しながら水酸化カルシウム、
あるいは苛性ソーダなどのアルカリ■を添加して原水の
pHを2.5〜5に調整すると、第1および第2鉄の酸
化物あるいは水酸化物を含む沈澱が生ずる。
After the completion of the oxidation reaction, calcium hydroxide,
Alternatively, when the pH of the raw water is adjusted to 2.5 to 5 by adding an alkali such as caustic soda, a precipitate containing ferrous and ferric oxides or hydroxides is formed.

この沈澱は沈降性が良好であり、かつ沈降容積も小さく
、また砒素および珪酸との共沈物色を含有する。
This precipitate has good sedimentation properties, has a small sedimentation volume, and contains coprecipitate color with arsenic and silicic acid.

前記沈澱を含む原水中に必要により凝集剤■を添加して
共沈物■を凝集化し1例えばシックナーあるいはタラリ
ファイア等の沈降分離槽■へ導入して上澄液■と沈澱■
(以下スラリーとも称す)とに分離する。
If necessary, a flocculant (2) is added to the raw water containing the precipitate to flocculate the coprecipitate (1), and the mixture is introduced into a sedimentation separation tank (1), such as a thickener or a talarifier, to separate the supernatant liquid (2) and the precipitate (2).
(hereinafter also referred to as slurry).

次いで上澄液■にアルカリ■を加えて、pHを排出規準
以内に調整する。
Next, add alkali (2) to the supernatant (2) to adjust the pH to within the discharge standard.

スラリー■は脱水機[相]を用いて脱水後、脱水スラグ
0と脱水液@とに分離し、脱水液0は混合器■に戻して
循環処理する。
Slurry ① is dehydrated using a dehydrator [phase] and then separated into dehydrated slag 0 and dehydrated liquid @, and dehydrated liquid 0 is returned to mixer ① for circulation treatment.

以上本発明によれば、 (イ)第1鉄イオンを60℃以上の廃水中で1部すなわ
ち少なくとも40%を第2鉄イオンに酸化し、さらに3
価の砒素イオンを5価イオンに酸化させた後、pH2,
5〜5の範囲内で第1鉄及び第2鉄の酸rヒ物あるいは
水和物などの共存する沈澱により、廃水中の殆んどすべ
ての砒素および大部分の珪酸を効率良く分離することが
できるため、廃水処理に添加される第1鉄塩、アルカリ
等の薬品の使用量を少なくし処理費の軽減を計ることが
できる。
As described above, according to the present invention, (a) a part of ferrous ions, that is, at least 40%, is oxidized to ferric ions in wastewater at a temperature of 60°C or higher, and 3
After oxidizing valent arsenic ions to pentavalent ions, pH 2,
To efficiently separate almost all the arsenic and most of the silicic acid in wastewater by coexisting precipitation of ferrous and ferric acid arsenides or hydrates within the range of 5 to 5. As a result, the amount of chemicals such as ferrous salts and alkalis added to wastewater treatment can be reduced, and treatment costs can be reduced.

(ロ)添加薬品の種類及び量が少ないので、沈降スラジ
量も少なく、その後のスラグ処理を有利に行うことがで
きる。
(b) Since the types and amounts of added chemicals are small, the amount of settled sludge is also small, and subsequent slag treatment can be carried out advantageously.

(ハ)添加薬品量が少ないので、上澄液中に溶存残留す
るCaイオン、SO4イオン等の成分が低くなり、2次
公害につながる恐れが少ない。
(c) Since the amount of added chemicals is small, the amount of components such as Ca ions and SO4 ions remaining dissolved in the supernatant is low, and there is little risk of secondary pollution.

に)比較的高温の熱水において小量の薬品添加で短時間
に効率良く除砒素、除珪酸を行うことができ、熱エネル
ギーの有効利用に有利である。
b) Arsenic and silicic acid removal can be carried out efficiently in a short time by adding a small amount of chemicals in relatively high temperature hot water, which is advantageous for effective use of thermal energy.

次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

上記第3表に示す地下から自噴した直後の温度85℃の
熱水1m”を鋼製タンクにとり、スターラーで攪拌しな
がら、10%硫酸第1鉄溶液を添加し、第1鉄イオンF
e 濃度が、50p…になる様にした。
1 m of hot water at a temperature of 85°C immediately after gushing out from underground as shown in Table 3 above is placed in a steel tank, and while stirring with a stirrer, a 10% ferrous sulfate solution is added, and ferrous ion F
e The concentration was set to 50p...

次いで有効塩素60%のサラシ粉粉末を、すでに溶存し
ている第1鉄イオンの内約60%が第2鉄イオンに酸化
される理論量だけ添加した(この時、同時に砒素も3価
イオンから5価イオンに酸化される)。
Next, a powder containing 60% available chlorine was added in a theoretical amount that would oxidize approximately 60% of the already dissolved ferrous ions to ferric ions (at the same time, arsenic was also converted from trivalent ions to ferric ions). oxidized to pentavalent ions).

約1分后、液のpHは3.3で一定になったが1反応が
十分進む様さらに3分間攪拌を続けた。
After about 1 minute, the pH of the solution became constant at 3.3, but stirring was continued for another 3 minutes to ensure that one reaction proceeded sufficiently.

次いで、5%石灰乳溶液を添加して、液のpHが4.3
になる様に調整し、3分間攪拌を続けてから、凝集剤を
3m添加し、15秒后に攪拌を止めた。
Next, 5% lime milk solution was added until the pH of the solution was 4.3.
After stirring was continued for 3 minutes, 3 m of flocculant was added, and stirring was stopped after 15 seconds.

その時、赤褐色の沈澱が凝集化し、速やかに沈降し、無
色透明な上澄液が得られた。
At that time, the reddish-brown precipitate aggregated and rapidly settled, yielding a colorless and transparent supernatant.

攪拌を止めた5分后に於ける沈澱スラッジ量は、1m3
のタンクの底部に沈降して、その容積は全体量の約1%
弱であった。
The amount of settled sludge 5 minutes after stopping stirring is 1 m3.
It settles at the bottom of the tank, and its volume is about 1% of the total volume.
It was weak.

又、この時の液温は83.0℃であった。次いで上澄液
と沈澱とに分離し、上澄液にアルカリを加えてpHを5
に調整した后、残留砒素を原子吸光法により分析した所
0.04pp!It以下であった。
Moreover, the liquid temperature at this time was 83.0°C. Next, the supernatant liquid and the precipitate are separated, and an alkali is added to the supernatant liquid to adjust the pH to 5.
After adjusting the amount, residual arsenic was analyzed by atomic absorption spectrometry and found to be 0.04pp! It was below It.

残留珪酸は1重量法により分析した所220pp[Il
であった。
Residual silicic acid was analyzed by the 1 weight method and was found to be 220 pp [Il
Met.

同様な操作を添加する硫酸第1鉄量、サラシ粉量を第1
鉄量20〜6Qppm、サラシ粉量40〜120ppI
nの範囲内で種々組合せ液のpHを2.5〜5.0の範
囲内で変えて、十数間実験を行ったが、第1鉄量とサラ
シ粉量とのある適当な配合割合の範囲内で、上澄液に残
留する砒素及び珪酸はそれぞれ0.01〜Q、Q5pp
m、200〜400p戸であった。
The same operation is performed to add the amount of ferrous sulfate and the amount of sardine powder to the first
Iron amount 20-6Qppm, Sarashi powder amount 40-120ppI
We conducted experiments for more than a dozen times by changing the pH of various combination solutions within the range of 2.5 to 5.0 within the range of n. Within the range, arsenic and silicic acid remaining in the supernatant liquid are 0.01 to Q, Q5pp, respectively.
m, 200-400p.

次に添加薬品量を同一にし、処理する熱水温度を75°
C165°C,40’C,25℃のそれぞれについて前
記の操作を行った所、処理液pHが2.5〜5の範囲内
では液温か異なっていても、砒素の除去率には、大きな
変化がなくそれ以上のpH域では。
Next, the amount of added chemicals is the same, and the temperature of the hot water to be treated is set to 75°.
When the above operations were performed at 165°C, 40'C, and 25°C, there was no significant change in the arsenic removal rate even if the temperature of the treatment solution was different within the range of 2.5 to 5. In the pH range above that.

液温か高くなるほど、除去率が、大巾に低下した。As the liquid temperature increased, the removal rate decreased significantly.

以上本発明によれば、砒素および珪酸を含有する産業廃
水中から、前記砒素および珪酸を有利に除去することが
でき、る。
As described above, according to the present invention, arsenic and silicic acid can be advantageously removed from industrial wastewater containing arsenic and silicic acid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は硫酸第1鉄の添加量及びpHと残留砒素濃度と
の関係を示す図、第2図は硫酸第2鉄の添加量及びpH
と残留砒素濃度との関係を示す図、第3図は晒粉を添加
したときの硫酸第1鉄の添加量及びpHと残留砒素濃度
との関係を示す図、第4図はFe37全Feの比率と残
留砒素濃度との関係を示す図、第5図はFe /全F
eの比率と残留珪酸濃度との関係を示す図である。
Figure 1 is a diagram showing the relationship between the amount of ferrous sulfate added and pH and the residual arsenic concentration, and Figure 2 is the amount of ferric sulfate added and the relationship between pH and residual arsenic concentration.
Figure 3 shows the relationship between the amount of ferrous sulfate added when bleaching powder is added and the pH and the residual arsenic concentration. Figure 4 shows the relationship between Fe37 total Fe A diagram showing the relationship between the ratio and residual arsenic concentration, Figure 5 is Fe/total F
It is a figure showing the relationship between the ratio of e and the residual silicic acid concentration.

Claims (1)

【特許請求の範囲】 1 砒素ならびに珪酸を溶解している産業廃水に。 第」鉄塩を添加溶解させた後、酸化剤を添加して。 前記酸化剤添加前の溶液中に含まれる第1鉄イオンの少
なくとも40%を第2鉄イオンに酸化せしめると共に、
前記廃水中に含まれる3価の砒素イオンを5価の砒素イ
オンに酸化させた後、アルカリを加えて溶液のpHを2
.5〜5の範囲内に調整することにより砒素ならびに珪
酸を第1ならびに第2鉄塩と共に沈澱させることを特徴
とする産業廃水中に含有される砒素及び珪酸の除去方法
[Claims] 1. For industrial wastewater containing dissolved arsenic and silicic acid. After adding and dissolving the ferrous salt, add the oxidizing agent. oxidizing at least 40% of the ferrous ions contained in the solution before addition of the oxidizing agent to ferric ions;
After oxidizing trivalent arsenic ions contained in the wastewater to pentavalent arsenic ions, alkali was added to adjust the pH of the solution to 2.
.. A method for removing arsenic and silicic acid contained in industrial wastewater, which comprises precipitating arsenic and silicic acid together with ferrous and ferrous salts by adjusting the concentration within the range of 5 to 5.
JP53104431A 1978-08-29 1978-08-29 Method for removing arsenic and silicic acid contained in industrial wastewater Expired JPS5834195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53104431A JPS5834195B2 (en) 1978-08-29 1978-08-29 Method for removing arsenic and silicic acid contained in industrial wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53104431A JPS5834195B2 (en) 1978-08-29 1978-08-29 Method for removing arsenic and silicic acid contained in industrial wastewater

Publications (2)

Publication Number Publication Date
JPS5531437A JPS5531437A (en) 1980-03-05
JPS5834195B2 true JPS5834195B2 (en) 1983-07-25

Family

ID=14380477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53104431A Expired JPS5834195B2 (en) 1978-08-29 1978-08-29 Method for removing arsenic and silicic acid contained in industrial wastewater

Country Status (1)

Country Link
JP (1) JPS5834195B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56128038A (en) * 1980-03-11 1981-10-07 Nec Corp Two-way amplifier of two-wire system
JP2005000823A (en) * 2003-06-12 2005-01-06 Japan Science & Technology Agency Method for treating geothermal water
US9034294B1 (en) 2009-04-24 2015-05-19 Simbol, Inc. Preparation of lithium carbonate from lithium chloride containing brines
US8597521B1 (en) * 2009-06-24 2013-12-03 Simbol Inc. Selective removal of silica from silica containing brines
US10190030B2 (en) 2009-04-24 2019-01-29 Alger Alternative Energy, Llc Treated geothermal brine compositions with reduced concentrations of silica, iron and lithium
US9644126B2 (en) 2009-06-24 2017-05-09 Simbol, Inc. Treated geothermal brine compositions with reduced concentrations of silica, iron, and zinc
US10683563B2 (en) 2009-06-24 2020-06-16 Terralithium Llc Treated geothermal brine compositions with reduced concentrations of silica, iron and manganese
US9644866B2 (en) 2009-06-24 2017-05-09 Simbol, Inc. Treated brine compositions with reduced concentrations of potassium, rubidium, and cesium
US9650555B2 (en) 2009-06-24 2017-05-16 Simbol, Inc. Treated geothermal brine compositions with reduced concentrations of iron and silica

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529963A (en) * 1975-07-11 1977-01-25 Dowa Mining Co Ltd Method for removing arsenic and silicic acid contained in aqueous solu tion simultaneously

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529963A (en) * 1975-07-11 1977-01-25 Dowa Mining Co Ltd Method for removing arsenic and silicic acid contained in aqueous solu tion simultaneously

Also Published As

Publication number Publication date
JPS5531437A (en) 1980-03-05

Similar Documents

Publication Publication Date Title
CN109502655B (en) Production process of polymeric ferric sulfate
JP6288217B1 (en) Method and apparatus for treating wastewater containing sulfuric acid, fluorine and heavy metal ions
CN101954370B (en) Method for recycling arsenic-containing waste residues
JPS5834195B2 (en) Method for removing arsenic and silicic acid contained in industrial wastewater
JP2012224901A (en) Method for treating and recovering copper-containing acidic waste liquid and apparatus for the same
US11008221B2 (en) Polyferric sulphate solution
US4137293A (en) Producing gypsum and magnetite from ferrous sulfate and separating
US3752759A (en) Depuration of an aqueous solution containing vanadium and cobalt salts as impurities
WO2021084986A1 (en) High-concentration iron-based flocculant, and method for producing same
JP2001179266A (en) Method for treating selenium-containing water
FR2490679A1 (en) PROCESS FOR RECOVERING URANIUM FROM URANIUM MATERIAL CONTAINING IRON, ARSENIC AND SILICEOUS MATERIAL
JPH07241404A (en) Iron based inorganic flocculant and its production
CN110042242A (en) A method of aluminium chromium nickel in separation aluminium shape surface processing sludge
CN115135607B (en) High-concentration iron flocculant and production method thereof
US3205064A (en) Neutralization of waste pickle liquor with blast furnace dust
JPS6046930A (en) Improved method for treating heavy oil ash
JP2000167569A (en) Method and equipment for treating copper-containing acidic waste water
US2642334A (en) Method of neutralizing industrial waste
JP2003104728A (en) Method for treating iron-containing sulfuric acid solution
KR100388033B1 (en) Method for Extracting Hexavalent Chromium from Trivalent Chromium-Containing Wastewater Sludge
JP3641148B2 (en) Method for producing polyferric sulfate
JPH02102787A (en) Treatment of waste pickling liquid
CN112897739A (en) Arsenic harmless treatment method for arsenic-containing waste liquid
CN117488061A (en) Method for removing iron from carbonated leaching solution
CN116770069A (en) Method for removing iron ions and recycling acid from high-concentration iron-containing waste liquid