JP3641148B2 - Method for producing polyferric sulfate - Google Patents

Method for producing polyferric sulfate Download PDF

Info

Publication number
JP3641148B2
JP3641148B2 JP35740998A JP35740998A JP3641148B2 JP 3641148 B2 JP3641148 B2 JP 3641148B2 JP 35740998 A JP35740998 A JP 35740998A JP 35740998 A JP35740998 A JP 35740998A JP 3641148 B2 JP3641148 B2 JP 3641148B2
Authority
JP
Japan
Prior art keywords
iron
solution
carbonate
sulfate
ferric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35740998A
Other languages
Japanese (ja)
Other versions
JP2000178027A (en
Inventor
一則 秋山
通正 鈴木
詩路士 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP35740998A priority Critical patent/JP3641148B2/en
Publication of JP2000178027A publication Critical patent/JP2000178027A/en
Application granted granted Critical
Publication of JP3641148B2 publication Critical patent/JP3641148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、凝集剤として利用することができるポリ硫酸第二鉄を、例えば塩化第一鉄液やエッチング廃液等の鉄塩溶液から製造する方法に関する。
【0002】
【従来の技術】
浄水効果のある凝集剤として知られるポリ硫酸第二鉄(Fe2(OH)n(SO4)3-n/2)は、硫酸第一鉄(FeSO4)1モルに対し硫酸0.5モル未満、(好ましくは0.35〜0.45モル)を混在させ、当該溶液を酸化する製法で得られることが知られている。
【0003】
ところで例えば塩化第二鉄エッチング液(FeCl3)を用いて金属板をエッチングした後のエッチング廃液の如き鉄塩廃液は、多量の金属塩を含むこと及び溶液中の酸が強いこと等の理由により、そのまま放流するわけにはいかない。そこでこの種の鉄塩を含んだ廃液は中和等の処理を行った後に放流するようにしているが、この場合中和等の廃棄処理は費用がかさむため、有効な利用法の一つに凝集剤としての利用価値が認められているポリ硫酸第二鉄溶液として再利用することも検討されている。例えば塩化第二鉄エッチング廃液を用いてポリ硫酸第二鉄溶液を製造する方法としては特開平8−48527号公報が開示されている。この方法ではまず最初に廃液中の第二鉄(Fe3+)を殆ど第一鉄(Fe2+)に還元し、次に当該処理液から鉄分を取り除くために水に難溶な炭酸鉄(FeCO3)を生成させ、これを吸引濾過して廃液から分離する。この炭酸鉄に硫酸を混ぜ合わせ、これを酸化することでポリ硫酸第二鉄を得る、というものでこれらの反応は以下の(1)(2)の順で進行する。
【0004】

Figure 0003641148
ここで炭酸鉄と硫酸の混合は炭酸鉄1モルに対して硫酸1モル以上1.5モル未満で行われる。その理由は、硫酸1モル未満では難溶性の(Fe2(OH)n(SO4)3-n/2)(n≧1)が生成してしまい、また1.5モル以上では硫酸第二鉄(Fe2(SO4)3)となってしまいポリ硫酸第二鉄(Fe2(OH)n(SO4)3-n/2)が生成されないからである。従ってこの製法は(1)式の工程で炭酸鉄1モルと硫酸1モルが反応するため、(2)式の工程では硫酸第一鉄1モルに対して0〜0.5モルの硫酸が反応しつつ酸化が行われることとなり、この点前述の硫酸第一鉄と硫酸とを混在させて酸化を行うポリ硫酸第二鉄の製造法と同様である。
【0005】
【発明が解決しようとする課題】
しかし、FeSO4:H2SO4=1:(0〜0.5)である溶液の酸化においては僅かな条件の変化で難溶性の物質、例えば(Fe2(OH)n(SO4)3-n/2)(n≧1)の沈殿が生成し、溶液はスラリー化してしまう。スラリー化した溶液では、液中に酸化性ガスを均一に供給することが困難になるので酸化のコントロールが難しくなり、また沈殿が生成した分だけポリ硫酸第二鉄の歩留りが低下してしまう。更に、このような溶液は難溶性物質を濾過する後工程が必要となる点も問題であった。
【0006】
従って本発明は、このような事情の下になされたものであり、その目的は簡易な方法で沈殿等を形成し得る難溶性物質の発生を抑えた歩留りの高いポリ硫酸第二鉄溶液の製造方法を提供するものである。
【0007】
また、本発明の他の目的は炭酸鉄を有効利用してポリ硫酸第二鉄溶液を製造する方法を提供すると共に、例えば塩化第二鉄エッチング廃液の如き鉄塩廃液の有効な再生利用の途を提供することにある。
【0008】
【課題を解決するための手段】
本発明のポリ硫酸第二鉄の製造方法は、炭酸鉄を、炭酸鉄に対してモル量で1.5倍以上1.8倍以下の硫酸に溶解させ、その溶液に酸素ガスを供給して硫酸第二鉄を生成する工程と、
その後、この工程で得られた溶液に、硫酸第二鉄をポリ硫酸第二鉄とするために不足する鉄を補うために少量の炭酸鉄を供給し、その混合液を酸化する工程と、を含むことを特徴とする。
【0009】
前記硫酸第二鉄は、コスト面から自製することが好ましく例えば鉄を塩化第二鉄でエッチングした後の鉄塩溶液に対して、予め廃液中の第二鉄を殆ど第一鉄に還元し、次に当該溶液中の塩化第一鉄に炭酸塩を反応させて炭酸鉄を生成する工程と、
この生成した炭酸鉄を当該反応溶液から分離する工程と、を行い、この炭酸鉄を原料とすることが得策である。
【0010】
【発明の実施の形態】
本実施の形態として塩化第二鉄エッチング廃液から、当該液中の鉄分をポリ硫酸第二鉄として取り出す製法を例にとり、図1にこれを図示する。この図1ではポリ硫酸第二鉄が製造されるまでの工程を便宜的に四つの工程に分けており、これらは、塩化第二鉄エッチング廃液の第二鉄を第一鉄に還元する工程(イ)、この溶液と炭酸塩を反応させてこれにより生じる炭酸鉄を濾液と分離する工程(ロ)、この工程(ロ)で分離された炭酸鉄を硫酸と混合して硫酸第二鉄(Fe2(SO4)3)を生成する工程(ハ)、及び硫酸第二鉄に少量の炭酸鉄を加えると共に溶液を酸化してポリ硫酸第二鉄を得る工程(ニ)の夫々の工程からなる。図1における工程(ハ)及び工程(ニ)についての詳細な説明図は図2に示され、工程(ハ)を水槽20、工程(ニ)を水槽30で行うように夫々分けて説明しているが、これは便宜的な表現にすぎず、例えば同一水槽内にて、工程(ハ)及び工程(ニ)をバッチ処理で進行するようにしてよいことは勿論である。
【0011】
水槽1、10、20及び30には夫々攪拌手段32が設けられており、水槽30内には酸化性ガス供給用のバブリング装置31が設けられている。この酸化性ガス供給手段はバブリング装置31に限定されるものではなく、高圧流体に気体を引き込むアスピレーター等を用いることや、高圧反応容器での高速反応も可能である。酸化性ガスは酸素に限られず、オゾン(O3)、NO2等を用いてもよい。また、酸化剤水溶液でも酸化は可能だが、同伴する不純物の混入から事実上使用できないことが多いため、この場合はH2O2水溶液を用いて酸化することが好ましい。
【0012】
次に図1における各工程の説明を行う。まず工程(イ)の水槽1内には塩化第二鉄エッチング廃液が入れられる。この廃液の中には、エッチングにより生じた塩化第一鉄や、未反応の塩化第二鉄が混在している。そこで、この廃液中の第二鉄の殆どを第一鉄にするため、鉄材を投入して(3)式による反応を行う。
【0013】
Fe+2FeCl3→3FeCl2 ……(3)
次にこの反応液を水槽10に送り、ここで水槽10内に炭酸塩を供給すると水に難溶な炭酸鉄が生成し、水槽10内に沈殿する。炭酸塩には各種アルカリ金属及びアルカリ土類金属の炭酸塩が用いることが可能であり、例えば15重量%の炭酸ナトリウム(Na2CO3)をpHが7〜8程度以上となるように加えると(4)式のように反応する。
【0014】
FeCl2+Na2CO3→FeCO3↓+2NaCl……(4)
なお、本発明では図示されないが炭酸塩そのものを水槽10内に供給しなくとも、例えば、水酸化ナトリウム(NaOH)を水槽10内に供給すると共に炭酸ガス(CO2)を吹き込んで炭酸ナトリウムを水槽10内で生成するようにしてもよく、この場合も炭酸塩を供給するという意味に含まれる。
【0015】
そして生成した炭酸鉄を例えば吸引濾過により分離し、分離された濾液はそのまま排水処理系へ流すことができるが、イオン交換樹脂等を通過させて塩類の除去も行うことができる。
【0016】
濾過後の炭酸鉄は図2の工程(ハ)に示すように水槽20内に供給される硫酸(H2SO4)とO2又はH2O2で以下の式(5)のように反応する。この時供給される硫酸のモル比については従来例のように鉄分の1以上1.5倍未満であると次の酸化工程で難溶性の(Fe2(OH)n(SO4)3-n/2)(n≧1)の沈殿が生じてしまう。一方で硫酸量があまりに多いと鉄分と未反応の硫酸が次の酸化工程で供給される少量の炭酸鉄と反応して硫酸第一鉄へと変化してしまうため、工程(ハ)で供給される硫酸は鉄分の1.5倍以上1.8倍未満のモル比で、なるべく1.5に近いことが好ましい。
【0017】
【0018】
Figure 0003641148
この後、図2の工程(ニ)に示すように酸化を行う。反応は以下の(6)式のように、工程(ハ)で得られた硫酸第二鉄溶液に少量の炭酸鉄及び酸化性ガスを反応させることで進められ、この反応により目的物のポリ硫酸第二鉄溶液が得られることとなる。
【0019】
Figure 0003641148
これまで述べてきた実施の形態によると、工程(ハ)の溶液中はFe2(SO4)3と過剰の硫酸であり、ポリ硫酸第二鉄の生成を行うには鉄分の不足状態にあるといえる。従って前述の自製した硫酸第二鉄溶液で(6)式の反応を行えば、不足した鉄分を補うだけの少量の炭酸鉄を加えれば良いわけである。
【0020】
例えば塩基度約17%のポリ硫酸第二鉄(Fe2(OH)(SO4)2.5)を製造する場合だと以下の(7)式のように原料である硫酸第二鉄に含有する鉄分(Fe)に対し1/5量に相当する鉄分を炭酸鉄(FeCO3)で補給して酸化すればよいことになる。実際は、塩基度が10%前後であることを考慮すれば、更にこの割合は下がり、約1/10の炭酸鉄補給でよいことになる。
【0021】
Figure 0003641148
このように上述実施の形態では先ず炭酸鉄にモル量で1.5倍以上の硫酸を加えて溶解度の高い硫酸第二鉄を生成し、次いでこの硫酸第二鉄に少量の炭酸鉄を混合し、例えばO2により酸化することから、酸化で難溶性の(Fe2(OH)n(SO4)3-n/2)(n≧1)の沈殿がほとんど生成されない。即ち理論的には炭酸鉄にモル量で1.5倍の硫酸を反応させればよいわけであるが、確実に硫酸第二鉄を得るためには1.5倍よりも若干多い1.5〜1.8倍、好ましくは1.5〜1.6倍程度の硫酸を供給することが好ましい。このため未反応の少量の硫酸が残り、次工程で炭酸鉄と反応してFeSO4を生ずるが、これも酸化されてポリ硫酸第二鉄となる。そのため、上記(7)式より少し多くの炭酸鉄が必要となる。しかし、その量は溶液全体から見れば僅かであり、高い歩留りでポリ硫酸第二鉄を得ることができ、また工程(ニ)ではスラリー化し難い条件なので酸化のコントロールにも支障がない。
【0022】
即ち、従来法では炭酸鉄にモル量で1〜1.5倍の硫酸を加えて生じた硫酸第一鉄を酸化する、という手法であり、硫酸第一鉄に対してポリ硫酸第二鉄とするための不足のSO4分を硫酸で補っていたが、上述実施の形態では炭酸鉄に加える硫酸のモル量を1.5倍以上として容易には沈殿を生じない硫酸第二鉄を得、この硫酸第二鉄に対してポリ硫酸第二鉄とするために不足する少量のFeを炭酸鉄により補うことから、O2酸化のみならず、H2O2酸化でも薬剤コストのアップが無視できる。更にこの手法では工程(ロ)で得た炭酸鉄を工程(ニ)においても利用できるので、この点でも有効な手法である。
【0023】
なお前にも述べたように工程(ハ)及び(ニ)は、バッチ反応では同一水槽で反応を行うことで効率的に進めることができる。酸化ガス供給のタイミングは液量、濃度及び温度に応じて予め計測したデータによるか、或いは図示されない制御装置等により定められる。一連の工程(ハ)及び(ニ)の温度は60℃〜100℃で行われ、圧力は常圧でも加圧しても良く、加圧時には反応が加速する。
【0024】
また、工程(ニ)において原料となる硫酸第二鉄についてはこれまで述べてきた実施の形態のように自製して得る方法の他にも鉱石や市販の物を用いることもできるが、自製する方法がコスト的に有利である。
【0025】
ところで、工程(ハ)や(ニ)においては(5)、(6)式の反応が進み、第一鉄の濃度が低下し、酸化反応が停滞する場合を考慮して、工程(ハ)及び(ニ)に過酸化水素水を用いる手法を採ることもできる。しかし過酸化水素水は高価なため、第一鉄の濃度が減少して反応速度が遅くなり始めた頃に供給することで、コスト抑制及び装置の小型化の達成が可能である。
【0026】
【実施例】
(実施例)
塩化第一鉄を7重量%、塩化第二鉄を32重量%含むエッチング廃液1000gに鉄粉55gを添加し、加熱して反応させたところ、42.2重量%の塩化第一鉄が1055g得られた。
【0027】
この溶液に予め調製した15重量%の炭酸ナトリウム溶液2480gを混合した後、更に20gを加えてpHを7.8とし、炭酸鉄を析出させた。これに分離、水洗及び脱水を行って含水率27%の炭酸鉄ケーキ556gを得た。
【0028】
この炭酸鉄548gを60重量%の硫酸873gに溶解し、水で希釈して2000gとした。この溶液を還流装置のついたジャケット付き高速攪拌容器で、O2ガスを流しながら24時間強力攪拌して沈殿析出のない硫酸第二鉄の34.5重量%溶液2000gを得た。但し、蒸発して減った水は補給して行った。
【0029】
次に、この液に上記の含水率27%の炭酸鉄94gを加え、攪拌して溶解した後、35重量%の過酸化水素水50gを徐々に添加し、第一鉄の殆ど全部を酸化して沈殿のない第二鉄濃度10.5%、塩基度12%、pH1.25のポリ硫酸第二鉄2144gを得た。
【0030】
(比較例1)
炭酸鉄(乾燥)350gと95重量%の硫酸421gを混合し、更に水を加えて1600gとした。この溶液を還流装置のついたジャケット付き高速攪拌容器において、80℃でO2ガスを供給して酸化をを行ったところ、計算上の塩基度が10%でFe濃度(Fe2+と微量のFe3+)が約10%であるにも拘らず、反応開始直後から沈殿析出が始まり、時間が経ってもこの傾向は同じで析出が続いた。その結果7時間後には液中のFeイオン濃度(Fe2+とFe3+)が6.18%と下がってしまい、目標としたFe3+濃度が10%以上のポリ硫酸第二鉄は得られなかった。ちなみに、沈殿をX線にかけて調べたところ、主としてFe6S4O21・xH2Oのピークが得られた。
【0031】
(比較例2)
試薬の硫酸第一鉄(FeSO4無水塩)459gと95%硫酸110gとに水を加えて1600gとした。この溶液を比較例1と同じ装置と反応条件で酸化を行ったところ、やはり比較例1と同様、沈殿析出があり、液中のFeイオン濃度(濾液中のFe濃度)が3時間で5.95%に低下してしまい、目的とする濃度のポリ硫酸鉄は得られなかった。沈殿のX線回折の結果は比較例1と同様の結晶であった。
【0032】
【発明の効果】
本発明によれば、溶液内の沈殿析出を極力抑えられるので、製造されたポリ硫酸第二鉄溶液から沈殿物を分離する後工程の負荷を減らすことができ、ポリ硫酸第二鉄の取得率を高くすることができる。また、他の発明によれば例えば塩化第二鉄エッチング廃液の如き鉄塩廃液から分離した炭酸鉄を利用してポリ硫酸第二鉄を製造するので有効な廃液処理の途を提供することができる。
【図面の簡単な説明】
【図1】本発明の一の実施の形態を表した説明図である。
【図2】図1中の工程(ハ)及び工程(ニ)について詳説した説明図である。
【符号の説明】
10,20,30 水槽
31 バブリング手段
32 攪拌手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing polyferric sulfate that can be used as a flocculant from an iron salt solution such as ferrous chloride solution or etching waste solution.
[0002]
[Prior art]
Polyferric sulfate (Fe2 (OH) n (SO4) 3-n / 2), known as a flocculant having a water purification effect, is less than 0.5 mol of sulfuric acid per mol of ferrous sulfate (FeSO4). It is known that it can be obtained by a production method in which 0.35 to 0.45 mol) is preferably mixed and the solution is oxidized.
[0003]
By the way, for example, an iron salt waste solution such as an etching waste solution after etching a metal plate using a ferric chloride etchant (FeCl3) contains a large amount of metal salt and a strong acid in the solution. It cannot be released as it is. Therefore, waste liquid containing this type of iron salt is discharged after neutralization and other treatments. In this case, waste treatment such as neutralization is costly, so it is one of the effective uses. Reuse as a ferric sulfate solution that has been recognized as being useful as a flocculant is also under consideration. For example, JP-A-8-48527 discloses a method for producing a polyferric sulfate solution using ferric chloride etching waste liquid. In this method, ferric iron (Fe3 +) in the waste liquid is first reduced to almost ferrous iron (Fe2 +), and then iron carbonate (FeCO3) that is hardly soluble in water is produced to remove iron from the treatment liquid. This is suction filtered and separated from the waste liquid. The reaction proceeds in the order of the following (1) and (2), in which sulfuric acid is mixed with this iron carbonate and oxidized to obtain polyferric sulfate.
[0004]
Figure 0003641148
Here, the mixing of iron carbonate and sulfuric acid is carried out at 1 mol or more and less than 1.5 mol of sulfuric acid per 1 mol of iron carbonate. The reason is that less than 1 mol of sulfuric acid produces (Fe2 (OH) n (SO4) 3-n / 2) (n ≧ 1), and ferric sulfate (1.5 mol or more). This is because Fe2 (SO4) 3) is produced and polyferric sulfate (Fe2 (OH) n (SO4) 3-n / 2) is not generated. Therefore, in this production method, 1 mol of iron carbonate and 1 mol of sulfuric acid react in the step of formula (1). Therefore, in the step of formula (2), 0 to 0.5 mol of sulfuric acid reacts with 1 mol of ferrous sulfate. However, this is the same as the above-described method for producing ferric sulfate, in which oxidation is performed by mixing ferrous sulfate and sulfuric acid.
[0005]
[Problems to be solved by the invention]
However, in the oxidation of a solution in which FeSO4: H2SO4 = 1: (0 to 0.5), a slightly soluble substance such as (Fe2 (OH) n (SO4) 3-n / 2) ( A precipitate of n ≧ 1) is formed and the solution is slurried. In the slurry solution, it becomes difficult to uniformly supply the oxidizing gas into the liquid, so that it becomes difficult to control the oxidation, and the yield of polyferric sulfate is reduced by the amount of precipitation. Furthermore, such a solution also has a problem in that a post-process for filtering a hardly soluble substance is required.
[0006]
Accordingly, the present invention has been made under such circumstances, and its purpose is to produce a high yield polyferric sulfate solution that suppresses the generation of hardly soluble substances that can form precipitates and the like by a simple method. A method is provided.
[0007]
Another object of the present invention is to provide a method for producing a ferric sulfate solution by effectively using iron carbonate, and to effectively recycle iron salt waste liquid such as ferric chloride etching waste liquid. Is to provide.
[0008]
[Means for Solving the Problems]
In the method for producing ferric sulfate of the present invention, iron carbonate is dissolved in 1.5 times to 1.8 times sulfuric acid in molar amount with respect to iron carbonate, and oxygen gas is supplied to the solution. Producing ferric sulfate; and
Then, a small amount of iron carbonate is supplied to the solution obtained in this step to supplement iron that is insufficient to convert ferric sulfate to polyferric sulfate, and the mixed solution is oxidized. It is characterized by including .
[0009]
The ferric sulfate is preferably manufactured in-house from the viewpoint of cost, for example, iron salt solution after etching iron with ferric chloride is reduced in advance to almost ferric iron in the waste liquid in advance, Next, reacting carbonate with ferrous chloride in the solution to produce iron carbonate,
It is advantageous to perform the step of separating the produced iron carbonate from the reaction solution and to use this iron carbonate as a raw material.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As an example of the present embodiment, a manufacturing method in which the iron content in a ferric chloride etching waste liquid is taken out as ferric sulfate is shown in FIG. In FIG. 1, the process until the production of polyferric sulfate is divided into four processes for the sake of convenience, and these are the processes for reducing ferric chloride etching waste liquid to ferrous ( B) The step of reacting this solution with carbonate to separate the resulting iron carbonate from the filtrate (b), and mixing the iron carbonate separated in this step (b) with sulfuric acid to ferric sulfate (Fe2 (SO4) 3), and (d), and (d) a step of adding a small amount of iron carbonate to ferric sulfate and oxidizing the solution to obtain polyferric sulfate. A detailed explanatory diagram of the step (c) and the step (d) in FIG. 1 is shown in FIG. 2, and the step (c) is described in the water tank 20 and the step (d) is performed in the water tank 30. However, this is merely an expedient expression, and it is needless to say that step (c) and step (d) may be performed in a batch process in the same water tank.
[0011]
The water tanks 1, 10, 20 and 30 are each provided with a stirring means 32, and a bubbling device 31 for supplying an oxidizing gas is provided in the water tank 30. The oxidizing gas supply means is not limited to the bubbling device 31, and an aspirator or the like that draws gas into the high-pressure fluid can be used, or high-speed reaction can be performed in the high-pressure reaction vessel. The oxidizing gas is not limited to oxygen, and ozone (O3), NO2 or the like may be used. In addition, although oxidation is possible even with an aqueous oxidizer solution, it is often impossible to use practically due to contamination of accompanying impurities. In this case, it is preferable to oxidize with an aqueous H2O2 solution.
[0012]
Next, each step in FIG. 1 will be described. First, ferric chloride etching waste liquid is placed in the water tank 1 of the step (a). In this waste liquid, ferrous chloride generated by etching and unreacted ferric chloride are mixed. Therefore, in order to make most of the ferric iron in the waste liquid ferrous, a ferrous material is introduced and a reaction according to the equation (3) is performed.
[0013]
Fe + 2FeCl3 → 3FeCl2 (3)
Next, this reaction liquid is sent to the water tank 10, and when carbonate is supplied into the water tank 10, iron carbonate hardly soluble in water is generated and precipitated in the water tank 10. As carbonates, carbonates of various alkali metals and alkaline earth metals can be used. For example, when 15% by weight of sodium carbonate (Na2CO3) is added so that the pH becomes about 7-8 or more (4) It reacts like the formula.
[0014]
FeCl2 + Na2CO3 → FeCO3 ↓ + 2NaCl (4)
Although not illustrated in the present invention, for example, sodium hydroxide (NaOH) is supplied into the water tank 10 and carbon dioxide gas (CO2) is blown into the water tank 10 without supplying the carbonate itself into the water tank 10. In this case, it is included in the meaning of supplying carbonate.
[0015]
The produced iron carbonate is separated by, for example, suction filtration, and the separated filtrate can be allowed to flow into the wastewater treatment system as it is, but salts can also be removed by passing an ion exchange resin or the like.
[0016]
The filtered iron carbonate reacts as shown in the following formula (5) with sulfuric acid (H2SO4) and O2 or H2O2 supplied into the water tank 20, as shown in step (c) of FIG. When the molar ratio of sulfuric acid supplied at this time is 1 to 1.5 times less than iron as in the conventional example, it is hardly soluble in the next oxidation step (Fe2 (OH) n (SO4) 3-n / 2). ) (n ≧ 1) precipitates. On the other hand, if the amount of sulfuric acid is too large, iron and unreacted sulfuric acid react with a small amount of iron carbonate supplied in the next oxidation step and change to ferrous sulfate. The sulfuric acid is preferably as close to 1.5 as possible in a molar ratio of 1.5 to 1.8 times the iron content.
[0017]
[0018]
Figure 0003641148
Thereafter, oxidation is performed as shown in step (d) of FIG. The reaction proceeds as shown in the following formula (6) by reacting a small amount of iron carbonate and an oxidizing gas with the ferric sulfate solution obtained in the step (c). A ferric solution will be obtained.
[0019]
Figure 0003641148
According to the embodiment described so far, the solution of step (c) is Fe2 (SO4) 3 and excess sulfuric acid, and it can be said that iron is insufficient to produce polyferric sulfate. . Therefore, if the reaction of the formula (6) is carried out with the above-described ferric sulfate solution, it is sufficient to add a small amount of iron carbonate to make up for the lack of iron.
[0020]
For example, in the case of producing polyferric sulfate (Fe2 (OH) (SO4) 2.5) having a basicity of about 17%, as shown in the following formula (7), the iron content (Fe The iron content corresponding to 1/5 of the amount is supplemented with iron carbonate (FeCO3) and oxidized. Actually, considering that the basicity is around 10%, this ratio is further reduced, and about 1/10 iron carbonate supplementation is sufficient.
[0021]
Figure 0003641148
As described above, in the above-described embodiment, sulfuric acid having a molarity of 1.5 times or more is first added to iron carbonate to produce highly soluble ferric sulfate, and then a small amount of iron carbonate is mixed with the ferric sulfate. For example, since it is oxidized by O2, hardly precipitated (Fe2 (OH) n (SO4) 3-n / 2) (n.gtoreq.1) precipitate is hardly formed by oxidation. That is, theoretically, it is only necessary to react iron carbonate with 1.5 times the molar amount of sulfuric acid, but in order to reliably obtain ferric sulfate, it is slightly more than 1.5 times. It is preferable to supply about 1.8 times, preferably about 1.5 to 1.6 times of sulfuric acid. Therefore, a small amount of unreacted sulfuric acid remains and reacts with iron carbonate in the next step to produce FeSO4, which is also oxidized to polyferric sulfate. Therefore, a little more iron carbonate than the above formula (7) is required. However, the amount is very small when viewed from the whole solution, so that polyferric sulfate can be obtained with a high yield, and since it is difficult to form a slurry in the step (d), there is no problem in controlling the oxidation.
[0022]
In other words, the conventional method is a method of oxidizing ferrous sulfate produced by adding 1 to 1.5 times the molar amount of sulfuric acid to iron carbonate. However, in the above embodiment, the molar amount of sulfuric acid added to the iron carbonate is 1.5 times or more to obtain ferric sulfate that does not easily precipitate. Since iron carbonate supplements a small amount of Fe that is insufficient to make polyferric sulfate relative to ferric sulfate, not only O2 oxidation but also H2O2 oxidation can neglect the increase in drug cost. Furthermore, in this method, the iron carbonate obtained in the step (b) can also be used in the step (d), so this is also an effective method.
[0023]
As described above, the steps (c) and (d) can be efficiently performed by performing the reaction in the same water tank in the batch reaction. The timing of supplying the oxidizing gas is determined by data measured in advance according to the liquid amount, concentration and temperature, or determined by a control device (not shown). The temperature of the series of steps (c) and (d) is performed at 60 ° C. to 100 ° C., and the pressure may be normal pressure or pressurization, and the reaction is accelerated at the time of pressurization.
[0024]
In addition, for the ferric sulfate used as a raw material in the step (d), ore and commercially available products can be used in addition to the methods obtained by self-manufacturing as in the embodiments described so far. The method is cost effective.
[0025]
By the way, in the processes (c) and (d), in consideration of the case where the reactions of formulas (5) and (6) proceed, the ferrous iron concentration decreases and the oxidation reaction stagnates, the processes (c) and (c) A method using hydrogen peroxide solution can also be adopted for (d). However, since the hydrogen peroxide solution is expensive, supplying it when the ferrous iron concentration decreases and the reaction rate starts to slow down makes it possible to reduce costs and reduce the size of the apparatus.
[0026]
【Example】
(Example)
When 55 g of iron powder was added to 1000 g of etching waste liquid containing 7 wt% of ferrous chloride and 32 wt% of ferric chloride and reacted by heating, 1055 g of 42.2 wt% of ferrous chloride was obtained. It was.
[0027]
This solution was mixed with 2480 g of a 15 wt% sodium carbonate solution prepared in advance, and then 20 g was added to adjust the pH to 7.8 to precipitate iron carbonate. This was separated, washed and dehydrated to obtain 556 g of iron carbonate cake having a water content of 27%.
[0028]
548 g of this iron carbonate was dissolved in 873 g of 60% by weight sulfuric acid and diluted with water to 2000 g. This solution was vigorously stirred for 24 hours while flowing O2 gas in a jacketed high-speed stirring vessel equipped with a reflux apparatus to obtain 2000 g of a 34.5 wt% solution of ferric sulfate without precipitation. However, water reduced by evaporation was supplied.
[0029]
Next, 94 g of iron carbonate having a water content of 27% is added to this solution and dissolved by stirring. Then, 50 g of 35% by weight of hydrogen peroxide is gradually added to oxidize almost all of the ferrous iron. Thus, 2144 g of ferric polysulfate having a ferric concentration of 10.5%, a basicity of 12% and a pH of 1.25 without precipitation was obtained.
[0030]
(Comparative Example 1)
350 g of iron carbonate (dry) and 421 g of 95% by weight sulfuric acid were mixed, and water was added to make 1600 g. When this solution was oxidized by supplying O2 gas at 80 ° C. in a jacketed high-speed stirring vessel equipped with a reflux apparatus, the calculated basicity was 10% and the Fe concentration (Fe2 + and a small amount of Fe3 +) was Despite being about 10%, precipitation started immediately after the start of the reaction, and this tendency was the same over time and precipitation continued. As a result, after 7 hours, the Fe ion concentration (Fe2 + and Fe3 +) in the liquid dropped to 6.18%, and a polyferric sulfate having a target Fe3 + concentration of 10% or more was not obtained. By the way, when the precipitate was examined by X-ray, a peak mainly of Fe6S4O21.xH2O was obtained.
[0031]
(Comparative Example 2)
Water was added to 459 g of reagent ferrous sulfate (FeSO4 anhydrous salt) and 110 g of 95% sulfuric acid to make 1600 g. When this solution was oxidized under the same apparatus and reaction conditions as in Comparative Example 1, there was precipitation as in Comparative Example 1, and the Fe ion concentration in the liquid (Fe concentration in the filtrate) was 5. It decreased to 95%, and the desired concentration of polyiron sulfate was not obtained. The result of X-ray diffraction of the precipitate was the same crystal as in Comparative Example 1.
[0032]
【The invention's effect】
According to the present invention, since precipitation in the solution can be suppressed as much as possible, it is possible to reduce the load of the post-process for separating the precipitate from the manufactured polyferric sulfate solution, and the rate of obtaining ferric sulfate. Can be high. In addition, according to another invention, for example, ferric sulfate is produced using iron carbonate separated from an iron salt waste solution such as ferric chloride etching waste solution, so that an effective waste liquid treatment path can be provided. .
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an embodiment of the present invention.
FIG. 2 is an explanatory diagram illustrating step (c) and step (d) in FIG. 1 in detail.
[Explanation of symbols]
10, 20, 30 Water tank 31 Bubbling means 32 Stirring means

Claims (2)

炭酸鉄を、炭酸鉄に対してモル量で1.5倍以上1.8倍以下の硫酸に溶解させ、その溶液に酸素ガスを供給して硫酸第二鉄を生成する工程と、
その後、この工程で得られた溶液に、硫酸第二鉄をポリ硫酸第二鉄とするために不足する鉄を補うために少量の炭酸鉄を供給し、その混合液を酸化する工程と、を含むことを特徴とするポリ硫酸第二鉄の製造方法。
A step of dissolving ferric sulfate in a molar amount of 1.5 to 1.8 times sulfuric acid with respect to iron carbonate and supplying ferric sulfate to the solution by supplying oxygen gas;
Thereafter, the solution obtained in this step is supplied with a small amount of iron carbonate to supplement iron shortage to make ferric sulfate as polyferric sulfate, and the step of oxidizing the mixed solution. A method for producing ferric polysulfate, comprising :
鉄塩廃液中の塩化第二鉄を塩化第一鉄に還元する処理を行った後の鉄塩処理液を用い、この鉄塩処理液中に含まれる塩化第一鉄を炭酸塩と反応させて炭酸鉄を生成する工程と、
前述反応により生成した炭酸鉄を当該反応溶液から分離する工程と、を含み、 分離された炭酸鉄を原料とすることを特徴とする請求項1に記載のポリ硫酸第二鉄の製造方法。
Using the iron salt treatment solution after reducing ferric chloride in the iron salt waste solution to ferrous chloride, the ferrous chloride contained in this iron salt treatment solution is reacted with carbonate. Producing iron carbonate;
Separating the iron carbonate produced by the reaction from the reaction solution, and using the separated iron carbonate as a raw material.
JP35740998A 1998-12-16 1998-12-16 Method for producing polyferric sulfate Expired - Fee Related JP3641148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35740998A JP3641148B2 (en) 1998-12-16 1998-12-16 Method for producing polyferric sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35740998A JP3641148B2 (en) 1998-12-16 1998-12-16 Method for producing polyferric sulfate

Publications (2)

Publication Number Publication Date
JP2000178027A JP2000178027A (en) 2000-06-27
JP3641148B2 true JP3641148B2 (en) 2005-04-20

Family

ID=18453981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35740998A Expired - Fee Related JP3641148B2 (en) 1998-12-16 1998-12-16 Method for producing polyferric sulfate

Country Status (1)

Country Link
JP (1) JP3641148B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE370097T1 (en) * 2003-10-06 2007-09-15 Kerr Mcgee Pigments Gmbh METHOD FOR PROCESSING USED SULFURIC ACID CONTAINED WITH IRON
JP4630776B2 (en) * 2005-09-13 2011-02-09 松田技研工業株式会社 Water purification agent and water purification method

Also Published As

Publication number Publication date
JP2000178027A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
JP5475277B2 (en) Method for recovering valuable metals and arsenic from solution
JP5188298B2 (en) Method for processing non-ferrous smelting intermediates containing arsenic
JP5188296B2 (en) Method for treating copper arsenic compound
AU2008202381B2 (en) Process for producing scorodite and recycling the post-scorodite-synthesis solution
TWI267397B (en) Production of pure ammonium dimolybdate from low grade molybdenite concentrates
JP4216307B2 (en) Process for electrolytically precipitated copper
CA2618326C (en) Method for manufacturing scorodite
WO2007125627A1 (en) Method of treating arsenic-containing solution
JP2009242223A (en) Method of treating diarsenic trioxide
JP7372691B2 (en) How to obtain scorodite with a high arsenic content from an acidic solution with a high sulfuric acid content
CN106868320A (en) A kind of preparation method of the solid arsenic mineral of high stability
CN112978897B (en) Method for removing iron and manganese from zinc smelting process solution
JP3641148B2 (en) Method for producing polyferric sulfate
CN107129018A (en) The method for concentration of arsenic in a kind of arsenic-containing waste water
EP0246871B1 (en) Removal of chromium from cell liquor
CA2285731C (en) Process for preparing usable products from an impure ferric sulfate solution
JP3294181B2 (en) Method for producing calcium arsenate
EP0500533B1 (en) Production of copper compounds
JP3963093B2 (en) Arsenous acid production method
JP3816131B2 (en) Arsenic oxidation method
EP0110848B1 (en) A method for producing water-purifying chemicals
JPH0812328A (en) Production of cupric hydroxide
CN115135607B (en) High-concentration iron flocculant and production method thereof
JPH09176861A (en) Treatment of deteriorated electroless nickel plating solution
CN106823235A (en) A kind of method that regulation and control growth method prepares the solid arsenic mineral of high stability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees